

Growing binary trees

Khaydar Nurligareev (with Antoine Genitrini)

LIP6, Sorbonne University

Seminar LIB
University of Burgundy Europe

December 18, 2025

Settings

Vertex types

- internal node
- anchor (active leaf)
- leaf (dead leaf)

Settings

Vertex types

- internal node $t = 0$
- anchor (active leaf)
- leaf (dead leaf)

Growing process

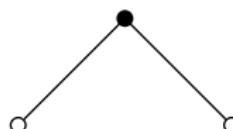
- At the beginning ($t = 0$),
our tree is an anchor

Settings

Vertex types

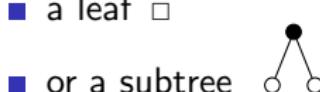
- internal node
- anchor (active leaf)
- leaf (dead leaf)

$t = 1$



Growing process

- At the beginning ($t = 0$), our tree is an anchor ○
- At any moment $t \geq 1$, replace each anchor ○ by
 - a leaf □
 - or a subtree

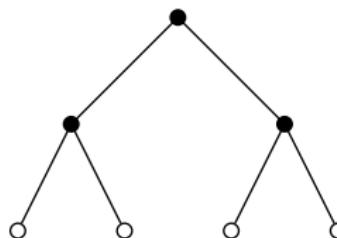


Settings

Vertex types

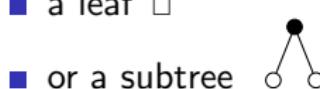
- internal node
- anchor (active leaf)
- leaf (dead leaf)

$t = 2$



Growing process

- At the beginning ($t = 0$), our tree is an anchor ○
- At any moment $t \geq 1$, replace each anchor ○ by
 - a leaf □
 - or a subtree



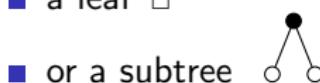
Settings

Vertex types

- internal node
- anchor (active leaf)
- leaf (dead leaf)

Growing process

- At the beginning ($t = 0$), our tree is an anchor ◦
- At any moment $t \geq 1$, replace each anchor ◦ by
 - a leaf □
 - or a subtree



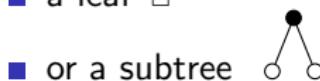
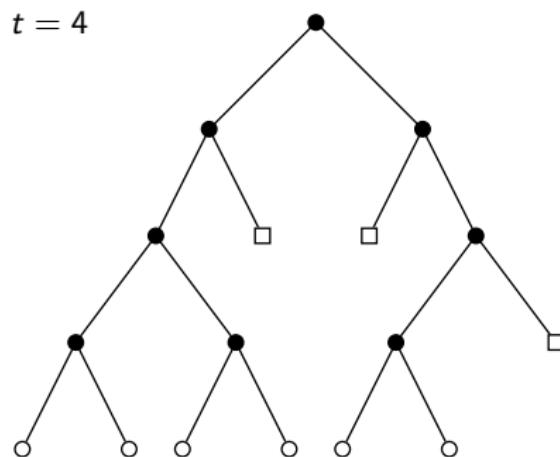
Settings

Vertex types

- internal node
- anchor (active leaf)
- leaf (dead leaf)

Growing process

- At the beginning ($t = 0$), our tree is an anchor ◦
- At any moment $t \geq 1$, replace each anchor ◦ by
 - a leaf □
 - or a subtree



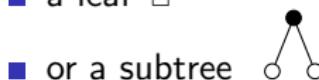
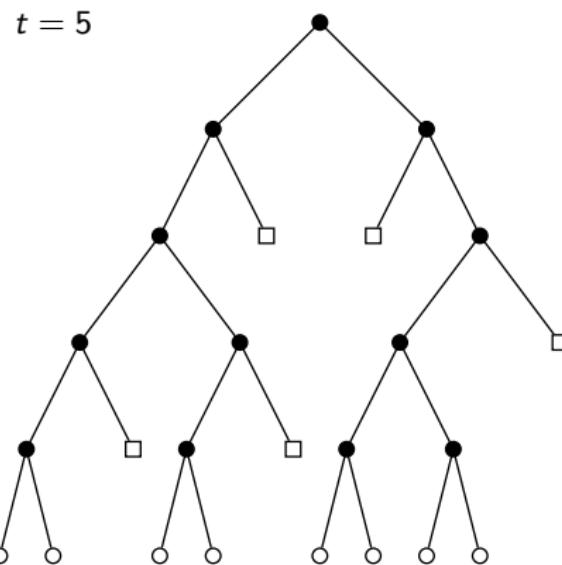
Settings

Vertex types

- internal node
- anchor (active leaf)
- leaf (dead leaf)

Growing process

- At the beginning ($t = 0$), our tree is an anchor ◦
- At any moment $t \geq 1$, replace each anchor ◦ by
 - a leaf □
 - or a subtree



