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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Some notations

Let GF(2) = {0, 1} be the finite field with two elements. We
denote by Vi, any m-dimensional vector space over GF(2).

Laurent Poinsot Boolean bent functions in impossible cases



Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Some notations

Let GF(2) = {0, 1} be the finite field with two elements. We
denote by Vi, any m-dimensional vector space over GF(2).

Vin will be interpreted as GF(2)™, the vector space of m-tuples,
or as GF(2™) the finite field with 2™ elements.
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Applications for such functions

Let G be a finite Abelian group. For instance G = Vp,
G=Zm=1{0,1,...,m—1}or G= GF(2™)*.
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Boolean bent functions : Traditional Approach What is a bent functions ?

Applications for such functions

Let G be a finite Abelian group. For instance G = Vp,
G=Zm=1{0,1,...,m—1}or G= GF(2™)*.

Definition

A Boolean function is a (mathematical) mapping f from G to V.
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Boolean bent functions : Traditional Approach What is a bent functions ?

Applications for such functions

Let G be a finite Abelian group. For instance G = Vp,
G=Zm=1{0,1,...,m—1}or G= GF(2™)*.

Definition

A Boolean function is a (mathematical) mapping f from G to V.
A Boolean function f : G — Vj is called bent if its Fourier
spectrum contains all the possible frequencies.
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Alternative definition : perfect nonlinearity

Definition
A function f : G — V,, is called perfect nonlinear if for each
nonzero « in G and for each 8 € V,,

{x € Glf(a+x) @ f(x) = 8} = 8.

2n
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Alternative definition : perfect nonlinearity

Definition
A function f : G — V,, is called perfect nonlinear if for each
nonzero « in G and for each 8 € V,,

Gl

[{x € Glf(a +x)@f(x) =G} = 57 -

Theorem (Dillon 1976, Rothaus 1974, Carlet & Ding 2004)

A function f is bent if and only if f is perfect nonlinear.
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

The function f : GF(2)* — GF(2) defined by

f(x1, X2, X3, X4) = (X1, X2)-(X3, X4) = X1X3 © XoXq

is bent.
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Nonexistence results :
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Nonexistence results :

@ Odd dimension : If mis an odd integer, there is no bent
function f from V,, to V), (for any n);
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Nonexistence results :

@ Odd dimension : If mis an odd integer, there is no bent
function f from V,, to V), (for any n);

@ Plane dimension : For any integer m, there is no bent
function f from V,, to itself ;
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Nonexistence results :

@ Odd dimension : If mis an odd integer, there is no bent
function f from V,, to V), (for any n);

@ Plane dimension : For any integer m, there is no bent
function f from V,, to itself ;

@ Nevertheless in this contribution are constructed "bent”
functions in these cases !
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Traditional Approach What is a bent functions ?

Applications for such functions
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Applications for such functions

@ Cryptography ;
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Applications for such functions

@ Cryptography ;
@ Mobile communications.
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Applications for such functions

Cryptography (I/IV) : DES-like cryptosystem
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Cryptography (I/IV) : DES-like cryptosystem

Let M be the plaintext and f be a mapping.
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Cryptography (I/IV) : DES-like cryptosystem

Let M be the plaintext and f be a mapping. An encryption using
a DES-like cryptosystem consists in the iterative process

@ Xo =M;
@ X;:=f(Ki+ Xj_1)forn>i>0.
By definition the ciphertext is C := X,.
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Cryptography (lI/Il) : Differential and linear attacks
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Cryptography (lI/Il) : Differential and linear attacks

@ Biham & Shamir’s Differential attack takes advantage of a
possible weakness of the DES-like cryptosystem in a
first-order derivation ;
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Applications for such functions

Cryptography (lI/Il) : Differential and linear attacks

@ Biham & Shamir’s Differential attack takes advantage of a
possible weakness of the DES-like cryptosystem in a
first-order derivation ;

@ Matsui’s linear attack exploits the possible existence of an
approximation of the entire cryptosystem by a linear
function;;

Laurent Poinsot Boolean bent functions in impossible cases



Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Cryptography (lI/Il) : Differential and linear attacks

