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Abstract. Computing Kostka numbers and Littlewood-Richardson coefficients remains of great
interest in combinatorics, and Brian G. Wybourne was among the first people to design software
-SCHUR- for their computation. The efficiency of existing software -SCHUR, Stembridge package,
LattE, Cochet’s programs- is generally constrained by the lengths or weights of partitions. This
work describes another method, based on the hives model, applying distributed computing tech-
niques to the determination of generating polynomials for stretched Kostka numbers and stretched
Littlewood-Richardson coefficients. This method can be used to ”quickly” find such polynomials,
with the help (of a predefined subset) of the available computers of the Local Area Network.

1. Definitions

A partition of a positive integer n is a way of writing n as a sum of non-
increasing integers. For example λ = (4, 2, 2, 1) and µ = (2, 1) are partitions of
n = 9 and n ′ = 3 respectively. We write λ ` n and µ ` n ′ or |λ| = n and |µ| = n ′.

The Ferrers diagram F λ associated to a partition λ = (λ1, λ2, ..., λp) consists
of |λ| = n boxes, arranged in `(λ) = p left-justified rows of lengths λ1, λ2, ...,
λp. Rows in F λ can be oriented downwards or upwards. F λ is called the shape of
λ. If F λ contains F µ, then the skew diagram (or skew partition) λ/µ is the one
obtained from F λ by deleting F µ.

A semi-standard Young tableau of shape λ (SSY T λ) is a numbering of the
boxes of F λ with entries from {1, 2, ..., n}, weakly increasing across rows and strictly
increasing up (or down) columns. A tableau is standard (SY T λ) if all its entries
are different. Skew tableaux are defined in an analogous way. For example, for
λ = (4, 2, 2, 1) and µ = (2, 1), the Ferrers diagram F λ, the skew Ferrers diagram
λ/µ, a semi-standard tableau and a standard tableau both of shape λ, and a standard
skew tableau of shape λ/µ are as follows:
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A Symmetric Function is a function which is symmetric or invariant under
permutation of its variables.

f(xσ(1), xσ(2), ..., xσ(n)) = f(x1, x2, ..., xn) (1)

where σ is any permutation of the symmetric group Sn. The Schur function sλ is
the symmetric function defined as:

sλ(x) =
∑

SSY T λ

xm1
1 xm2

2 ... xmnn (2)

where |λ| = n, mi is the number of entries i in SSY T λ for i = 1, 2, ..., n. For
example, for µ = (2, 1) there are 8 semi-standard tableaux of shape µ:

1 1

2

1 1

3

1 2

2

1 2
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1 3

2

1 3

3

2 2

3

2 3

3

So the Schur function sµ(x) is the symmetric function defined as:

s21(x) = x2
1 x2 + x2

1 x3 + x1 x
2
2 + x1 x2 x3 + x1 x2 x3 + x1 x

2
3 + x2

2 x3 + x2 x
2
3

Littlewood-Richardson coefficients c νλµ are defined as the structure con-
stants for the multiplication in the basis of Schur functions. So if λ ` n and µ ` m:

sλ sµ =
∑

ν ` n+m

c νλµ sν (3)

Example:
s4221 s21 = s6321 + s6222 + s62211 + s5421 + s5331 + 2 s5322 + 2 s53211 + s4431 + s4422 +
s44211 + 2 s52221 + s4332 + 2 s43221 + s522111 + s43311 + s432111 + s42222 + s422211

Thus c 5322
4221, 21 = c 43221

4221, 21 = 2 and c 6321
4221, 21 = c 422211

4221, 21 = 1.

Littlewood-Richardson coefficients are also defined as coefficients in the expan-
sion of a skew Schur function in the basis of Schur functions:

sν/λ =
∑

µ

c νλµ sµ (4)

Kostka numbersKλµ are the number of distinctly labeled semi-standard Young
tableaux of shape λ and weight µ, that is to say with µi entries i for i = 1, 2, ..., ` (µ).
For example, if λ = (3, 2) and µ = (2, 2, 1) then there are 2 semi-standard Young
tableaux (SSY T 32) of weight (2, 2, 1):

1 1 2

2 3

1 1 3

2 2
thus K32,221 = 2

Kostka numbers can be used to give a combinatorial definition of Schur func-
tions as linear combinations of monomial symmetric functions, as well as to express
complete symmetric functions as combinations of Schur functions as follows [8]:

sλ =
∑

µ ` |λ|
Kλµmµ and hµ =

∑

λ ` |µ|
Kλµ sλ (5)
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For each partition λ with ` (λ) ≤ n there exists an irreducible representation V λ

of GL(n) of highest weight λ and character ch V λ [9]. With a suitable identification
of the indeterminate x1, x2, ..., xn, the character ch V λ is nothing other than the
Schur-function sλ(x). It follows that the Littlewood-Richardson coefficients govern
the decomposition of tensor products of irreducible representations of GL(n) in
accordance with the formula:

V λ ⊗ V µ =
∑

ν

c νλµ V
ν (6)

Moreover [9], the weight space decomposition of the irreducible representation
V λ takes the form:

V λ = ⊕mV λ
m (7)

where the sum is taken over all weights m = (m1,m2, ...,mn). This decomposition
is such that the multiplicity of the weight specified by m = µ in the irreducible
representation V λ is given by dim V λ

µ = Kλµ.

2. Main results and motivations

Littlewood-Richardson coefficients c νλµ have a polynomial growth with respect
to the dilatation factor N ∈ N:

cNνNλ,Nµ = P ν
λµ (N) ; P ν

λµ (0) = 1 (8)

where P ν
λµ is a polynomial in N with non negative rational coefficients depending

on λ, µ and ν. This was first conjectured in [9]. A partial proof (existence of P ν
λµ

and rationality of coefficients) was given in [4]. Those polynomials [9] are obtained
considering a model known as the hive model. An n-integer-hive is a triangular
array of non negative integers aij with 0 ≤ i, j ≤ n where neighboring entries define
three distinct types of rhombus, each with its own constraint condition.

ba

c

b d

cd

R1: R2: R3:

a

a

b

d

c

In each case, with the labeling as shown, the hive condition takes the form:

b+ c ≥ a+ d (9)

An LR-hive [9] is an integer hive satisfying the hive condition (9) for all its
constituent rhombi of type R1, R2 and R3, with border labels determined by the
partitions λ, µ and ν, such that:





a0
0 = 0 ; a0

j = λ1 + λ2 + ...+ λj for j = 1, 2, ..., n

ai0 = ν1 + ν2 + ...+ νi for i = 1, 2, ..., n

akn−k = a0
n + µ1 + µ2 + ...+ µk for k = 1, 2, ..., n

with ` (λ), ` (µ), ` (ν) ≤ n and |λ |+ |µ | = | ν |.
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For example, for n = 4, LR-hives will be sketched as:

λ1

λ1 + λ2

|ν| |ν| − µ4 |λ|+ µ2 |λ|+ µ1
|λ|

|λ| − λ4

ν1

ν1 + ν2

|ν| − ν4

0

a1
1

a2
1 a1

2

The Littlewood-Richardson coefficient c νλµ is the number of LR-hives with bor-

der labeled as above by λ, µ and ν. So c νλµ is the number of triples (a1
1, a

2
1, a

1
2)

satisfying (9) for all rhombi of type R1, R2 and R3. That is the number of integer
solutions to the system of inequalities obtained by writing (9) for all rhombi. The
degree of the polynomial P νλµ(N) is always bounded by (n−1)(n−2)/2, the number
of interior points of the hive, but if any of the partitions, λ, µ or ν has repeated parts
then it is possible to use the hive inequalities to improve on this bound with some
maxDeg < (n− 1)(n− 2)/2, see Proposition 5.1 and Conjecture 5.2 in [10]. Also
see Theorem 4.1 and Corollary 4.2 in [4]. We can produce a Maple code to compute
cNνNλ,Nµ for any N ∈ N. This code can be automatically translated into C and com-
piled. This increases the computation speed of individual coefficients, Maple being
an interpreted language, contrary to C which is a compiled one. Although this code
has been translated into C, the computation of a single coefficient still takes consid-
erable time. Computing at most maxDeg+1 coefficients leads to the determination
of P by interpolation. In fact only maxDeg values are computed, since P ν

λµ (0) = 1.

Kostka numbers [9] can be viewed as special kinds of Littlewood-Richardson
coefficients. To be precise, Kλµ = c τσ λ where:

{
τi = µi + µi+1 + ... for i = 1, 2, ..., ` (µ)
σi = µi+1 + µi+2 + ... for i = 1, 2, ..., ` (µ)− 1

For example, if λ = (3, 2) and µ = (2, 2, 1), then τ = (5, 3, 1) and σ = (3, 1).
Computing c τσ λ by means of the Littlewood-Richardson rule leads to the diagrams:

× 1 1 1

2 2
→ ... +

1 1

1 2

2

1 1

2 2

1

It follows that K32 , 221 = c 531
61, 32 = 2.
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A K -hive [9] is an integer hive satisfying the hive condition (9) for all its con-
stituent rhombi of type R1, R2 but not necessarily R3, with border labels determined
by the partitions λ and µ, such that:





ai0 = 0 for i = 1, 2, ..., n

a0
j = λ1 + λ2 + ...+ λj for j = 1, 2, ..., n

akn−k = µ1 + µ2 + ...+ µk for k = 1, 2, ..., n

with ` (λ), ` (µ) ≤ n and |λ | = |µ |.