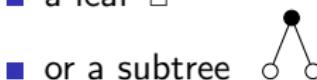
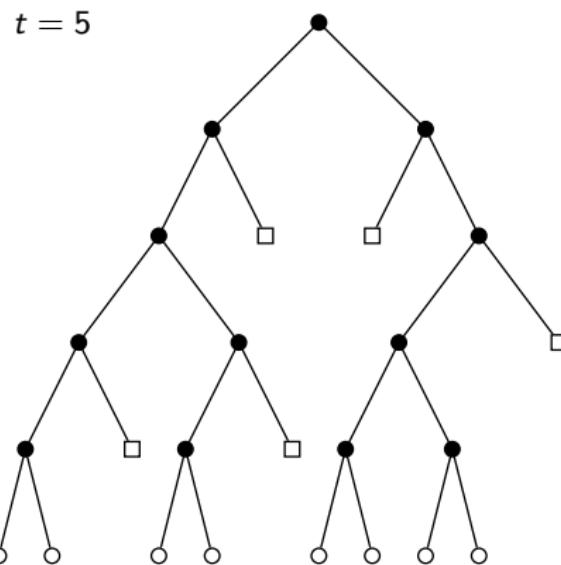
Settings

Vertex types

- internal node
- anchor (active leaf)
- leaf (dead leaf)

Growing process

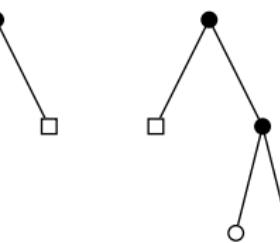
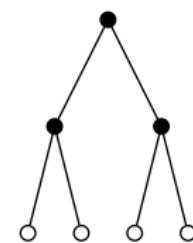
- At the beginning ($t = 0$), our tree is an anchor ◦
- At any moment $t \geq 1$, replace each anchor ◦ by
 - a leaf □
 - or a subtree



Studied objects: **active trees** (i.e. trees that have anchors)

Counting

$t_{n,m} = \{\text{active trees with } n \text{ internal nodes } m \text{ anchors}\}$



$$t_{0,1} = 1$$

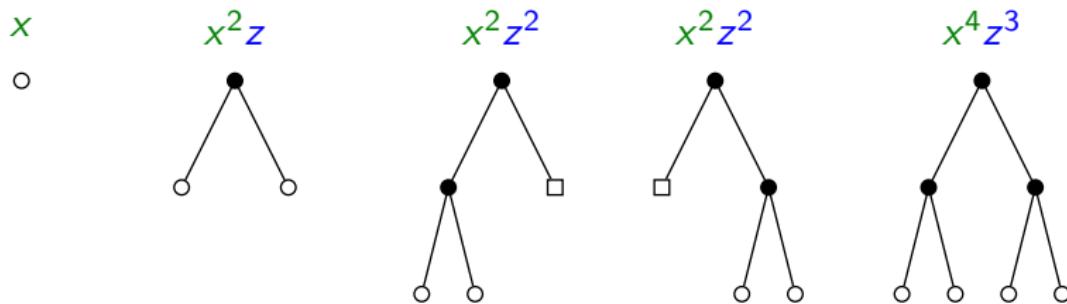
$$t_{1,2} = 1$$

$$t_{2,2} = 2$$

$$t_{3,4} = 1$$

Counting

$t_{n,m} = \{\text{active trees with } n \text{ internal nodes } m \text{ anchors}\}$



$$t_{0,1} = 1$$

$$t_{1,2} = 1$$

$$t_{2,2} = 2$$

$$t_{3,4} = 1$$

Marking variables:

- x marks anchors
- z marks internal nodes

$$T(x, z) = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} t_{n,m} x^m z^n$$

$$T(x, z) = x + x^2 z + 2x^2 z^2 + \dots$$

Equation

- Growing process replacement:

$$\begin{array}{ll} \circ \mapsto \square & \circ \mapsto \begin{array}{c} \bullet \\ \diagup \quad \diagdown \\ \circ \quad \circ \end{array} \\ x \mapsto 1 & x \mapsto zx^2 \end{array}$$

- Equation:

$$T(x, z) = x + T(1 + zx^2, z) - T(1, z)$$

Equation

- Growing process replacement:

$$\begin{array}{ll} \circ \mapsto \square & \circ \mapsto \begin{array}{c} \bullet \\ \diagup \quad \diagdown \\ \circ \quad \circ \end{array} \\ x \mapsto 1 & x \mapsto zx^2 \end{array}$$

- Equation:

$$T(x, z) = x + T(1 + zx^2, z) - C(z)$$

- C_n are Catalan numbers
- $C(z) = 1 + zC^2(z)$

$$\sum_{m=1}^{\infty} t_{n,m} = C_n$$

Equation

- Growing process replacement:

$$\begin{array}{ll} \circ \mapsto \square & \circ \mapsto \begin{array}{c} \bullet \\ \diagup \quad \diagdown \\ \circ \quad \circ \end{array} \\ x \mapsto 1 & x \mapsto zx^2 \end{array}$$

