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1. Highly Nonlinear Functions in the Abelian Group Setting

The study of nonlinear properties of Boolean functions is one of the major tasks

in secret-key cryptography. But the adjective "nonlinear" has several meanings: it

can be related to the resistance against the famous differential attack [2] and, in

this interpretation, actually refers to (almost) perfect nonlinear functions. Moreover

nonlinearity is also related to the maximum magnitude of the Fourier spectrum of

Boolean functions - under the names "bent", "almost bent" or "maximal nonlinear"

functions - which is itself linked to the resistance against the linear attack [19]. These

two ways to define nonlinearity are not independent and even, in many situations,

are exactly the same.

Most of the studies and results on nonlinearity concerns Boolean functions, or in

other words, functions from K to N where K and N are both elementary Abelian

2-groups. Even if this kind of groups seems to be very natural for cryptographic

purposes, there is no rule that prevents us from using more complex groups and even

non-Abelian ones. In this paper, we will discuss the standard notion of nonlinearity

in the non-Abelian setting. Nevertheless we begin with some definitions and basic
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tools used to study nonlinearity in the Abelian case. In order to keep the paper

fairly selfcontained some proofs of well-known results will be added.

Let K and N be two finite groups written multiplicatively of orders m and n,

respectively. Let G be the direct product K ×N . A mapping f : K → N is called

perfect nonlinear (see [20]) if and only if for each a ∈ K, a 6= 1K and each b ∈ N ,

the quantity

δf (a, b) = |{g ∈ K|f(ag)(f(g))−1 = b}| (1)

is constant, hence δf (a, b) =
m
n

. In [10] the reader may find a very complete survey

on the subject. In the cases where n does not divide m, it is impossible that perfect

nonlinear functions exist. We note that perfect nonlinear functions also cannot exist

if K and N are elementary Abelian 2-groups of the same order. Actually, a more

general result holds:

Theorem 1. Let K be an arbitrary group of order m = 2a, and let N be an Abelian

group of order n = 2b. A perfect nonlinear function f : K → N does not exist, if

1. a is odd;

2. a = 2s is even and b ≥ s+ 1.

For proof, we refer to [12, 18, 20]. Since perfect nonlinear functions do not exist

in many cases, the following definition is meaningful: we call f : K → N an almost

perfect nonlinear (APN) function (see [21]) if and only if

∑

(a,b)∈G

δf (a, b)
2 ≤

∑

(a,b)∈G

δg(a, b)
2 ∀g : K → N . (2)

Both these definitions do not use the commutativity in a group. Hence these defi-

nitions also apply to the non-Abelian situation.

With each function f : K → N we associate its graph Df ⊆ G:

Df = {(g, f(g))|g ∈ K} . (3)

This set plays an important role in the study of nonlinear properties of the corre-

sponding function. For instance f is perfect nonlinear if and only if its graph is a

splitting (m,n,m, m
n
) difference set in G relative to the normal subgroup N . Recall

that a set R ⊆ G = K ×N of cardinality k is a (splitting) (m,n, k, λ) difference set

in G relative to N if and only if the following property holds: the list of nonidentity

quotients r(r′)−1 with r, r′ ∈ R covers every element in G \ {1K} × N precisely λ

times and no element in {1K} × (N \ {1N}) is covered. The term splitting refers

to the fact that the group in which the relative difference set exists is K × N ,

hence it “splits”, where one of the factors is the “forbidden subgroup”. We note that

non-splitting relative difference sets are also studied, however for applications in

cryptography only mappings f : K → N seem to be of interest, and then the graph

corresponds to a splitting relative difference sets. Moreover, we have k = m in this



August 31, 2011 11:7 WSPC/INSTRUCTION FILE S0129054111008751

Non-Boolean Almost Perfect Nonlinear Functions on Non-Abelian Groups 1353

situation, and this case is called semi-regular. There are also many relative differ-

ence sets known where k 6= m. For a survey on relative difference sets, we refer to

[22].

In general such combinatorial structures are studied using the notion of group

algebras. Let G be a finite group (written multiplicatively) and R a commutative

ring with a unit. We denote by R[G] the group algebra of G; its underlying R-

module is free and has a basis indexed by the elements of G and which is identified

with G itself: so it is a free R-module of rank |G| and, as a module, isomorphic to

the direct sum
⊕

g∈G

Rg where for each g ∈ G, Rg = R.