3. Main steps of the distributed computation

The main idea is to achieve the computation of themaxDeg necessary coefficients
with the help (of a predefined subset) of the available computers of the Local Area
Network. We now describe step-by-step the distributed computation process.

step 1. The triple (λ, µ, ν) is given as an input to a first Maple program we’ve called
Hives. Hives constructs the hive corresponding to λ, µ and ν, and extract
from the hive a system of inequalities defining a convex polytope. It also pro-
duces a Maple code of a function to compute c NνNλ,Nµ for any N ∈ N, that is
a function to count integer points in the dilated polytope. This program will
be called Prog1. Hives also produces the value of maxDeg.
Of course how Prog1 counts those points is a crucial question. This is a com-
pletely non-trivial problem on its own. The problem in question is in fact a
well-known P-hard problem (in the computer science sense), but it is not the
purpose of the paper to explore this. In practice, only the two matrices A and
B defining the system of inequalities AX ≤ B corresponding to the primary
polytope will be determined. So Prog1 should be regarded as a generic program
to solve linear systems of inequalities. We envisage passing those matrices to
some well known such programs, in particular we’ve already considered for-
matting them as input files for LattE [3]. The difficulty here rests on the fact
that all of the available software to compute these coefficients is efficient only
in certain particular cases. This is the case in [2] where the computation times
are reasonable only so far as the lengths of the partitions are less than or equal
to 6. Another idea will be to use some other software to compute stretched
Littlewood-Richardson coefficients for N from 1 to maxDeg. We plan to start
this with lrcalc (Littlewood-Richardson Calculator) of A. S Buch [1].
On the occasion of this commemorative meeting organized for the memory of
Brian G. Wybourne, we chose to use some programs he designed a few years
ago, programs of which we maintain and upgrade a copy for experimental pur-
pose. This iterative program rapidly becomes inefficient as |λ|, |µ| and |ν| grow.

step 2. Prog1 is given as an input to a second Maple program which translates it into
C as Prog2. So we are now provided with a couple (Prog2, maxDeg) where
Prog2 is the C code of a function to compute c NνNλ,Nµ for any N ∈ N, and
maxDeg is the max degree of the polynomial P . That is sufficient to distribute
computations through the network:
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Prog1:
Maple program

(λ, µ, ν)
Hives:

Maple program
Converter:

Maple program

maxDeg
Prog2:

C program

Fig. 1: automatic generation of code, determination of maxDeg.

step 3. Prog2 is sent to a subset of the computers of the LAN, each of which is
running a client application. Let us insist on the fact that Prog2 can be any
other program to compute Littlewood-Richardson coefficients.

. . .

PC2

SERVER
sending Prog2 PCn

PC3 PC4 PC1

Fig. 2: the server sends the C code to computers on the LAN.

step 4. When a computer receives the C code (Prog2), it compiles it and sends an
acknowledgement to the server to inform him of being ready for computations:

. . .

PC2: ready SERVER PCn: ready

PC3: not ready PC4: ready PC1: ready

Fig. 3: the server receives acknowledgements from some computers.

Note that in the situation described on the figure above, the calculator named
PC3 did not send an acknowledgement to the server.
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step 5. Any computer which is ready receives a dilatation factor for which it is ordered
to compute the corresponding coefficient. Note that PC3 has just sent an
acknowledgement to the server. It has not yet received any dilatation factor,
and will receive one as soon as the server takes note of its acknowledgement.
The distributed computation is asynchronous.

. . .

PC2:
receives N=3

SERVER
computing P(1)

PCn:
receives N=k

PC3: ready

PC4:
receives N=4

PC1:
receives N=2

Fig. 4: the server sends dilatation factors to different computers.

step 6. When a computation is done, a computer sends its result to the server and
receives the next dilatation factor for which it starts a new computation (Fig.
5 and Fig. 6).

. . .

PC2:
computing P(3)

SERVER
P(1): Done

PCn:
computing P(k)

PC3:
receives N = k+1

PC4:
sends P(4)

PC1:
sends P(2)

Fig. 5: results are sent back to the server.