- Equation:

$$T(x, z) = x + T(1 + zx^2, z) - C(z)$$

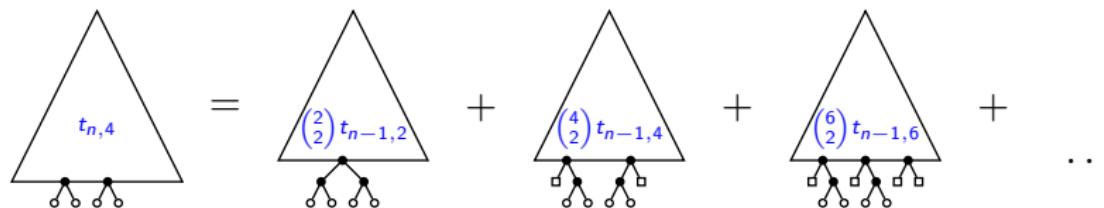
- C_n are Catalan numbers
- $C(z) = 1 + zC^2(z)$
- Recurrent relation ($n, k > 0$):

$$\sum_{m=1}^{\infty} t_{n,m} = C_n$$

$$t_{n,2k-1} = 0 \quad \text{and} \quad t_{n,2k} = \sum_{m=k}^{\infty} \binom{m}{k} t_{n-k,m}$$

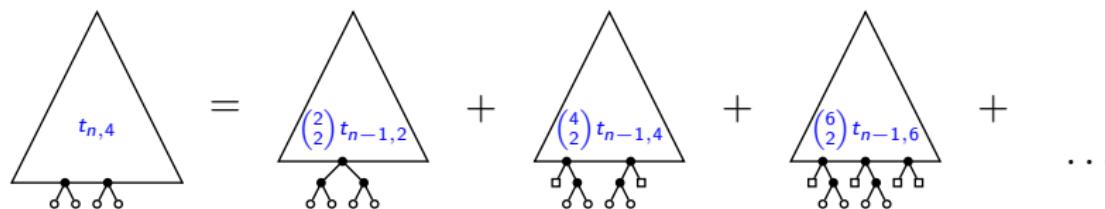
Recurrent relations

■ Exact:
$$t_{n,2k} = \sum_{m=\lceil k/2 \rceil}^{\infty} \binom{2m}{k} t_{n-k,2m} \quad (n > 0)$$

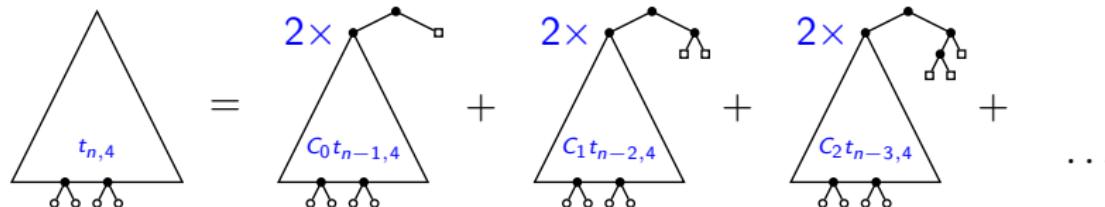


Recurrent relations

■ Exact:
$$t_{n,2k} = \sum_{m=\lceil k/2 \rceil}^{\infty} \binom{2m}{k} t_{n-k,2m} \quad (n > 0)$$



■ Asymptotic:
$$t_{n,2k} > 2 \sum_{m=0}^r C_m t_{n-m-1,2k} \quad (n \gg r)$$



Mandelbrot Polynomials

- Define

$$p_0(x, z) = x, \quad p_{n+1}(x, z) = 1 + zp_n^2(x, z)$$

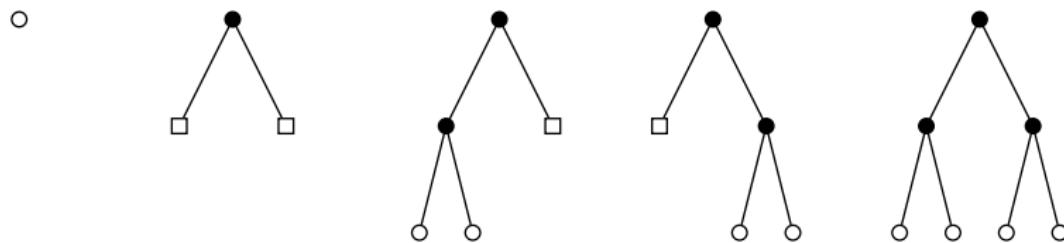
Mandelbrot Polynomials

- Define

$$p_0(x, z) = x, \quad p_{n+1}(x, z) = 1 + zp_n^2(x, z)$$

- $p_n(x, z)$ counts binary trees:

- of height at most n ,
- anchors are at level n ,
- leaves are at levels $k < n$



$$p_2(x, z) = 1 + z + 2x^2z^2 + x^4z^3$$

Mandelbrot Polynomials

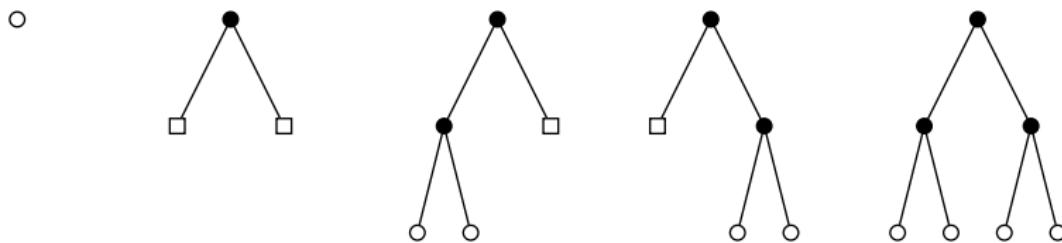
- Define

$$p_0(x, z) = x, \quad p_{n+1}(x, z) = 1 + zp_n^2(x, z)$$

- $p_n(x, z)$ counts binary trees:

- of height at most n ,
- anchors are at level n ,
- leaves are at levels $k < n$

for $k < n$:
 $[z^k]p_n(x, z) = C_k$



$$p_2(x, z) = 1 + z + 2x^2z^2 + x^4z^3$$

Mandelbrot Polynomials

- Define

$$p_0(x, z) = x, \quad p_{n+1}(x, z) = 1 + zp_n^2(x, z)$$

- $p_n(x, z)$ counts binary trees:

- of height at most n , for $k < n$:
- anchors are at level n ,
- leaves are at levels $k < n$

$$[z^k]p_n(x, z) = C_k$$

- Define

$$q_n(x, z) = zp_n(x, z)$$

- $q_n(1, z)$ are known as **Mandelbrot Polynomials**

Mandelbrot Polynomials

- Define

$$p_0(x, z) = x, \quad p_{n+1}(x, z) = 1 + zp_n^2(x, z)$$

- $p_n(x, z)$ counts binary trees:

- of height at most n , for $k < n$:
- anchors are at level n ,
- leaves are at levels $k < n$

$$[z^k]p_n(x, z) = C_k$$

- Define

$$q_n(x, z) = zp_n(x, z)$$

- $q_n(1, z)$ are known as **Mandelbrot Polynomials**
- Corollary: for $k < n$, $[z^{k+1}]q_n(1, z) = C_k$

Cumulative value of anchors

- Denote

$$\tilde{T}(x, z) = \frac{\partial T}{\partial x}(x, z)$$

- Equation:

$$\tilde{T}(x, z) = 1 + 2xz \tilde{T}(1 + zx^2, z)$$

Cumulative value of anchors

- Denote

$$\tilde{T}(x, z) = \frac{\partial T}{\partial x}(x, z)$$

- Equation:

$$\tilde{T}(x, z) = 1 + 2xz \tilde{T}(1 + zx^2, z)$$

- Relation:

$$\tilde{T}(x, z) = 1 + \sum_{k=1}^{\infty} (2z)^k \prod_{\ell=0}^{k-1} p_{\ell}(x, z)$$

Cumulative value of anchors

- Denote

$$\tilde{T}(x, z) = \frac{\partial T}{\partial x}(x, z)$$

- Equation:

$$\tilde{T}(x, z) = 1 + 2xz \tilde{T}(1 + zx^2, z)$$

- Relation:

$$\tilde{T}(x, z) = 1 + \sum_{k=1}^{\infty} (2z)^k \prod_{\ell=0}^{k-1} p_{\ell}(x, z)$$

- In terms of Mandelbrot polynomials:

$$\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} m t_{m,n} z^n = 1 + \sum_{k=1}^{\infty} 2^k \prod_{\ell=0}^{k-1} q_{\ell}(1, z)$$

Small values of $t_{n,2k}$

n	1	2	3	4	5	6	7	8	9	10
$t_{n,2}$	1	2	4	12	32	104	328	1 080	3 648	12 544
$t_{n,4}$	0	0	1	2	10	24	92	308	1 028	3 584
$t_{n,6}$	0	0	0	0	0	4	8	40	176	584
$t_{n,8}$	0	0	0	0	0	0	1	2	10	84
$t_{n,10}$	0	0	0	0	0	0	0	0	0	0

n	11	12	13	14	15	16
$t_{n,2}$	43 600	153 504	546 272	1 960 368	7 085 456	25 773 296
$t_{n,4}$	12 736	45 160	161 152	581 632	2 114 504	7 727 656
$t_{n,6}$	2 144	8 192	30 720	112 496	416 528	1 553 776
$t_{n,8}$	282	1 048	4 368	18 224	69 676	265 220
$t_{n,10}$	24	104	352	1 616	8 208	34 704
$t_{n,12}$	0	4	36	96	456	2 936
$t_{n,14}$	0	0	0	8	16	80
$t_{n,16}$	0	0	0	0	1	2