Every element D of R[G] can be uniquely represented as

D =
∑

g∈G

dgg, with dg ∈ R . (4)

The addition in R[G] is given as a component-wise addition of R. More precisely


∑

g∈G

agg


+



∑

g∈G

bgg


 =

∑

g∈G

(ag + bg) g (5)

while the multiplication - convolutional product - is


∑

g∈G

agg





∑

g∈G

bgg


 =

∑

g∈G

(
∑

h∈G

ahbh−1g

)
g . (6)

Finally the scalar multiplication by elements of R is the usual one

λ


∑

g∈G

dgg


 =

∑

g∈G

(λdg)g, with λ ∈ R . (7)

Any subset D of G is naturally identified with the following element of R[G]
∑

g∈G

1D(g)g =
∑

g∈D

g , (8)

where we define the indicator function of D

1D(g) =

{
1R if g ∈ D ,

0R if g 6∈ D .
(9)

When R = C we define

∑

g∈G

dgg




(−1)

=
∑

g∈G

dgg
−1 =

∑

g∈G

dg−1g (10)

where z is the complex conjugate of z ∈ C.

For instance for a function f : K → N and G = K ×N , we have

DfD
(−1)
f =

∑

(a,b)∈G

δf (a, b)(a, b) ∈ Z[G] . (11)
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As we claimed above, (m,n, k, λ) difference sets in G = K × N relative to N

have a natural interpretation in Z[G] because R ⊆ G is such a set if and only if it

satisfies the following group ring equation:

RR(−1) = k1G + λ(G−N) . (12)

Therefore, we have the following well known theorem which holds in the Abelian as

well as in the non-Abelian case:

Theorem 2. A function f : K → N is perfect nonlinear if and only if the graph

Df of f is a splitting (m,n,m, m
n
) difference set relative to {1K} ×N .

Another important tool for the study of highly nonlinear mappings - but re-

stricted to the case of finite Abelian groups - is the notion of group characters.

A character χ of a finite Abelian group is a group homomorphism from G to the

multiplicative group C∗ of C. The elements χ(g) belong to the unit circle of C.

The set of all such characters of a given Abelian group G, when equipped with

the point-wise multiplication of mappings, is itself a group (called the dual group,

denoted by Ĝ), isomorphic to G. The character χ0 : g ∈ G 7→ 1 is called the

principal character of G. The characters of a direct product K × N are given by

χ = χK ⊗ χN where (a, b) ∈ K × N is mapped to χK(a)χN (b) ∈ C, and where

χK is a character of K and χN a character of N . The characters of G can be

naturally extended by linearity to homomorphisms of algebras from C[G] to C: if

D =
∑

g∈G

dgg ∈ C[G] and χ is a character of G, then

χ(D) =
∑

g∈G

dgχ(g) . (13)

There is an important formula for characters of Abelian groups which also holds

for non-Abelian groups, see Theorem 9.

Theorem 3 (Inversion formula) Let G be an Abelian group, and let D =∑
g∈G dgg be an element in C[G]. Then

dg =
1

|G|
∑

χ∈Ĝ

χ(D) · χ(g−1).

Corollary 4 (Parseval’s equation) Let G be an Abelian group. For D =∑
g∈G dgg in C[G], we have

∑

g∈G

d 2
g =

1

|G|
∑

χ∈Ĝ

|χ(D)|2.

Proof. This follows easily from the inversion formula applied to the coefficient of

the identity element in D ·D−1.
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Using these characters we can introduce another criterion of nonlinearity: a func-

tion f : K → N (where K and N are both finite and Abelian) is called maximum

nonlinear if and only if

max
χN 6=χ0

|χ(Df )| ≤ max
χN 6=χ0

|χ(Dg)| ∀g : K → N (14)

or, equivalently,

max
χN 6=χ0

|χ(Df )| = min
g:K→N

max
χN 6=χ0

|χ(Dg)| . (15)

The value
√
|K| is a lower bound for the quantity max

χN 6=χ0

|χ(Df )| which follows

easily from Parseval’s relation for Abelian groups (Corollary 4). A function that

reaches this theoretically best bound is called bent. A function is bent if and only

if it is perfect nonlinear as defined above. This follows easily by applying characters

to the group ring equation (12), see also [10, 23].

Finally, characters allow us to give another characterization of APN functions:

Theorem 5. Let K and N be two finite Abelian groups. A function f : K → N is

almost perfect nonlinear if and only if
∑

χ

|χ(Df )|4 ≤
∑

χ

|χ(Dg)|4 ∀g : K → N . (16)

Proof. (sketch) As before, let G = K×N . The coefficient of the identity element in

(DgD
(−1)
g )2 is precisely

∑
(a,b)∈G δg(a, b)

2. Therefore, minimizing
∑

(a,b)∈G δg(a, b)
2

is equivalent to minimizing
∑

χ |χ(Dg)|4.

Remark 6. (1) If all character values χ(Df ) with χN 6= χ0 are the same, then an

almost perfect nonlinear function is actually perfect nonlinear.