@ Biham & Shamir’s Differential attack takes advantage of a
possible weakness of the DES-like cryptosystem in a
first-order derivation ;

@ Matsui’s linear attack exploits the possible existence of an
approximation of the entire cryptosystem by a linear
function;;

@ The resistance of DES-like cryptosystem relies on the
mapping f used.
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Cryptography (lI/Il) : Differential and linear attacks

@ Biham & Shamir’s Differential attack takes advantage of a
possible weakness of the DES-like cryptosystem in a
first-order derivation ;

@ Matsui’s linear attack exploits the possible existence of an
approximation of the entire cryptosystem by a linear
function;;

@ The resistance of DES-like cryptosystem relies on the
mapping f used.

The mappings f that offer the best resistance against the
differential and linear attacks are exactly the bent functions.
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (I/V) : Code Division Multiple

Access (CDMA)

Definition
Two vectors u = (uy,...,up)and v =(vq,...,Vvy) are called

orthogonal if
m
u.v:Zu,-v,-:O.
=1

For instance u = (1,1,1,—1)and v = (1,—1,1,1) are
othogonal.
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (11/V) : CDMA

@ V : set of mutually orthogonal vectors ;
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What is a bent functions ?

Boolean bent functions : Traditional Approach
Applications for such functions

Mobile communications (11/V) : CDMA

@ V : set of mutually orthogonal vectors ;
@ Each sender Sy has a different, unique vector x € V called

chip code.
For instance S, has u=(1,1,1,—1) and S, has

v=_>1,-1,1,1);
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (11/V) : CDMA

@ V : set of mutually orthogonal vectors ;

@ Each sender Sy has a different, unique vector x € V called
chip code.
For instance S, has u=(1,1,1,—1) and S, has
v=(1,-1,1,1);

@ Objective : Simultaneous transmission of messages by
several senders on the same channel (multiplexing).

Laurent Poinsot Boolean bent functions in impossible cases



Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (111/V) : CDMA
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (111/V) : CDMA

@ S, wantstosendd, =(1,0,1) and S, wants to send
dV = (07 07 1) 5
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (111/V) : CDMA

@ S, wantstosendd, =(1,0,1) and S, wants to send
dV - (07 07 1) 5

@ S, computes its transmitted vector by coding d,, with the
rules 0 < —u, 1 < u. He obtains (u, —u, u);
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Applications for such functions

Mobile communications (111/V) : CDMA

@ S, wantstosendd, =(1,0,1) and S, wants to send
dV - (07 07 1) 5

@ S, computes its transmitted vector by coding d,, with the
rules 0 < —u, 1 < u. He obtains (u, —u, u);

@ S, computes (—v,—v,V);
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (111/V) : CDMA

@ S, wantstosendd, =(1,0,1) and S, wants to send
d, =(0,0,1);

@ S, computes its transmitted vector by coding d,, with the
rules 0 < —u, 1 < u. He obtains (u, —u, u);

@ S, computes (—v,—v,V);

@ The message sent on the channel is (u—v,—u— v, u+ v).
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (IV/V) : CDMA

Laurent Poinsot Boolean bent functions in impossible cases



Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (IV/V) : CDMA

@ Areceiver gets the message M = (u—v,—u—v,u+v)
and he needs to recover d, and/or d, ;
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Applications for such functions

Mobile communications (IV/V) : CDMA

@ Areceiver gets the message M = (u—v,—u—v,u+v)
and he needs to recover d, and/or d, ;
@ How to recover d, ?
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (IV/V) : CDMA

@ Areceiver gets the message M = (u—v,—u—v,u+v)
and he needs to recover d, and/or d, ;
@ How to recover d, ?
o Take the first component of M, u — v
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (IV/V) : CDMA

@ Areceiver gets the message M = (u—v,—u—v,u+v)
and he needs to recover d, and/or d, ;
@ How to recover d, ?

e Take the first component of M, u — v and compute the
dot-product with v : (u — v).u = u.u—v.u=4.
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (IV/V) : CDMA