Anchor distributions

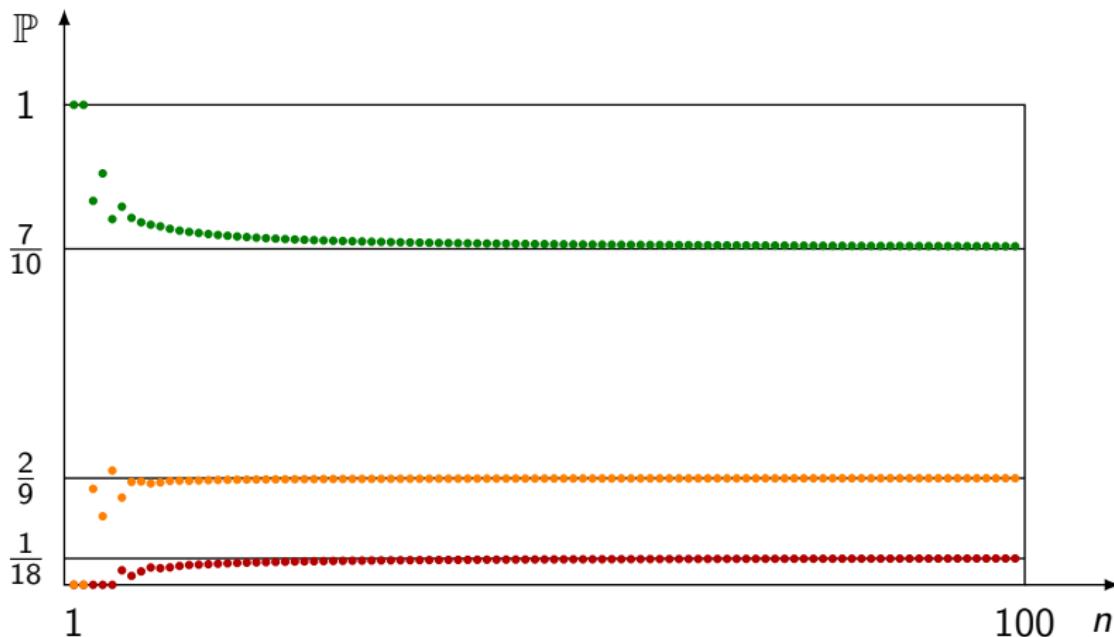
n	1	2	3	4	5	6	7	8	9	10	11
$t_{n,2}$	1	2	4	12	32	104	328	1080	3648	12544	43600
$t_{n,4}$	0	0	1	2	10	24	92	308	1028	3584	12736
$t_{n,6}$	0	0	0	0	0	4	8	40	176	584	2144
$t_{n,8}$	0	0	0	0	0	0	1	2	10	84	282
$t_{n,10}$	0	0	0	0	0	0	0	0	0	0	24
$t_{n,12}$	0	0	0	0	0	0	0	0	0	0	0
C_n	1	2	5	14	42	132	429	1430	4862	16796	58786

It looks like eventually

- $\frac{t_{n,2}}{C_n}$ is decreasing,
- $\frac{t_{n,2k}}{C_n}$ is increasing for $k > 1$,

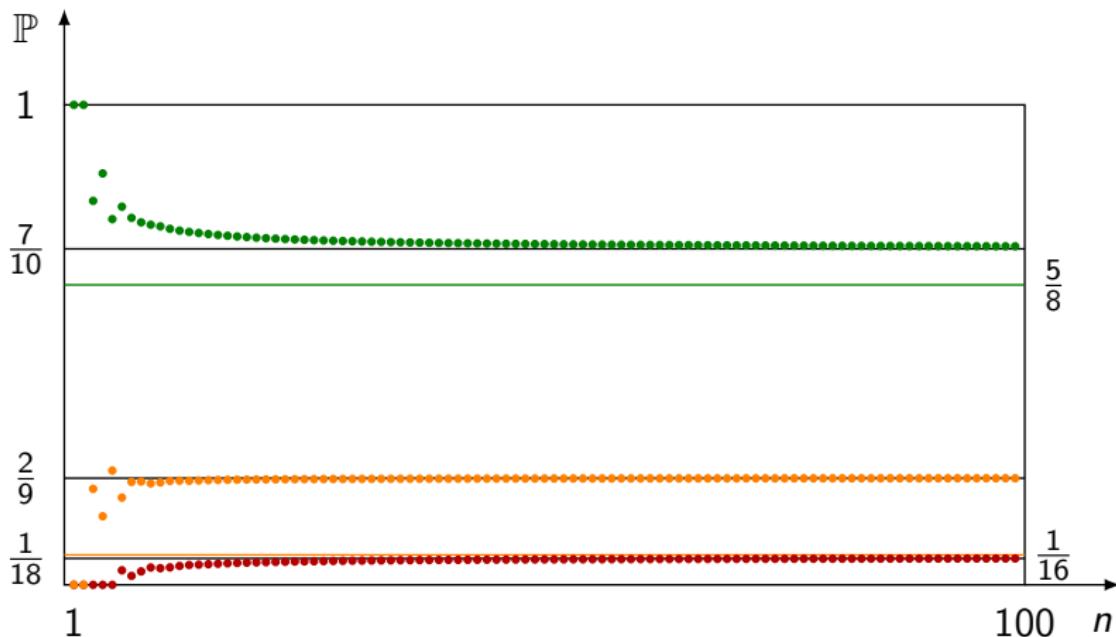
and there are some limits.