(2) Theorem 5 is well known for the elementary Abelian case (see [11]) and also

known for the Abelian case [23]. It is one of the purposes of this paper to show

that one can even extend it to the non-Abelian case.

In some particular cases, we know a lower bound for the sum of the fourth-power

of the absolute value of χ(Df ). Indeed when K and N are two elementary Abelian

2-groups of order m, then it can be shown that for each f : K → N ,

2m3(m− 1) ≤
∑

χ6=χ0

|χ(Df )|4 (17)

and, since χ0(Df ) = |Df | = |K| = m, we have

m3(3m− 2) ≤
∑

χ

|χ(Df )|4 . (18)

It is very important to note that these arguments only hold in the elementary

Abelian case: the proofs rely on the fact that the δf (a, b) are always even in charac-

teristic 2. We refer the reader to the original paper [11], see also [10, 23]. Together
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with Corollary 4, inequality (17) yields another lower bound for max
χN 6=χ0

|χ(Df )| in

the elementary Abelian case:

Theorem 7 ([11]) Let f : K → N where K and N are elementary Abelian 2-

groups of order m = 2n. Then

max
χN 6=χ0

|χ(Df )| ≥
√
2m . (19)

Moreover when n is odd, a function f : K → N is maximal nonlinear if and only if

max
χN 6=χ0

|χ(Df )| =
√
2m . (20)

In this case, the function is almost perfect nonlinear and the lower bound given in

inequality (18) is reached.

Contrary to the odd case, when n is even obviously the previous lower bound

cannot be reached. The lowest possible value of max
χN 6=χ0

|χ(Df )| satisfies (see, for

instance, [9])

√
2m < min

f :K→N
max

χN 6=χ0

|χ(Df )| ≤ 2
√
m . (21)

Moreover, the lowest known value corresponds to the upper bound.

Example 8. (1) The classical example of an almost perfect nonlinear function f :

F n
2 → F n

2 is f(x) = x3, where the group is identified with the additive group

of the finite field F2n . This function is also maximum nonlinear if n is odd. In

the n even case, it is a function where the largest nontrivial character value is

2
n+2

2 , hence the upper bound in (21) is reached, see [9], for instance.

(2) Similarly, the classical example of a perfect nonlinear mapping is x2 defined on

Fpn , p odd (this is folklore).

We note that many new perfect and almost perfect nonlinear functions have

been discovered recently. It seems that the ideas to construct perfect and almost

perfect nonlinear functions are somewhat similar, therefore the discovery of new

almost perfect nonlinear functions did influence the investigation of perfect nonlin-

ear functions which are of great interest in finite geometry. For the characteristic 2

case, we refer to [9] and the references cited there, in particular [4, 5, 6, 14, 15]; for

the perfect nonlinear case see [1, 7, 8, 26], for instance.

The purpose of this paper is to develop these ideas - almost perfect nonlinearity

and maximum nonlinear functions - in a larger context than the classical elementary

Abelian 2-groups, namely the case of finite non-Abelian groups. For this objective

we introduce the appropriate notion of "non-Abelian characters" in the following

section.
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2. Basics on Group Representations

The reader may find the definitions and results listed below in [24].

A (linear) representation of a finite group G is a pair (ρ, V ) where V is

a finite-dimensional C-vector space and ρ is a group homomorphism from G to

the linear group GL(V ). The group homomorphism ρ is often identified with the

representation (ρ, V ) and we may sometimes use the notation Vρ to refer to the

second component of (ρ, V ). The dimension dim ρ of the representation (ρ, V )

is defined as the dimension of the vector space V over the complex field. Two

representations (ρ1, V1) and (ρ2, V2) of the same group G are called equivalent if

there exists a vector space isomorphism T : V1 → V2 such that for each g ∈ G

T ◦ ρ1(g) = ρ2(g) ◦ T . (22)

Two equivalent representations may be identified. Continuing with definitions, a

representation (ρ, V ) is irreducible if the only sub-vector spaces W of V with

(ρ(g))(W ) ⊆ W for every g ∈ G are the null-space and V itself. The dual Ĝ of a

finite group G is the set of all equivalence classes of irreducible representations of

G. When G is an Abelian group, Ĝ is the dual group of G, as introduced earlier. In

particular a finite group is Abelian if and only if all its irreducible representations

are one-dimensional. Let [G,G] be the derived subgroup of G, i.e., the subgroup

generated by the elements of the form ghg−1h−1 for (g, h) ∈ G2. This is a normal

subgroup and the quotient-group G/[G,G] is Abelian. One-dimensional represen-

tations of G are related to this derived group since their total number is equal to

the order of G/[G,G]. The cardinality |Ĝ| of the dual of G is equal to the number

of conjugacy classes of G. The (equivalence class of the) representation (ρ0,C) that

maps each element of G to the identity map of C is called the principal repre-

sentation of G. For practical purposes we identify the value ρ0(g) as the number 1

rather than the identity mapping of C or, in other terms, we identify ρ0(g) and its

trace tr(ρ0(g)) = 1.