@ Areceiver gets the message M = (u—v,—u—v,u+v)
and he needs to recover d, and/or d, ;
@ How to recover d, ?

e Take the first component of M, u — v and compute the
dot-product with u : (u — v).u = u.u — v.u = 4. Since this is
positive, we can deduce that a one digit was sent;
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (IV/V) : CDMA

@ Areceiver gets the message M = (u—v,—u—v,u+v)
and he needs to recover d, and/or d, ;
@ How to recover d, ?

e Take the first component of M, u — v and compute the
dot-product with u : (u — v).u = u.u — v.u = 4. Since this is
positive, we can deduce that a one digit was sent;

o Take the second component of M, —u — v and
(—u—v).u=—u.u— v.u= —4. Since this is negative, we
can deduce that a zero digit was sent;;
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (IV/V) : CDMA

@ Areceiver gets the message M = (u—v,—u—v,u+v)
and he needs to recover d, and/or d, ;
@ How to recover d, ?

e Take the first component of M, u — v and compute the
dot-product with u : (u — v).u = u.u — v.u = 4. Since this is
positive, we can deduce that a one digit was sent;

o Take the second component of M, —u — v and
(—u—v).u=—u.u— v.u= —4. Since this is negative, we
can deduce that a zero digit was sent;;

e Continuing in this fashion with the third component, the
receiver successfully decodes d, ;
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communications (IV/V) : CDMA

@ Areceiver gets the message M = (u—v,—u—v,u+v)
and he needs to recover d, and/or d, ;
@ How to recover d, ?

e Take the first component of M, u — v and compute the
dot-product with u : (u — v).u = u.u — v.u = 4. Since this is
positive, we can deduce that a one digit was sent;

o Take the second component of M, —u — v and
(—u—v).u=—u.u— v.u= —4. Since this is negative, we
can deduce that a zero digit was sent;;

e Continuing in this fashion with the third component, the
receiver successfully decodes d, ;

@ Likewise, applying the same process with chip code v, the
receiver finds the message of S,.
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communication (V/V) : CDMA

Let f: Zm — {0, 1} be a bent function.
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communication (V/V) : CDMA

Let f: Zm — {0, 1} be a bent function.
For each o € Z,, we define a vector :

Uo = (f(a), @+ 1),.... F(a+m—1)) .
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communication (V/V) : CDMA

Let f: Zm — {0, 1} be a bent function.
For each o € Z,, we define a vector :

Uo = (f(a), @+ 1),.... F(a+m—1)) .

In particular up = (f(0), f(1),...,f(m—1)).
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Boolean bent functions : Traditional Approach What is a bent functions ?
Applications for such functions

Mobile communication (V/V) : CDMA

Let f: Zm — {0, 1} be a bent function.
For each o € Z,, we define a vector :

Uo = (f(a), @+ 1),.... F(a+m—1)) .

In particular up = (f(0), f(1),...,f(m—1)).
Then {u,|a € Zn} is a set of mutually orthogonal vectors.
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@ Basics on group actions
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Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases
Application

Let X be any nonempty set. We denote by S(X) the symmetric
group of X.
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Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases
Application

Let X be any nonempty set. We denote by S(X) the symmetric
group of X.

Definition

Let G be any group. An action of G on X is a group
homomorphism ¢ from G to S(X).
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Basics on group actions
Group actions "bent” functions

Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases
Application

Let X be any nonempty set. We denote by S(X) the symmetric
group of X.

Definition

Let G be any group. An action of G on X is a group
homomorphism ¢ from G to S(X).

Write g.x instead of ®(g)(x) for g € Gand x € X.
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Group actions "bent” functions

Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases
Application

Let X be any nonempty set. We denote by S(X) the symmetric
group of X.

Definition

Let G be any group. An action of G on X is a group
homomorphism ¢ from G to S(X).

Write g.x instead of ®(g)(x) for g € Gand x € X.

Examples
@ A group G acts on itself by translation : a.x = a + x;

v
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Basics on group actions
Group actions "bent” functions

Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases
Application

Let X be any nonempty set. We denote by S(X) the symmetric
group of X.

