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Abstract. The diffusion of information into functions involved in secret-
key cryptography is a crucial criterion for robustness of algorithms against
some statistical attacks such as differential and linear cryptanalysis.
Many authors have used their own definition for diffusion in order to
formalize the properties of solidity of their cryptosystems. These notions,
although more or less distinct, share the same objective : the quantita-
tive study of the correlation between the amount of information in input
and in output of a function. This paper is a summary of several of these
notions and an attempt to explicit the underlying concepts of the general
term diffusion.

1 Introduction

During a long time, the robustness of algorithms involved in secret-key cryp-
tography relied only on the use of large cardinality sets of boolean functions.
Recently however, some works have highlighted new criteria of solidity : in par-
ticular, the non-linearity of functions, in order to avoid linear cryptanalysis, the
resistance against differential cryptanalysis and the high diffusion of bits of in-
formation along functions.

Computable functions of several variables are, in mostly cases, a mathematical
product of functions, each of them depending on few variables. This property
of “local calculation” leads to divide and conquer algorithms to compute such
functions. The high diffusion functions are a contrario functions which should
not exhibit such decompositions. More generally, the diffusion of information
denotes the way that effects on inputs of a given function are reflected on its
outputs.

Our present work is thus motivated by the study of high diffusion functions
in order to improve the robustness of cryptographic algorithms and more gen-
erally the study of the diffusion of information. This paper takes the form of a
synthesis of several approaches of the problem of diffusion by different authors.
This synthesis is in no way exhaustive but presents some interesting notions
upon the diffusion.



This paper is organized as follows : first, we present the concept of diffusion
such as Shannon has initially introduced it. Then we establish and gather several
definitions as a basis for diffusion in the context of boolean functions. In the third
part, we present a work from Massey using graph theory. Our synthesis is ended
by the description of diffusion given in the design of Rijndael.

2 Historical introduction of Diffusion

The basics of diffusion of information were introduced by C. Shannon in one
of his famous papers [1] published in 1949, on secrecy systems. He described
the method of diffusion to design cryptosystems in order to resist statistical
attacks, according to the following terms : “... the statistical structure (of the
set of plaintexts) which leads to its redundancy is “dissipated” into long range
statistics - i.e., into statistical structure involving long combination of letters
into the cryptogram”. The goal of this method is to scatter the most frequent
patterns of plaintexts into long parts of ciphertexts or also to distribute the sta-
tistical influence of individual letters over several letters after ciphering. Then
the discovery of interesting statistics on plaintexts with knowledge on cipher-
texts becomes more difficult. In order to achieve the diffusion, Shannon used
enciphering functions considered as channels with finite input memory and finite
anticipation between the sources of plaintexts and ciphertexts.

In this part, we present the diffusion channels of information in the probabilistic
way given by Shannon. Let (2, #, P) be a probability space and ({21, %) and
(22, F2) two measurable spaces. We denote by X and Y two random variables
from (£2,.%,P) to respectively ({21, %) and ({22, %2). We denote by Px the
measure of probability induced by X on (21, %), Px|y the (family of ) condi-
tional measure(s) on (£2;,.%1) of X given Y and by Pxy the joint probability
measure on the product space ({21 X 25, %1 x %3). Let T be a set (the time). We
denote by (X¢e72, Xte7%) the generalized product space of sequences of time
T wherefor allt € T, (£2;,%;) is a measurable space. In the case where all (2;,%;)
are equal to (£2,%), we denote the product space simply by (27,47). A discrete
source of information with alphabet A is a random variable X = {X,},c7 from
(2,Z,P) to (AT,97) where T is a discrete set and A is a finite set.