We can also construct some linear representations from existing ones. For in-

stance, given the dual sets of two finite groups K and N , one can build up the dual

K̂ ×N of their direct product. This construction uses the notion of tensor product

of two vector spaces. So let V1 and V2 be two complex vector spaces. The ten-

sor product of V1 and V2 is a vector space W equipped with a bilinear mapping

j : V1×V2 → W such that the following property holds: For each C-vector space V3

and for each bilinear mapping f : V1×V2 → V3 there exists one and only one linear

mapping f̃ : W → V3 such that f̃ ◦ j = f . It can be shown that there is one and

only one such vector space W (up to isomorphism). denoted by V1⊗V2. Moreover if

(e
(1)
k )k is a basis of V1 and (e

(2)
ℓ )ℓ is a basis of V2, then the family (j(e

(1)
k , e

(2)
ℓ ))(k,ℓ)

is a basis of W . This property shows that

dim(V1 ⊗ V2) = dim(V1) dim(V2) . (23)

In particular, for every vector space V , we have V ⊗ C = C ⊗ V = V (equality

up to isomorphism). For (v1, v2) ∈ V1 × V2, we denote j(v1, v2) by v1 ⊗ v2. Since j
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(and therefore ⊗) is a bilinear mapping, we have (αv1 + βw1) ⊗ v2 = αv1 ⊗ v2 +

βw1 ⊗ v2 and the corresponding equality holds for the second variable. So now let

ρ1 : K → GL(V1) and ρ2 : N → GL(V2) be two representations. Then we define a

representation ρ1 ⊗ ρ2 of K ×N in V1 ⊗ V2 by

(ρ1 ⊗ ρ2)(k, n) = ρ1(k)⊗ ρ2(n) with (k, n) ∈ K ×N . (24)

Moreover, one can show that if ρ1 and ρ2 are both irreducible then ρ1 ⊗ ρ2 is an

irreducible representation of K ×N . Vice versa, every irreducible representation of

K ×N is equivalent to a representation of the form ρ1 ⊗ ρ2, where ρ1 (resp. ρ2) is

an irreducible representation of K (resp. N). Given an irreducible representation ρ

of K ×N , we use ρK and ρN to denote the representations of K and N such that

ρ is equivalent to ρK ⊗ ρN . In this way, a system of representatives of equivalence

classes of irreducible representations of K × N is given. Actually, the classes of

representations of a given group G may be used to form a ring: just take the free

Abelian group generated by all isomorphism classes of representations of G, mod

out by the subgroup generated by elements of the form ρ1 + ρ2 − (ρ1 ⊕ ρ2), where

ρ1 ⊕ ρ2 is the obvious direct sum of two (classes of) representations. It can be

proved that the irreducible representations form a basis for this Z-module. The ring

structure, called the representation ring of G, is then given simply by the tensor

product ρ1⊗ρ2 : g ∈ G 7→ ρ1(g)⊗ρ2(g) ∈ GL(V1⊗V2), defined on these generators

and extended by linearity.

Note that every irreducible representation is equivalent to a unitary represen-

tation i.e. a representation ρ such that ρ(g−1) = ρ(g)∗, where the star denotes the

usual adjoint operation. Indeed, let ρ : G → GL(V ) be a representation of a finite

group G, where V is an Hermitian space (together with a scalar product 〈·, ·〉). We

consider the Hermitian product 〈x, y〉ρ =
∑

g∈G

〈ρ(g)(x), ρ(g)(y)〉. It is easy to prove

that for every x, y ∈ V and every g ∈ G, 〈ρ(g)(x), ρ(g)(y)〉ρ = 〈x, y〉ρ, hence ρ(g)

is unitary with respect to 〈·, ·〉ρ for each g ∈ G. Therefore, we assume from now on

that Ĝ is actually a complete set of representatives of non-isomorphic irreducible

representations, all of them being unitary.

We naturally extend a representation (ρ, V ) by linearity to an algebra homo-

morphism from C[G] to End(V ), the linear endomorphisms of V , by

ρ(D) =
∑

g∈G

dgρ(g) , (25)

where D =
∑

g∈G

dgg. As a particular case one can prove the following relations:

ρ(G) =

{
0V if ρ 6= ρ0 ,

|G| if ρ = ρ0
(26)
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for every ρ ∈ Ĝ, and

∑

ρ∈Ĝ

dim ρ tr(ρ(g)) =

{
|G| if g = 1G ,

0 if g 6= 1G .
(27)

For D ∈ C[G] we may define its Fourier transform as D̂ =
∑

ρ∈Ĝ

ρ(D)ρ, which can

be identified with (ρ(D))
ρ∈Ĝ

∈
⊕

ρ∈Ĝ

End(Vρ). Then the Fourier transform is the

mapping

F : C[G] →
⊕

ρ∈Ĝ

End(Vρ)

D 7→ D̂ .