Note that PC3 is receiving its first dilatation factor at the moment PC1 and
PC4 are sending their first computation results to the server.

step 7. Each time the server receives new values, it makes an interpolation, using the
list of all available values. So a set of polynomials

(Pi
ν
λ µ) = P1

ν
λµ , P2

ν
λµ , ... , PmaxDeg

ν
λµ (10)

is constructed. Experimentally, this set is often stationary. This means
that for a given triple (λ, µ, ν), there is an integer i0 probably depending on
λ, µ and ν, such that for any i ≥ i0 the equality Pi

ν
λ µ = Pi0

ν
λµ holds. So we

usually don’t need to interpolate the theoretical maximum number of points
to get the final polynomial. In other words, the polynomial P ν

λµ usually has
lower degree than the maximum degree expected.
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. . .

PC2:
sends P(3)

SERVER:
computing P(k+2)

PCn:
sends P(k)

PC3:
computing P(k+1)

PC4:
receives N = k+4

PC1:
receives N = k+3

Fig. 6: the server sends new dilatation factors to the previous computers.

4. Some experimental results

As a first example, for λ = (4, 3, 3, 2, 1), µ = (4, 3, 2, 2, 1) and ν = (7, 4, 4, 4, 3, 2, 1),
an extract of the log file produced by the server application is following:

...

Tue Jun 7 17:15:47 2005 Received from "localhost": READY

Tue Jun 7 17:15:47 2005 Send "localhost": "compute f(1)"

Tue Jun 7 17:15:47 2005 Received from "PC_1": READY

Tue Jun 7 17:15:47 2005 Received from "localhost": LR-Coef. RESULT

Dilatation factor: N = 1 LR-Coef = 13 ; Computation time (s) = 0

Tue Jun 7 17:15:47 2005 Send "PC_1": "compute f(2)"

Tue Jun 7 17:15:47 2005 Received from "PC_2": READY

Tue Jun 7 17:15:47 2005 Received from "PC_1": LR-Coef. RESULT

Dilatation factor: N = 2 LR-Coef = 93 ; Computation time (s) = 0

...

Tue Jun 7 17:19:45 2005 Received from "localhost": LR-Coef. RESULT

Dilatation factor: N = 9 LR-Coef = 162019 ; Computation time (s) = 173

Tue Jun 7 17:31:01 2005 Received from "PC_3": LR-Coef. RESULT

Dilatation factor: N = 10 LR-Coef = 314743 ; Computation time (s) = 676

...

And here is the result of the interpolations:

Max. Deg : 8

Dilat.(N): 0 1 2 3 4 5 6 7 8

Coef. : 1 13 93 456 1722 5382 14586 35376 78507

P1(N): 12N + 1

P2(N): 34N^2 - 22N + 1

P3(N): 1/6 (215N^3 - 441N^2 + 298N + 6)

P4(N): 1/24 (405N^4 - 1570N^3 + 2691N^2 - 1238N + 24)

P5(N): 1/120 (466N^5 - 2635N^4 + 8460N^3 - 9845N^2 + 4994N + 120)

P6(N): 1/360 (161N^6-1017N^5 + 5780N^4 - 10845N^3 + 14579N^2 - 4338N + 360)

P7(N): 1/5040 (123N^7-329N^6+7287N^5-9485N^4+47922N^3-12866N^2+27828N+5040)

P8(N) = 1/10080 (N^2 + 2N + 4)(5N + 21)(N + 1)(N + 2)(N + 3)(N + 4)(N + 5)

Total number of successive identical polynomials: 0

Real. Deg: 8
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For the previous example, all the polynomials obtained by interpolation are dif-
ferent, which is experimentally not common. Here is another example which clearly
points out the fact that the set of polynomials can be stationary:

Lambda: (7,6,5,4) ; Mu: (7,7,7,4) ; Nu: (12,8,8,7,6,4,2)

Max. Deg: 8

Dilat.(N): 0 1 2 3 4 5 6 7 8

Coef. : 1 12 62 212 567 1288 2604 4824 8349

P1(N): 11N + 1

P2(N): 39/2 N^2 - 17/2 N + 1

P3(N): 61/6 N^3 - 11 N^2 + 71/6 N + 1

P4(N): 11/6 N^4 - 5/6 N^3 + 55/6 N^2 + 5/6 N + 1

P5(N): 1/30 (N+3)(N+2)(N+1)(3N^2+7N+5) = P6(N) = P7(N) = P8(N)

Total number of successive identical polynomials: 4

Real. Deg: 5

And below is a table showing some computations we’ve carried out. Those examples
were arbitrarily selected.