A natural language can be identified with a discrete source of information (with
alphabet the set of letters of the language) which produces each time a letter of a
word of the language according to given probabilities. Thus Shannon represented
the set of plaintexts as a discrete source of information {X,},en. Moreover
the enciphering function applied on messages can be represented by a discrete
channel of communication which produces one letter of ciphertexts (the sets of
ciphertexts is then also a source of information) by respect to several letters
of plaintexts. Formally a discrete channel of communication with input alpha-
bet A and output alphabet B is a 5-uplet ((£2, %, P), (A,%4),(B,¥g), X, Py|x)
where X = {X,, }nen is the input (discrete) source of information with alphabet
A (i.e., X is a random process from (2, F) to (AN, 9X)) and Y is the output
(discrete) source of alphabet B and determined by the conditional probability



PY X.

Ac‘cording to Shannon the diffusion is provided by diffusion channels which are
defined as discrete channels with finite input memory and finite anticipation. Let
denote the finite sets of the form {n, n+1, ..., n+m} by {{n, n+m}} and the
infinite sets {n,n+1,...} by {{n, +oo}}. By finite input memory, we refer to dis-
crete channels of communication such that there exists M > 1 and for alln > M
and for all F € #5t™ t°H | Py o (BUO =13} x F|{z}) = Py x(BHO n=11} x
F|{2'}) for all (z,2') € (A™)? such that z; = . Vi > n — M. We note that
Py x(BU® » 1 x Fi{z}) = P({w € 2|(Ya(w), Yar1(w), ..) € FHX ({z})).
In other terms, for an event involving Y; after some time n, the only past inputs
which determine the output probability are the ones for the same time and M
time units earlier.

With finite anticipation, we define the following property of discrete channels :
there exists an integer L such that for all n and all F € %é{o’"}}, Py, x(F x
Blint140b 1 {31) = Py x (F x BUint1+}{3/}) for all (z,2') € (AN)? such
that z; = z} Vi < n+ L. Since Py, x (F x BrtL+ol{z}) = P({w|(Yo(w), .-,
Yo(w)) € F}X~1({x})), only L future inputs must be known to determine the
probability of an event involving current and past outputs.

The notion of diffusion given by Shannon is based on expected properties of
channels but not on a constructive way even if it has been explicitly used in the
design of DES with permutation boxes. As an applied science, we are interested
in less abstract criterion which could be deduced from given cipher functions.
However we have to keep in mind the historical definition of diffusion. In the
next section, we give a boolean function approach of the problem of diffusion.

3 Diffusion of Information of Boolean Functions

The notion of Shannon for the diffusion has been interpreted by Massey in [2] in
the context of functions by “each digits of the plaintext should influence many
digits of the ciphertext’. In this section, since most cryptographic functions are
boolean functions, we first formalize the interpretation of Massey and then we
present some concepts quite close to our definition of diffusion in boolean func-
tions.

We begin by introducing some notations and basic definitions. Let IF2 denote
the Galois field of two distinguished elements (denoted by 0 and 1). Let p and
g be two non-negative natural numbers. A boolean function is a function F' :
F) — TFy. A generalized boolean function is a function F : ) — 3. We
denote by F; : IF) — TF, the jth component function of a generalized boolean
function F'. We denote by dg the Hamming distance of any vector space on IFs.
In order to define the diffusion for boolean functions, we introduce for all i €
{1,...,p} the following equivalence relation on IF} : = ~; y if £, = yj, for almost
all k € {1, ... p} — {i}, i.e. z and y can only differ on their i*" bit. There are
exactly 2P~1 equivalence classes. The set of equivalence classes is denoted by Cl;.



Each equivalence class ) € Cl; contain exactly two elements of IF5 denoted by
Q° and Q' such that Q° =0 and Q' = 1.

Definition 1. Let F : T — 1. The diffusion of F according to a coor-
dinate i € {1, ..., p} and an equivalence class Q € Cl; is diff p(i,Q) =
du(F(Q°), F(QY)).