(28)

Note that in the case where G is a finite Abelian group, then every irreducible

representation is one-dimensional and End(C) is isomorphic to C. Therefore, for

D ∈ C[G], we have D̂ ∈
⊕

ρ∈Ĝ

C ≃ C[Ĝ] in the Abelian case.

In the sequel, the coefficients ρ(D) of the Fourier transform D̂ of D are used to

study nonlinear properties of functions f : K → N in the general case where both

K and N are finite groups, not necessarily commutative.

3. Almost Perfect Nonlinearity

In this section, we develop a Fourier characterization of APN functions in the non-

Abelian setting, using group representations. We also introduce the relevant notion

of bentness in this context and we show that, contrary to the classical case, this is

not equivalent to perfect nonlinearity.

Let G be a finite group. The following theorem is well known; we include a proof

to keep the paper more self-contained.

Theorem 9 (Fourier inversion, Parseval’s equation) Let D =
∑

g∈G

dgg be an

element in the group algebra C[G]. Then the following holds:

dg =
1

|G|
∑

ρ∈Ĝ

dim ρ tr(ρ(D) ◦ ρ(g−1)) (Fourier inversion, ) (29)

∑

g∈G

|dg|2 =
1

|G|
∑

ρ∈Ĝ

dim ρ ‖ρ(D)‖2 (Parseval’s equation, ) (30)

where ‖f‖ is the trace norm of a linear endomorphism f given by ‖f‖ =√
tr(f ◦ f∗).
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Proof. We have
∑

ρ∈Ĝ

dim ρ tr(ρ(D) ◦ ρ(g−1))

=
∑

ρ∈Ĝ

tr

(
ρ(
∑

h∈G

dhh) ◦ ρ(g−1)

)

=
∑

h∈G

dh
∑

ρ∈Ĝ

dim ρ tr(ρ(hg−1)) (by linearity of the trace and ρ)

= |G|dg (according to eq. (27)).

(31)

This proves the Fourier inversion formula.

We have

DD(−1) =
∑

g∈G

(
∑

h∈G

dhdg−1h

)
g . (32)

In particular, the coefficient of the identity 1G in this formal sum is
∑

g∈G

|dg|2. We

can also compute this coefficient by using the Fourier inversion on DD(−1). It is

given by

1

|G|
∑

ρ∈Ĝ

dim ρ tr(ρ(DD(−1)))

=
1

|G|
∑

ρ∈Ĝ

dim ρ tr(ρ(D) ◦ ρ(D)∗)) (since ρ is unitary)

=
1

|G|
∑

ρ∈Ĝ

dim ρ‖ρ(D)‖2 .

(33)

We may assume that Ĝ is a set of unitary representatives of irreducible representa-

tions. Therefore Parseval’s equation holds.

Using group representations we obtain an alternative formulation for almost

perfect nonlinearity. Note that the definition of almost perfect nonlinearity given in

eq. (2) holds for the Abelian as well as non-Abelian situation.

Theorem 10. Let K and N be two finite groups. Let G be the direct product K×N .

A function f : K → N is almost perfect nonlinear if and only if

∑

ρ∈Ĝ

dim ρ ‖ρ(Df)‖4 ≤
∑

ρ∈Ĝ

dim ρ ‖ρ(Dg)‖4, ∀g : K → N . (34)

Proof. We have DfD
(−1)
f =

∑

(a,b)∈G

δf (a, b)(a, b). So using Parseval’s equation we
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obtain:
∑

(a,b)∈G

δf (a, b)
2 =

1

|G|
∑

ρ∈Ĝ

dim ρ ‖ρ(DfD
(−1)
f )‖2

=
1

|G|
∑

ρ∈Ĝ

dim ρ ‖ρ(Df ) ◦ ρ(Df )
∗‖2

=
1

|G|
∑

ρ∈Ĝ

dim ρ ‖ρ(Df )‖4 .

(35)

A function f : K → N is APN if and only if for every g : K → N ,
∑

(a,b)∈G

δf (a, b)
2 ≤

∑

(a,b)∈G

δg(a, b)
2, (36)

which concludes the proof.