Proportions of the first three lines



Note that $\frac{t_{200,4}}{C_{200}} > \frac{2}{9}$ and $\frac{t_{200,6}}{C_{200}} > \frac{1}{18}$

Proportions of the first three lines



Proposition: $\liminf_{n \rightarrow \infty} \frac{t_{n,2}}{C_n} \geq \frac{5}{8}$; $\liminf_{n \rightarrow \infty} \frac{t_{n,4}}{C_n} \geq \frac{1}{16}$; $\liminf_{n \rightarrow \infty} \frac{t_{n,6}}{C_n} \geq \frac{1}{256}$

Simple lower bound for $t_{n,2}$

Proposition

The proportion of trees with two anchors satisfies

$$\liminf_{n \rightarrow \infty} \frac{t_{n,2}}{C_n} \geq \frac{1}{2}$$

Simple lower bound for $t_{n,2}$

Proposition

The proportion of trees with two anchors satisfies

$$\liminf_{n \rightarrow \infty} \frac{t_{n,2}}{C_n} \geq \frac{1}{2}$$

$$t_{n,2} = 2t_{n-1,2} + 4t_{n-1,4} + 6t_{n-1,6} + 8t_{n-1,8} + \dots$$

Simple lower bound for $t_{n,2}$

Proposition

The proportion of trees with two anchors satisfies

$$\liminf_{n \rightarrow \infty} \frac{t_{n,2}}{C_n} \geq \frac{1}{2}$$

$$\begin{aligned} t_{n,2} &= 2t_{n-1,2} + 4t_{n-1,4} + 6t_{n-1,6} + 8t_{n-1,8} + \dots \\ &> 2t_{n-1,2} + 2t_{n-1,4} + 2t_{n-1,6} + 2t_{n-1,8} + \dots \end{aligned}$$

Simple lower bound for $t_{n,2}$

Proposition

The proportion of trees with two anchors satisfies

$$\liminf_{n \rightarrow \infty} \frac{t_{n,2}}{C_n} \geq \frac{1}{2}$$

$$\begin{aligned} t_{n,2} &= 2t_{n-1,2} + 4t_{n-1,4} + 6t_{n-1,6} + 8t_{n-1,8} + \dots \\ &> 2t_{n-1,2} + 2t_{n-1,4} + 2t_{n-1,6} + 2t_{n-1,8} + \dots \\ &= 2C_{n-1} \end{aligned}$$

Simple lower bound for $t_{n,2}$

Proposition

The proportion of trees with two anchors satisfies

$$\liminf_{n \rightarrow \infty} \frac{t_{n,2}}{C_n} \geq \frac{1}{2}$$

$$\begin{aligned} t_{n,2} &= 2t_{n-1,2} + 4t_{n-1,4} + 6t_{n-1,6} + 8t_{n-1,8} + \dots \\ &> 2t_{n-1,2} + 2t_{n-1,4} + 2t_{n-1,6} + 2t_{n-1,8} + \dots \\ &= 2C_{n-1} \end{aligned}$$

$$C_n \sim \frac{4^n}{n^{3/2} \sqrt{\pi}} \quad \Rightarrow \quad \frac{t_{n,2}}{C_n} > \frac{2C_{n-1}}{C_n} \sim \frac{1}{2}$$

Elaborated lower bound for $t_{n,2}$

Proposition

The proportion of trees with two anchors satisfies

$$\liminf_{n \rightarrow \infty} \frac{t_{n,2}}{C_n} \geq \frac{5}{8}$$

Elaborated lower bound for $t_{n,2}$

Proposition

The proportion of trees with two anchors satisfies

$$\liminf_{n \rightarrow \infty} \frac{t_{n,2}}{C_n} \geq \frac{5}{8}$$

$$t_{n,2} = 3C_{n-1} + (-t_{n-1,2} + t_{n-1,4} + 3t_{n-1,6} + 5t_{n-1,8} + \dots)$$

Elaborated lower bound for $t_{n,2}$

Proposition

The proportion of trees with two anchors satisfies

$$\liminf_{n \rightarrow \infty} \frac{t_{n,2}}{C_n} \geq \frac{5}{8}$$

$$t_{n,2} = 3C_{n-1} + (-t_{n-1,2} + t_{n-1,4} + 3t_{n-1,6} + 5t_{n-1,8} + \dots)$$

$$t_{n-1,2} = 2C_{n-2} + (0t_{n-2,2} + 2t_{n-2,4} + 4t_{n-2,6} + 6t_{n-2,8} + \dots)$$

Elaborated lower bound for $t_{n,2}$

Proposition

The proportion of trees with two anchors satisfies

$$\liminf_{n \rightarrow \infty} \frac{t_{n,2}}{C_n} \geq \frac{5}{8}$$

$$t_{n,2} = 3C_{n-1} + (-t_{n-1,2} + t_{n-1,4} + 3t_{n-1,6} + 5t_{n-1,8} + \dots)$$

$$t_{n-1,2} = 2C_{n-2} + (0t_{n-2,2} + 2t_{n-2,4} + 4t_{n-2,6} + 6t_{n-2,8} + \dots)$$

$$t_{n,2k} \geq 2t_{n-1,2k} \quad \Rightarrow \quad \frac{t_{n,2}}{C_n} > \frac{3C_{n-1} - 2C_{n-2}}{C_n} \sim \frac{5}{8}$$