It represents the number of output bits which changes when the ‘" bit of a par-
ticular input is complemented. The minimum diffusion along the coordinate i is
defined by diff ming (¢) = mingecr, (diff (3, Q)) and the average diffusion along i
is diﬁa'ugp (7’) = -1 ZQECli diﬁF(Za Q)

We introduce the following definition, in order to take in account all the coordi-
nates :

Definition 2. Let F : 5 — 2. The minimum diffusion of F is defined by
Aiff ine = MiNieqr o} Giff min, (4).

The average diffusion of F' is defined by diff ,,,, = % r Biff g, (4)-
Ezxample 1. Let @ denote the XOR operation on IFs. Let the one-time pad func-
tion OTPg : (IF5)? — T} defined by OTPg(z,y) = (1 D y1, -.-, Tp D Yp).
We have diﬁmmm% =1

Example 2. Let C be a linear code on IFy with length n, dimension k¥ and mini-
mum distance d. If G denotes its generating matrix, we have for g : Fx — ¥}
defined by g(x) = z.G, diff

ming — d.

Some authors such as Massey use another definition for diffusion : the diffusion
on symbols. Let F : IFy? — TF5"? where n and m are two non-negative integers
called respectively the size of input symbols and the size of output symbols. An
input symbol is thus an element of IF}, an output symbol is an element of IF}'
and F' can be seen as a function from p input symbols to ¢ input symbols. If
X € T3P, we denote by X; (for i € {1, ..., p}) the i*" symbol of X. For
j€e{l, ..., ¢t and (X1, ..., X,) € (F5)?, we denote by Fj the jt* symbol
component function of F' defined by

Fy: (F3)»  — FyY

(X1, ooy Xp) = (HGo1ympr (F(Xq, ooy X))y wvny i (F(X, .. Xp)()))
1
where ITj, denotes the k'* projection from 3" to IF5.
We also define for (Y1,Ys) € (F5')2,
_Jlif dg(1h,Y2) >1

Ln(1,¥2) = {0 else 2)
So we can define the diffusion on symbols by the minimum number of output
symbols which vary when we complement one bit of the it" (i € {1, ..., p})
input symbol X; of a particular X = (X3, ..., X,) € (IF3)? :

dZﬁF(’L, X) = minZGCFg (Xi,1) E?:l ]-H(Fj (X),

3
Fj(X1, ..., Xic1, Z, Xig1, --.5 Xp)) )



where Cpy (X;, 1) denotes the unite circle centered on X; in I3 with the Ham-
ming distance. Finally we define the minimum diffusion of F' by

Aiff in. = min di ,X) . 4
.[fmlnp (i,X)e{L, ., p}sz" ﬁF( ) ) ( )
Note that this notion of diffusion on symbols coincides with the previous one
on bits if n = m = 1. Even if the diffusion on symbols is a strict generalization

of diffusion of bits, is seems to be a less accurate measure of the diffusion of
information.

We have introduced the natural definitions of the concept of diffusion. Some

concepts which are close to the diffusion one are exposed in the following. First
of all, a function F : FY — TF1 is complete if for all i € {1, ..., p} and for all
j €{1, ..., g}, there exists Q; ;) € Cl; such that dm(F;(QY; ;)), F3(Q(; ;) > 1.
In other terms, all output bits of F' is dependant of each input bits. The com-
pleteness has been introduced by Kam and Davida in [3].
Another important concept is the avalanche effect which means, if exhibited by
a boolean function, that an average of half the number of output bits varies
when only one input bit is complemented. In order to take in account the two
previous notions, Webster and Tavares [4] have introduced the strict avalanche
criteria or S.A.C. : if a function satisfies S.A.C., every output bits change with
a probability of % every times only one input bit is complemented. Clearly, a
function which satisfies S.A.C. is complete and exhibits the avalanche effect.

These last characteristics are very restrictive since they should be verified
only by functions which provide a great diffusion on bits. In this sense, the
notion of diffusion introduced first, seems to be a more primitive and relevant
measure for the diffusion or propagation of an input bit of information along
the output bits but suffers from a lack of description for the localization of the
output bits which have changed.