Group representations can be used to find another criterion for the nonlinearity

of functions. As before, K and N are both finite groups of order m and n, and

f : K → N . For some ρ ∈ K̂ ×N , the values of ρ(Df ) are known:

ρ(Df ) =

{
m if ρ = ρ0 ,

0V if ρ = ρK ⊗ ρ0 and (ρK , V ) is nonprincipal on K .
(37)

Let us suppose first that ρ is principal on G. Then we have

ρ0(Df ) =
∑

(a,b)∈G

1Df
(a, b)ρ0(a, b)

=
∑

(a,b)∈G

1Df
(a, b)

= |Df |
= |K|
= m .

(38)

Now let us suppose that ρ = ρK ⊗ ρ0 with (ρK , V ) is nonprincipal on K. Then we

have

ρ(Df ) =
∑

(a,b)∈G

1Df
(a, b)ρK(a)⊗ ρ0(b)

=
∑

a∈K

ρK(a)⊗ ρ0(f(a))

=
∑

a∈K

ρK(a) (since V ⊗ C = V )

= ρK(K)

= 0V (according to eq. (26))..

(39)

Parseval’s equation and an analogy with the Abelian case, suggest to call a function

f : K → N maximum nonlinear if and only if the value
√
dim ρ ‖ρ(Df )‖ is as

small as possible, or in other terms (using the known values of ρ(Df ))

max
ρN 6=ρ0

√
dim ρ ‖ρ(Df)‖ ≤ max

ρN 6=ρ0

√
dim ρ ‖ρ(Dg)‖ ∀g : K → N . (40)



August 31, 2011 11:7 WSPC/INSTRUCTION FILE S0129054111008751

1362 L. Poinsot & A. Pott

As in the Abelian case, we obtain the following lower bound for this quantity:

Theorem 11. Let f : K → N . Then

max
ρN 6=ρ0

dim ρ ‖ρ(Df )‖2 ≥ m2(n− 1)

|K̂|(|N̂ | − 1)
. (41)

Proof. By Parseval’s equation, applied to Df , we have

1

|G|
∑

ρ∈Ĝ

dim ρ ‖ρ(Df)‖2 =
∑

(a,b)∈G

1Df
(a, b)2

= m ,

(42)

hence
∑

ρ∈Ĝ

dim ρ ‖ρ(Df)‖2 = |G|m = m2n . (43)

We know some values of ρ(Df ) that allow us to compute the following sum:
∑

ρN 6=ρ0

dim ρ ‖ρ(Df)‖2 =
∑

ρ∈Ĝ

dim ρ ‖ρ(Df )‖2 −
∑

ρN=ρ0

dim ρ ‖ρ(Df )‖2

= m2n− dim ρ0 ‖ρ0(Df )‖2︸ ︷︷ ︸
=m2

−
∑

ρN=ρ0, ρ6=ρ0

dim ρ ‖ρ(Df)‖2

︸ ︷︷ ︸
=0

(according to eq. (43) and eq. (37))

= m2(n− 1) .

(44)

Now we need to evaluate the number of principal representations on N , which

is |K̂|. Then there are |Ĝ| − |K̂| nonprincipal representations on N . But |Ĝ| =
|K̂||N̂ |. Therefore we have

max
ρN 6=ρ0

dim ρ ‖ρ(Df )‖2 ≥ m2(n− 1)

|K̂|(|N̂ | − 1)
. (45)

The proof also shows that

max
ρN 6=ρ0

dim ρ ‖ρ(Df)‖2 =
m2(n− 1)

|K̂|(|N̂ | − 1)
⇔ ∀ρN 6= ρ0, ‖ρ(Df)‖2 = Γ, (46)

where

Γ =
m2(n− 1)

dim ρ|K̂|(|N̂ | − 1)
.

In the Abelian case, the righthand side of this equivalence turns out to be the

definition of bent functions since dim ρ = 1, |K̂| = m and |N̂ | = n. It is well known

that classical bentness is equivalent to perfect nonlinearity, as we stated before.

Now if we take the righthand side of equivalence (46) as a natural definition for

bentness in the non-Abelian case, we can prove that this notion is nonequivalent
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to perfect nonlinearity in many situations. Let us suppose that f : K → N is both

perfect nonlinear and bent. Since f is perfect nonlinear its graph Df , as an element

of Z[G], satisfies the well known group ring equation (12) for relative (m,n,m, m
n
)

difference sets. So for (ρ, V ) ∈ Ĝ, we have

ρ(DfD
(−1)
f ) = mIdV + λ(ρ(G) − ρ(N)) , (47)

where IdV denotes the identity mapping of V . Now let us suppose that ρN 6= ρ0.

So we have ρ(G) = 0V and ρ(N) = ρK(1K) ⊗ ρN (N) = 0V according to eq. (26).