Advanced lower bound for $t_{n,2}$

- For any $i \in [2, 6]$:

$$t_{n,2} = iC_{n-1} - 2(i-2)C_{n-2} + \sum_{k \geq 2} ((2k-i)t_{n-1,2k} - (2k-2)(i-2)t_{n-2,2k})$$

Advanced lower bound for $t_{n,2}$

- For any $i \in [2, 6]$:

$$t_{n,2} = iC_{n-1} - 2(i-2)C_{n-2} + \sum_{k \geq 2} ((2k-i)t_{n-1,2k} - (2k-2)(i-2)t_{n-2,2k})$$

- Take $i = 10/3$:

$$\frac{t_{n,2}}{C_n} > \frac{10C_{n-1} - 8C_{n-2}}{3C_n} - \frac{4t_{n-2,4}}{3C_n} \sim \frac{2}{3} - \frac{4}{3} \cdot \frac{3}{8} \cdot \frac{C_{n-2}}{C_n} \sim \frac{2}{3} - \frac{1}{32} = \frac{61}{92}$$

Advanced lower bound for $t_{n,2}$

- For any $i \in [2, 6]$:

$$t_{n,2} = iC_{n-1} - 2(i-2)C_{n-2} + \sum_{k \geq 2} ((2k-i)t_{n-1,2k} - (2k-2)(i-2)t_{n-2,2k})$$

- Take $i = 10/3$:

$$\frac{t_{n,2}}{C_n} > \frac{10C_{n-1} - 8C_{n-2}}{3C_n} - \frac{4t_{n-2,4}}{3C_n} \sim \frac{2}{3} - \frac{4}{3} \cdot \frac{3}{8} \cdot \frac{C_{n-2}}{C_n} \sim \frac{2}{3} - \frac{1}{32} = \frac{61}{92}$$

Proposition

The proportion of trees with two anchors satisfies

$$\liminf_{n \rightarrow \infty} \frac{t_{n,2}}{C_n} \geq \frac{61}{96}$$

Lower bounds for $t_{n,4}$

Proposition

The proportions of trees with four anchors satisfies

$$a) \liminf_{n \rightarrow \infty} \frac{t_{n,4}}{C_n} \geq \frac{1}{16}$$

$$b) \liminf_{n \rightarrow \infty} \frac{t_{n,4}}{C_n} \geq \frac{21}{256}$$

Lower bounds for $t_{n,4}$

Proposition

The proportions of trees with four anchors satisfies

$$a) \liminf_{n \rightarrow \infty} \frac{t_{n,4}}{C_n} \geq \frac{1}{16} \quad b) \liminf_{n \rightarrow \infty} \frac{t_{n,4}}{C_n} \geq \frac{21}{256}$$

$$a) \quad \frac{t_{n,4}}{C_n} = \frac{1}{C_n} \sum_{k=1}^{\infty} \binom{2k}{2} t_{n-2,2k} > \frac{C_{n-2}}{C_n} \sim \frac{1}{16}$$

Lower bounds for $t_{n,4}$

Proposition

The proportions of trees with four anchors satisfies

$$a) \liminf_{n \rightarrow \infty} \frac{t_{n,4}}{C_n} \geq \frac{1}{16}$$

$$b) \liminf_{n \rightarrow \infty} \frac{t_{n,4}}{C_n} \geq \frac{21}{256}$$

$$a) \quad \frac{t_{n,4}}{C_n} = \frac{1}{C_n} \sum_{k=1}^{\infty} \binom{2k}{2} t_{n-2,2k} > \frac{C_{n-2}}{C_n} \sim \frac{1}{16}$$

$$b) \quad \frac{t_{n,4}}{C_n} > \frac{6C_{n-2} - 5t_{n-2,2}}{C_n} > \frac{C_{n-2}}{C_n} \left(6 - 5 \cdot \frac{15}{16} \right) \sim \frac{21}{16^2}$$

Lower bound for $t_{n,6}$

Proposition

The proportion of trees with six anchors satisfies

$$\liminf_{n \rightarrow \infty} \frac{t_{n,6}}{C_n} \geq \frac{1}{256}$$

Lower bound for $t_{n,6}$

Proposition

The proportion of trees with six anchors satisfies

$$\liminf_{n \rightarrow \infty} \frac{t_{n,6}}{C_n} \geq \frac{1}{256}$$

$$t_{n,6} = \binom{4}{3} t_{n-3,4} + \binom{6}{3} t_{n-3,6} + \binom{8}{3} t_{n-3,8} + \dots$$

Lower bound for $t_{n,6}$

Proposition

The proportion of trees with six anchors satisfies

$$\liminf_{n \rightarrow \infty} \frac{t_{n,6}}{C_n} \geq \frac{1}{256}$$

$$t_{n,6} = \binom{4}{3} t_{n-3,4} + \binom{6}{3} t_{n-3,6} + \binom{8}{3} t_{n-3,8} + \dots$$

$$\frac{t_{n,6}}{C_n} > \frac{4C_{n-3} - 4t_{n-3,2}}{C_n} > \frac{4C_{n-3}}{C_n} \left(1 - \frac{15}{16}\right) \sim \frac{1}{16^2}$$