In the next section, we present the complete diffusion property of boolean func-
tions introduced by Massey in his design of IDEA. As one will see this notion is
quite close to a completeness on symbols instead of bits.

4 Complete diffusion and computational graphs

In [5], Massey used abundantly computational graphs to represent boolean func-
tions of IDEA cryptosystem and also for the diffusion part of its design. It should
be interesting to present the computational graphs in a general way and then to
describe their use in the particular context of diffusion with respect to Massey’s
concept.

Let F' be a generalized boolean function of the following type :

F:F}' x...xFy? — FP x...x Fy* )
(Xl, ey Xp) — (Fl(Xl, ey Xp), ey Fq(Xl, ey Xp))



withforie {1, ..., p}, X; € Fy* andforall j € {1, ..., ¢}, F;(Xq, ..., Xp) =
Iy 1 (F(X1, ooy Xp))y ooy y_yom, (F(Xy, <., Xp))) € 3 (with
mg = 0 by convention).

Each F; is composed of several functions, each with less input symbols. Thus

Fj(X1, ..., Xp) is a term t of a formal language with the (free) variables in
{X1, ..., X,} and which contains functional sub-terms. Let F' be a boolean
function. For a specific decomposition F(X1, ..., Xp) = (t1, ..., tq) (with

each X; occurring in at less one t;), we can construct an acyclic directed graph
with labeled nodes and edges, called computational graph of the decomposition
(t1,...,tq), as follows :

1. We construct the g trees of the terms t; to t,. The nodes are labeled by
variable names (the input variables) or operation names, the edges are ori-
ented in the direction argument to function and labeled by the position of
the argument in the function.

2. For each j € {1, ..., q}, we add for the tree of ¢; a node labeled by Y; (if
J1 # j2 then Y;, #Y,) and an edge from the root of the tree to this new
node. The Yj are the output variables.

3. We identify the common sub-trees (we obtain then an acyclic graph).

Ezample 3. A computational graph of F'(X;, Xa, X3) = (fo(f1(X1), X3), fa(f3(
X5), fo(f1(X1), X3))) is displayed in Fig. 1.

Fig. 1. Computational Graph of F (X1, X2, X3)

We can show that all generalized functions has at less one binary computational
graph, i.e. the operations which names occur in the graph are binary.

Now we can introduce the complete diffusion of Massey and then relate it with
computational graphs. Let F' be a generalized function of the form (5), X =
(X1, ..., Xp) afixed vector of p symbols and i € {1, ..., p} fixed. We define
the set of vectors of p symbols Z = (Z1, ..., Z,) which differ of X only on the



it" symbol by :
DX,i)={Z e FM x...xF@ k€ {1, ..., p}—{i}, Zp = X; and Z; # X;} .

(6)
Definition 3. A function F : F3* x ... x Fy? — 5" x ... x Fy'? is said to
have complete diffusion (on symbols) if Vi € {1, ..., p} and Vj € {1, ..., ¢}

there exit X € Fy' x...xIFy” and Z € 9(X,i) such that dy (Fj(X), F;(Z)) > 1.

In other terms, each output symbols depends of every input symbols. This defi-
nition is less restrictive than the completeness property presented in the previous
section but is quite similar.

Massey used this notion on particular functions : the (Massey’s) cipher functions.
They are defined as follows : a function F : (IF})? x (IF%)2 — (IF7")? is a cipher
function if for all fixed (Z1,Z,) € (F¥)?, the function (X, X,) € (F3)? —
F(X1,X2,Z1,7Z5) € (IF3*)? is invertible. The function called multiplication-
addition function defined in IDEA is a cipher function with complete diffusion.
The theorem which binds the notion of complete diffusion and computational
graphs is the following one :

Theorem 1. If a cipher function F' has complete diffusion, then any binary
computational graph of F' contains at least four operations.