Then in this case we obtain:

ρ(DfD
(−1)
f ) = ρ(Df ) ◦ ρ(Df )

∗ = mIdV . (48)

By using the trace on both sides of the last equality above, we have for ρN 6= ρ0

‖ρ(Df )‖2 = m dim ρ. (49)

Since f is bent, combining eq. (49) and the righthand side of equivalence (46),

m(n− 1) = (dim ρ)2|K̂|(|N̂ | − 1) . (50)

This equality may hold if and only if dim ρ is the same for every ρ ∈ Ĝ such that

ρN 6= ρ0 (we exclude the trivial case where |N | = 1); this is for instance the case if

both K and N are Abelian. We can show that in the case where at least one of K

or N is non-Abelian and distinct from its derived groupa (for instance it is a non

sovable group), and N , when Abelian, is not reduced to the trivial group, then the

previous equality cannot hold and therefore perfect nonlinearity and bentness - as

introduced by analogy - are nonequivalent and even paradoxical in this non-Abelian

setting:

1. First let us suppose that N is a non-Abelian group such that N 6= [N,N ] (this is

the case of non solvable groups). By assumption N has at least one irreducible

representation of dimension d > 1 (it is ipso facto a nonprincipal representation),

call it ρ
(1)
N . Since the number of one-dimensional representations of N is exactly

|N/[N,N ]|, there is also at least one such representation, say ρ
(2)
N , which is non-

principal (for if |N/[N,N ]| = 1 then N = [N,N ]). If ρK is any d′-dimensional

irreducible representation of K, then ρK ⊗ ρ
(i)
N (for i = 1, 2) are both irreducible

nonequivalent representations of G = K ×N which are non principal on N . We

have dim ρK ⊗ ρ
(1)
N = d′d > dim ρK ⊗ ρ

(2)
N = d′.

2. Now let us suppose that K is a non-Abelian group such that K 6= [K,K] and, if

N is non-Abelian then N 6= [N,N ] and, if N is Abelian |N | > 1. According to

case 1., we already know that K has at least one nonprincipal one-dimensional

representation, call it ρ
(1)
K , and at least one irreducible representation of dimen-

sion d > 1, call it ρ
(2)
K . If N is Abelian, it has at least one non principal (one-

dimensional) representation, since it is not the trivial group. According to 1.,

aIf for a nonabelian group H, H 6= [H,H] then H is not a simple group.
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this is also the case if N is non-Abelian and N 6= [N,N ]. We call this rep-

resentation ρN . Then ρ
(i)
K ⊗ ρN (for i = 1, 2) are both irreducible nonequiv-

alent representations of G = K × N which are nonprincipal on N . We have

dim ρ
(1)
K ⊗ ρN = 1 < dim ρ

(2)
K ⊗ ρN = d.

The following has been pointed out by one of the referees of this paper: A further

motivation to investigate perfect nonlinear functions in the non-Abelian setting may

be that the image set of a perfect nonlinear function (in the Abelian case) has some

interesting properties, see [13] and [25]: It is possible to use these functions to

construct skew Hadamard difference sets. Note that there are many examples of

non-Abelian relative (pn, pn, pn, 1) difference sets in non-Abelian groups, since any

non-commutative semifield gives rise to such a relative difference set, and there are

many non-commutative semifields. Actually, any commutative semifield gives rise

to many non-commutative semifields! However, it is not clear whether non-Abelian

relative difference sets have a description as a function between two groups, and it

is also not clear whether the image set would have some nice properties. We note

that non-Abelian skew Hadamard difference sets have been constructed in [16].

4. Some Computational Results and Open Questions

In this section we present some results given by formal computations using GAP

[17] and MAGMA [3]. There are three goals:

• Almost perfect nonlinearity, see Theorem 10: Minimize
∑

ρ∈Ĝ

dim ρ ‖ρ(Df)‖4

for functions f : K → N , where G = K ×N .

• Maximal nonlinearity, see eq. (40): Minimize the maximum of

√
dim ρ ‖ρ(Df )‖

for all f : K → N .

• Bentness, see eq. (46): Find functions f : K → N such that

∀ρN 6= ρ0, ‖ρ(Df )‖2 =
m2(n− 1)

dim ρ|K̂|(|N̂ | − 1)
.

We note that besides the bounds given in this paper, no general results for arbitrary

groups are known. Here we do not want to give extensive computational results but

we want to indicate some interesting phenomena which occur in the non-Abelian

setting. Note that for groups K and N , we have to go through all mappings K → N ,

whose number is |N ||K|. Hence the approach to find “good” functions by a complete

search is very limited, and it would be interesting to find theoretical constructions

which are provable maximal nonlinear or almost perfect nonlinear.



August 31, 2011 11:7 WSPC/INSTRUCTION FILE S0129054111008751

Non-Boolean Almost Perfect Nonlinear Functions on Non-Abelian Groups 1365

Let us begin with the two goups of order 6, the cyclic group Z6 and the symmetric

group S3. In Table 1, we list the “best” values (marked in boldface) both for the

maximum nonlinearity as well as almost perfect nonlinearity.