λ µ ν max degree real degree

1 9,7,3 9,9,3,2 10,9,9,8,6 4 1

2 2,2,1,1 2,2,1,1 3,3,2,2,1,1 4 2

3 11,10,8,5 20,17,3 26,25,8,8,7 4 3

4 6,5,2,2 5,5,3,2,2,2,1 8,8,7,7,2,2,1 5 0

5 9,8,3,3 10,7,5,3 10,10,8,8,7,5 5 2

6 11,10,8,5 20,17,3 26,25,8,8,5,2 5 4

7 9,5,3,3,3 7,6,5,4,3 10,10,8,8,7,5 5 5

8 11,8,8,5,2 20,17,3 26,25,8,8,5,2 5 5

9 5,4,3,3,2,1 9,5,3,3,2,1 9,8,8,6,5,5 6 6

10 18,11,9,4,2 20,17,9,4 26,25,19,16,8 6 6

11 64,30,27,17,9 55,48,32,12,4 84,75,66,49,24 6 6

12 5,3,2,2,1 4,3,2,2,1 7,5,4,4,3,2 7 7

13 7,6,5,4 7,7,7,4 12,8,8,7,6,4,2 8 5

14 4,3,3,2,1 4,3,3,2,1 7,4,4,4,3,2,1 8 8

15 5,5,3,2,2 6,6,4,2,1 10,6,6,5,5,2,2 9 4

16 11,10,8,4,2 8,7,6,5,2 18,17,15,7,4,2 10 2

17 5,4,4,3,3,2,1 9,6,4,3,2,2,1 9,9,8,8,6,5,4 10 10

18 5,4,4,3,3,2,1 9,7,3,3,2,2,1 10,9,8,7,6,5,4 11 0

19 4,4,2,2,1,1 4,4,2,2,1,1 8,8,3,3,2,2,1,1 12 2

20 5,5,3,2,1,1 6,6,4,2,1 6,6,6,5,5,3,3,2 12 3

21 5,5,3,2,1,1 6,6,4,2,1 6,6,6,5,5,3,2,2,1 14 5

Remark: examples 1, 10 and 11 in the table above are partitions taken from [2]
(Fig. 3). With the exception of the first one, all the examples listed in that figure
have a real degree equal to 6, for a predicted maximal degree also equal to 6.
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5. Concluding remarks and perspectives

The examples listed show that the interpolation process very often produces
some consecutive identical polynomials. In fact, all the computations made until
now tend to show that the finite set of polynomials (Pi

ν
λ µ) is often stationary. If

this result was proven, then it will be a fundamental supplementary information in
the distribution of computations. As soon as the set (Pi

ν
λ µ) becomes stationary, the

server will send an order to all computers, asking them to stop all computations still
in progress. The sought-after polynomial being the last obtained by interpolation.

Translating the generated code from Maple into C increases the speed of com-
putation of individual coefficients, as does the distribution of computations for the
determination of P ν

λµ. The same techniques can be applied in the computation of
many other combinatorial results, such as the generation of ribbon tableaux, spin
and cospin polynomials. Such computations are being carried out at the LIPN1, in
collaboration with F. Descouens2 who proposed [5] an algorithm for the generation
of those combinatorial objects. Our application is still under development and is
not yet stable enough. It will be available as part of MuPAD-Combinat [6] which is
free and available online at http://mupad-combinat.sourceforge.net, after we
have interfaced it with some other software like LattE [3] and lrcalc [1]. Finally,
the hive model has been implemented using Maple, as well as the computation of
maxDeg. We plan to convert those programs and include them in MuPAD-Combinat.

Acknowledgement: we would like to thank the JemSTIC3 program for financing
the participation of Frédéric Toumazet and Franck Butelle in this meeting. We
would also like to thank the referees for their helpful remarks and suggestions.
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Combinatorics, Séminaire Lotharingien de Combinatoire 51 (2004).

7. H. Derksen and J. Weyman, On the Littlewood-Richardson polynomials, J. Algebra, 255(2002)
247-257.

8. I. G. MacDonald, Symmetric functions and Hall Polynomials, 2nd ed., Clarendon Press, Oxford
Science Publications, 1995.

9. R. C. King, C. Tollu, and F. Toumazet, Stretched Littlewood-Richardson and Kostka coeffi-
cients, CRM Proceedings and Lecture Notes, Vol. 34, Amer. Math. Soc, 2004, pp99-112.

10. R. C. King, C. Tollu, and F. Toumazet, The hive model and the polynomial nature of stretched
Littlewood-Richardson coefficients. Presented at FPSAC’05.

1Laboratoire d’Informatique Paris Nord, Avenue J.B. Clément, 93430 Villetaneuse, FRANCE
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