This theorem allows quick refutations of complete diffusion of functions just by
checking the number of operation nodes of a binary computational graph.

We add a weak necessary condition for complete diffusion of generalized

boolean functions : if F' has complete diffusion then any computational graph
of F completes symbolic diffusion i.e., for each couple of nodes (np,nr) in the
graph labeled with an output variable (for no) and with an input variable (for
nr), there exists an oriented path in the graph from ny to no.
The proof is easy. Suppose by contradiction that there exists (no,nr), no labeled
by Y; and n; labeled by X; such that there is no path in the graph from n; to
no. Then by construction of the graph, X; does not occur in the term ¢; which
represents Fj(Xy, ..., X,) and thus F; does not depend of X; which is a
contradiction with the complete diffusion of F'. Note that the reciprocal is false.
For instance, let F(Xl,Xz) = F2(F1(X1,X2),F2(X1,X2)) with

Fl(X):{uf X =(1,1) F2(X):{1if X#@1L1) o

0 else 0 else

Then F(X;,Xs) = 0 for all (X;,X5) and thus F does not have complete diffu-
sion (whereas both F; and F» have complete diffusion). But we can see that, if
we denote the output variable of F' by Y, then for all computational graph of F’
there exists a path from X; to Y and from X, to Y.

The complete diffusion of Massey provides a good qualitative measure for
the diffusion because it is not too restrictive and not trivial anymore. The con-
straints on functions to provide the complete diffusion are less strong than the



ones for the completeness of bits or the avalanche effect. However it does not
give a quantitative information about the diffusion of symbols along boolean
functions : it can be regarded as a fundamental design principle to construct
functions with good diffusion but not as a goal to accomplish. Indeed, complete
diffusion on symbols should be one of the expected properties of high-diffusion
functions : we want the high diffusion of information not to be localized in a little
part of the results because we keep in mind the historical notion of diffusion.
We can add that this use of graph in diffusion of information problems has been
continue by Massey to define the optimal diffusion of SAFER+ (see [6]).

In the last section, we describe the point of view which was followed by Dae-
men and Rijmen to conceive the AES in order to be resistant against differential
and linear cryptanalysis.

5 Diffusion in Rijndael

The diffusion requirement in [9] of Rijndael or AES cryptosystem is explicitly
designed to provide good resistance against the so-called linear and differential
cryptanalysis.

Differential cryptanalysis has been described by Biham and Shamir in [7]. It is a
chosen-plaintext attack of which the goal is to determine the key used to encrypt
messages. The principle of this method is, with a fixed choice of two plaintexts,
to study the evolution of the differences between the two intermediate cipher-
texts at each round encrypted by the same (and unknown) key. By analyzing
final differences of pairs of ciphertexts, we deduce several probabilities for keys
and thus the most probable key.

Linear cryptanalysis was presented first by Matsui in [8]. It is a known plaintext
attack. The fundamental idea of this attack is to approximate a (non-linear)
block-cipher with linear expressions of several bits of plaintext and bits of inter-
mediate ciphertexts in order to find bits of key (or sub-key).

As diffusion notion in Rijndael is based on these two attacks, we need to intro-
duce some mathematical objects used in differential and linear cryptanalysis. A
parity of a given boolean vector is a boolean function that consists of the XOR
@ of a number of bits. A parity is determined by the bit positions of the boolean
vector that are included in the XOR. The selection pattern V of a parity is a
boolean vector that has 1 in the components that are included in the parity
and 0 in all others. We express the parity of vector X according to the selection
pattern V by VT.X in a matrix format. For instance, let ¥V be the selection
pattern (0,1,0,1,1) in IF5 and X = (X, X5, X3, X4, X5) be any vector of IF}.
The parity of X according to the selection pattern V is then Xs & X3 & X5.
The parities occur in linear cryptanalysis as linear expressions. Moreover this
attack exploits correlations between two boolean functions f and g, defined by
C(f(X),9(X)) = 2.Prob(f(X) = g(X)) — 1 where Prob stands for a given mea-
sure of probability. If F' denotes a generalized boolean function from IF% to IF%,
we define the 29 x 29 correlation matrix CF) of correlation between input and