Table 1. Non-Abelian groups K, N of order 6, f : K → N .

K N min
g:K→N

∑

ρ∈Ĝ

dim ρ‖ρ(Dg)‖4 min
g:K→N

max
ρ|N 6=ρ0

√

dim ρ‖ρ(Dg)‖

S3 Z6 2376 4

Z6 S3 3972 4
√
2

S3 S3 3552 2
√
14

Z6 Z6 2808 2
√
3

It is remarkable that the measure of almost perfect nonlinearity is by far the least

in the case (K,N) = (S3,Z6) and not in the Abelian case. Moreover, if (K,N) =

(S3,Z6) every almost perfect nonlinear function is also maximal nonlinear. in all the

other cases, this is not true: no almost perfect nonlinear function is also maximal

nonlinear.

We also made a complete search for the case of Abelian groups of order 8

(Table 2).

Table 2. Abelian groups K, N of order 8, f : K → N .

K N min
g:K→N

∑

ρ∈Ĝ

|ρ(Dg)|4 min
g:K→N

max
ρ|N 6=ρ0

|ρ(Dg)|

Z8 Z8 8832
√

10 + 4
√
2

Z8 Z4 × Z2 8576 4
Z8 Z2 × Z2 × Z2 9216 4

Z4 × Z2 Z8 8960 4
Z4 × Z2 Z4 × Z2 9216 4
Z4 × Z2 Z2 × Z2 × Z2 10240 4

Z2 × Z2 × Z2 Z8 9216 4
Z2 × Z2 × Z2 Z4 × Z2 10240 4
Z2 × Z2 × Z2 Z2 × Z2 × Z2 11264 4

The case K = N = Z8 is of interest: Here the maximum character value is

strictly smaller than 4, hence there is a function which is “better” than in the

elementary-Abelian caseb. In contrast to the other cases, this “smallest” maximum

is not reached for the functions which minimize the sum of the fourth powers of the

character values (which is 8960).

We also searched for bent functions from S3 to a group N such that 1 < |N | ≤ 5.

Note that, in contrast to the Abelian case, the existence question for bent functions

bAn example of the graph of such a function is {(0, 0), (1, 5), (2, 7), (3, 7), (4, 7), (5, 4), (6, 5), (7, 4)}.
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K → N is also meaningful if |N | is not a divisor of |K|. The results that we obtained

are as follows: First of all, there is no bent function if N ∈ {Z2,Z4,Z2 × Z2,Z5}.
But there is (at least) one bent function f : S3 → Z3. Indeed we can check

that the map f defined by f(id) = f((1, 2)) = f((2, 3)) = f((1, 3)) = 0 and

f((1, 2, 3)) = f((1, 3, 2)) = 1 is bent, that is to say that
√
dim ρ‖ρ(Df )‖ = 2

√
3

for all ρ|Z3 6= ρ0. The group S3 has two one-dimensional representations and one

two-dimensional representation, and Z3 has three one-dimensional representations

therefore |S3|
2(|Z3|−1)

|Ŝ3|(Ẑ3−1)|
= 12. We have

√
dim ρ‖ρ(Df)‖ = 2

√
3 for all representations

ρ ∈ ̂S3 × Z3 which are nonprincipal on Z3. Due to the fact that S3 has a represen-

tation of dimension greater than 1, f is not perfect nonlinear (see the discussion at

the end of the previous section).

Finally, we would like to raise some questions. Regarding these questions, both

computational results as well as infinite families are, of course, welcome.

(1) Regarding the caracterisation of APN functions by mean of the sum∑

ρ∈Ĝ

dim ρ ‖ρ(Df )‖4 given in Theorem 10, it should be interesting to find some

functions f : K → N for which this sum reaches some value which is better

than the one in the classical case of elementary Abelian groups.

(2) Find functions f : K → N such that dim ρ‖ρ(Df)‖2 = m2(n−1)

|K̂|(|N̂|−1)
for all ρ

nonprincipal on N i.e. non-Abelian bent functions).

(3) Find functions f : K → N with |K| = |N | = 2n = m (n even so that there

are no almost bent functions) such that max
ρN 6=ρ0

dim ρ‖ρ(Df)‖2 < 4m, i.e. func-

tions which are better than the known maximum nonlinear functions in the

elementary-Abelian case.

(4) Find functions f : K → N with |K| = |N | = 2n = m (n odd, so that there

are almost bent functions) such that max
ρN 6=ρ0

dim ρ‖ρ(Df)‖2 < 2m, i.e. functions

which are better than classical almost bent functions. Note that we found such

an example for a mapping f : Z8 → Z8.
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