Definition

Let G be any group. An action of G on X is a group
homomorphism ¢ from G to S(X).

Write g.x instead of ®(g)(x) for g € Gand x € X.

Examples
@ A group G acts on itself by translation : a.x = a + x;
@ Let G and H be two groups. G acts on G x H by
a.(x,y)=(a+x,y);

v
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Group actions "bent” functions

Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases
Application

Let X be any nonempty set. We denote by S(X) the symmetric
group of X.

Definition

Let G be any group. An action of G on X is a group
homomorphism ¢ from G to S(X).

Write g.x instead of ®(g)(x) for g € Gand x € X.

Examples
@ A group G acts on itself by translation : a.x = a + x;
@ Let G and H be two groups. G acts on G x H by
a.(x,y)=(a+x,y);
@ Let W be a sub-vector space of V. W acts on V by
translation : a.x = a + x;

v
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Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases
Application

Let X be any nonempty set. We denote by S(X) the symmetric
group of X.

Definition

Let G be any group. An action of G on X is a group
homomorphism ¢ from G to S(X).

Write g.x instead of ®(g)(x) for g € Gand x € X.

Examples
@ A group G acts on itself by translation : a.x = a + x;
@ Let G and H be two groups. G acts on G x H by
a.(x,y)=(a+x,y);
@ Let W be a sub-vector space of V. W acts on V by
translation : a.x = a + x;

@ Let K be any field. Then K* acts on K by a.x = ax.
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@ Group actions "bent” functions
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Basics on group actions

Group actions ”bent” functions
Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases

Application

Alternative definition (recall)

A function f : G — V,, is bent if for each nonzero o in G and for
each § € Vp,

|Gl

[{x € Glf(a+x) @ f(x) = B} = = .
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Group actions ”bent” functions
Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases

Application

Let G be a finite Abelian group acting on a finite nonempty set
X. A function f : X — V,, is G-bent if for each nonzero o € G

and for each ¢ € V,,

X

{x € Xlf(ax) @ f(x) = B} = .
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Group actions ”bent” functions
Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases

Application

Definition

Let G be a finite Abelian group acting on a finite nonempty set
X. A function f : X — V,, is G-bent if for each nonzero o € G
and for each ¢ € V,,

1X]
2n

1{x € X|f(a.x) ® f(x) = B}| =

In particular a classical bent function f : G — V,, should be
called a G-bent function in this new framework, where the
considered group action is the action of G on itself by
translation.
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@ "Bent” functions in impossible cases
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Boolean bent functions : Group actions based approach
Application

Odd dimension
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Basics on group actions
Group actions "bent” functions
Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases

Application

Odd dimension

Let m and n be two odd integers. Then it is possible to
construct a function f : Vo p — {0, 1} which is Vj-bent.
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Group actions "bent” functions
Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases

Application

Odd dimension

Let m and n be two odd integers. Then it is possible to
construct a function f : Vo p — {0, 1} which is Vj-bent.

Because m and n are odd integers there is no classical bent
function from V5,. , to {0, 1} or also from V,, to {0,1}.
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Basics on group actions

Group actions "bent” functions
Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases

Application

Plane dimension

Let f: GF(2™) — GF(2™) be a field automorphism. Then f is
GF(2™)*-bent.
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Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases
Application

Plane dimension

Let f: GF(2™) — GF(2™) be a field automorphism. Then f is
GF(2™)*-bent.

Let x € GF(2™) and a € GF(2™)*, a # 1. Let g € GF(2™).
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Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases
Application

Plane dimension

Let f: GF(2™) — GF(2™) be a field automorphism. Then f is
GF(2™)*-bent.

Let x € GF(2™) and a € GF(2™)*, a # 1. Let g € GF(2™).

flax)®f(x) = g
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Application

Plane dimension

Let f: GF(2™) — GF(2™) be a field automorphism. Then f is
GF(2™)*-bent.

Let x € GF(2™) and a € GF(2™)*, a # 1. Let g € GF(2™).

flax)®f(x) = g
< flax @ x) = p
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Application

Plane dimension

Let f: GF(2™) — GF(2™) be a field automorphism. Then f is
GF(2™)*-bent.