output parities of F' by defining the element C[(JI’?, in row U and column V equals
to C(UTF(X),VTX). In differential cryptanalysis the basic objects are the dif-
ference patterns : there are bit-wise XOR of two vectors X @Y.

The principle of diffusion in Rijndael is based on the quantitative study of cor-
relation and differential propagations along a generalized boolean function (the
round transformation) p : (F3)? — (IF3)P. p is (essentially, because we do
not take into account the XOR with sub-keys) the composition of two gener-
alized boolean functions v and then A, where v is non-linear transformation
which applies on each of the p symbols (of n bits) independently and X is a
linear transform. In the context of substitution-permutation networks, v should
be identified with an S-Box and A with a P(ermutation)-Box. A mixes in linear
expressions the output symbols of v thus the power of diffusion is essentially
localized in A. The fundamental results of diffusion in Rijndael are given in a
simple two-round model. We define the active symbols or weight of a (differen-
tial or selection) pattern X its non-zero symbols and it is denoted by w(X). A
two-round (differential or linear) trail is a couple (X, p(X)) where X is a (dif-
ference or selection) pattern. We define then the active symbols of a two-round
trail as w(X) +w(p(X)). The main idea of diffusion in Rijndael (in a two-round
context) is to define the diffusion by the number of active symbols in two-round
trails and to describe mechanisms which eliminate low-weight trails. Indeed,
the higher are the weights of trails, the harder are the respective cryptanalysis.
A relevant measure of diffusion in this context is the minimum number of ac-
tive symbols at the input and the output of p. It is called the branch number
of p. It gives a lower bound for the propagation of differences and linear ex-
pressions, which is more or less the notion of diffusion chosen by Daemen and
Rijmen. Formally, the differential branch number of a transformation p is given
by %Ba(p) = minx yxy{w(X @ Y) + w(p(X) & p(Y))} and its linear branch
number, by %;(p) = miny,v,cwrx,vrpx)zoiw(U) + w(V)}. The fundamental
theorem in this context is then :

Theorem 2. For a block-cipher with round function p = X o~y of the previous
type, the number of active symbols of any two-round trail is lower bounded by
the branch number of .

This is generalized at a multi-round level in [9]. This approach of diffusion is
to be relied with works of Chabaud and Vaudenay [10] which show that, in
some cases, differential-resistant and linear-resistant functions are essentially the
same. It shows that there exist underlying links between the three solidity cri-
teria quoted in introduction and it could be an interesting research direction to
establish a general theory of diffusion of information. Moreover, without thinking
in terms of resistance against statistical attacks, this notion of diffusion mixes
the quantitative effect of propagation of a certain type of information and the
localization of this effect which are two fundamental axes of research in the
problems of diffusion.



6 Summary and Conclusion

We have presented four notions of diffusion during this paper. The first one, the
method of diffusion introduced by Shannon, can be used to delimit in an abstract
way the area of the problems of diffusion but is not very useful to build high-
diffusion functions. Then we have seen a quantitative characterization of diffusion
at the bit level which seems to be a relevant measure of diffusion associated with
other concepts such as completeness. The two last concepts were the complete
diffusion by Massey and the branch number of Daemen and Rijmen and in both
approaches the granularity of the diffusion is at the symbol level and so less
accurate but also less complex.

Finally we can note that all these notions study the links between a certain
type of inputs (for instance, a change of one bit or symbols involved in linear
expressions) and the corresponding output. It suggests that the diffusion concept
should be a mathematical formalization of this underlying common point.
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