Let x € GF(2™) and a € GF(2™)*, a # 1. Let g € GF(2™).

flax)®f(x) = g
< flax @ x) 16}
s @el)x = (9
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Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases
Application

Plane dimension

Let f: GF(2™) — GF(2™) be a field automorphism. Then f is
GF(2™)*-bent.

Let x € GF(2™) and a € GF(2™)*, a # 1. Let g € GF(2™).

flax)®f(x) = g
& flax @ x)

|
=@

& (@elx = £
_ 7H(p)
= X T @)

Laurent Poinsot Boolean bent functions in impossible cases




Basics on group actions
Group actions "bent” functions
Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases

Outline

Application

9 Boolean bent functions : Group actions based approach

@ Application
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Application

We call a cylic bent function, a bent function f : Z, — {0, 1}.
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Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases
Application

We call a cylic bent function, a bent function f : Z, — {0, 1}.
The only known examples of such cyclic bent functions occur
when m = 4. It is widely conjectured that this is actually the
only case.
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Boolean bent functions : Group actions based approach ”Bent” functions in impossible cases
Application

We call a cylic bent function, a bent function f : Z, — {0, 1}.
The only known examples of such cyclic bent functions occur
when m = 4. It is widely conjectured that this is actually the
only case.

Let m be an even integer. Then it exists a GF(2)"-bent function
f:sz — {0,1}
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Application

We call a cylic bent function, a bent function f : Z, — {0, 1}.
The only known examples of such cyclic bent functions occur
when m = 4. It is widely conjectured that this is actually the
only case.

Let m be an even integer. Then it exists a GF(2)"-bent function
f:sz — {0,1}

If m # 2 then (it is conjectured that) f can not be a classical
bent function.
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Proof

@ Definition of the group action of GF(2)™ on Zom :
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Application

Proof

@ Definition of the group action of GF(2)™ on Zom :
We transport the action by translation of GF(2)" on Zom :

a.x=0(a® 6 (x))

where © is the usual radix-two representation of an
integer ;
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Proof

@ Definition of the group action of GF(2)™ on Zom :
We transport the action by translation of GF(2)" on Zom :

a.x=0(a® 6 (x))

where © is the usual radix-two representation of an
integer ;

@ Let choose g: GF(2)™ — {0, 1} be a (traditional) bent
function (succh a function exists since mis an even
integer).
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Boolean bent functions : Group actions based approach

Proof

@ Definition of the group action of GF(2)™ on Zom :
We transport the action by translation of GF(2)" on Zom :

a.x=0(a® 6 (x))

where © is the usual radix-two representation of an
integer ;

@ Letchoose g: GF(2)™ — {0, 1} be a (traditional) bent
function (succh a function exists since mis an even
integer). We define the function

f: ng — {0,1}
x = ge7(x).
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Proof (cont'd)

Application

@ Let show that f is GF(2)™-bent :
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Proof (cont'd)

Application

@ Let show that f is GF(2)™-bent :

f(a.x) @ f(x) = B
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Proof (cont'd)

Application

@ Let show that f is GF(2)™-bent :

f(o.x) @ f(x) = p
& g(07(ax)) ®g(07'(x)) = B
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Proof (cont'd)

Application

@ Let show that f is GF(2)™-bent :

f(o.x) @ f(x) =
& g(07(ax)) ®g(07(x))
& 9O '(6(aa 0 (X)) ®g(07(x) =

I
D@
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Application

Proof (cont'd)

@ Let show that f is GF(2)™-bent :

f(ax)@f( ) = g
< 9(0” (aX))GSQ( '(x)) = B
< g(e7'(® la®e ()))@9(9’1()()) = B
& gla®o (x))®g(0 ' (x) = B
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Application

Proof (cont'd)

@ Let show that f is GF(2)™-bent :

f(a.x) @ f(x) =
9@ (ax)) & g(@~'(x))
ge'(e(c®07(x) ®9g(0'(x))
gla®0 ' (x) @ g(0 ()
glaey)®g(y) =

Il
DD D@

tede
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