Column nonzero values

n	1	2	3	4	5	6	7	8	9	10	11
$t_{n,2}$	1	2	4	12	32	104	328	1080	3648	12544	43600
$t_{n,4}$	0	0	1	2	10	24	92	308	1028	3584	12736
$t_{n,6}$	0	0	0	0	0	4	8	40	176	584	2144
$t_{n,8}$	0	0	0	0	0	0	1	2	10	84	282
$t_{n,10}$	0	0	0	0	0	0	0	0	0	0	24

Column nonzero values

n	1	2	3	4	5	6	7	8	9	10	11
$t_{n,2}$	1	2	4	12	32	104	328	1080	3648	12544	43600
$t_{n,4}$	0	0	1	2	10	24	92	308	1028	3584	12736
$t_{n,6}$	0	0	0	0	0	4	8	40	176	584	2144
$t_{n,8}$	0	0	0	0	0	0	1	2	10	84	282
$t_{n,10}$	0	0	0	0	0	0	0	0	0	0	24

■ Define

$$a_n = \max\{k : t_{n,2k} > 0\}$$

n	1	2	3	4	5	6	7	8	9	10
a_n	1	1	2	2	2	3	4	4	4	4
a_{n+10}	5	6	6	7	8	8	8	8	8	9
a_{n+20}	10	10	11	12	12	12	13	14	14	15
a_{n+30}	16	16	16	16	16	16	17	18	18	19

Column nonzero values

n	1	2	3	4	5	6	7	8	9	10	11
$t_{n,2}$	1	2	4	12	32	104	328	1080	3648	12544	43600
$t_{n,4}$	0	0	1	2	10	24	92	308	1028	3584	12736
$t_{n,6}$	0	0	0	0	0	4	8	40	176	584	2144
$t_{n,8}$	0	0	0	0	0	0	1	2	10	84	282
$t_{n,10}$	0	0	0	0	0	0	0	0	0	0	24

- Define

$$a_n = \max\{k : t_{n,2k} > 0\}$$

n	1	2	3	4	5	6	7	8	9	10
a_n	1	1	2	2	2	3	4	4	4	4
a_{n+10}	5	6	6	7	8	8	8	8	8	9
a_{n+20}	10	10	11	12	12	12	13	14	14	15
a_{n+30}	16	16	16	16	16	16	17	18	18	19

- Lemma: The sequence (a_n) satisfies

$$a_1 = 1, \quad a_n = \max\{k : k \leq 2a_{n-k}\}$$

One property of (a_n)

Lemma

The sequence (a_n) satisfies

$$a_1 = 1, \quad a_n = \max\{k : k \leq 2a_{n-k}\}$$

We have

$$t_{n,2k} = \sum_{m=\lceil k/2 \rceil}^{a_{n-k}} \binom{2m}{k} t_{n-k,2m}$$

and

$$t_{n,2k} \neq 0 \quad \Leftrightarrow \quad \exists m : k \leq 2m \leq 2a_{n-k}$$

Hence,

$$k \leq 2a_{n-k}$$

Sequence of repeating elements of (a_n)

n	1	2	3	4	5	6	7	8	9	10
a_n	1	1	2	2	2	3	4	4	4	4
a_{n+10}	5	6	6	7	8	8	8	8	8	9
a_{n+20}	10	10	11	12	12	12	13	14	14	15
a_{n+30}	16	16	16	16	16	16	17	18	18	19

Define

$$\ell_n = \#\{k : a_k = n\}$$

Sequence of repeating elements of (a_n)

n	1	2	3	4	5	6	7	8	9	10
a_n	1	1	2	2	2	3	4	4	4	4
a_{n+10}	5	6	6	7	8	8	8	8	8	9
a_{n+20}	10	10	11	12	12	12	13	14	14	15
a_{n+30}	16	16	16	16	16	16	17	18	18	19

Define

$$\ell_n = \#\{k : a_k = n\}$$

We have

$$(\ell_n) = 2, 3, 1, 4, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, \dots$$

Description of (ℓ_n)

Proposition

The sequence (ℓ_n) satisfies

$$\ell_n = \begin{cases} p+2 & \text{if } n = 2^p, \\ p+1 & \text{if } n = 2^p a, \text{ } a \text{ is odd, } a > 1. \end{cases}$$

In particular,

- $\ell_{2n} = \ell_n + 1$ for even indices,
- $\ell_{2n+1} = 1$ for odd indices greater than 1,
- $\ell_1 = 2$.

Induction based on $a_n = \max\{k : k \leq 2a_{n-k}\}$

Description of (a_n)

Proposition

The sequence (a_n) satisfies

$$a_n = a_{n-1-a_{n-1}} + a_{n-2-a_{n-2}}, \quad a_0 = a_1 = a_2 = 1$$

- Question. How to explain this recurrence combinatorially?

Description of (a_n)

Proposition

The sequence (a_n) satisfies

$$a_n = a_{n-1-a_{n-1}} + a_{n-2-a_{n-2}}, \quad a_0 = a_1 = a_2 = 1$$

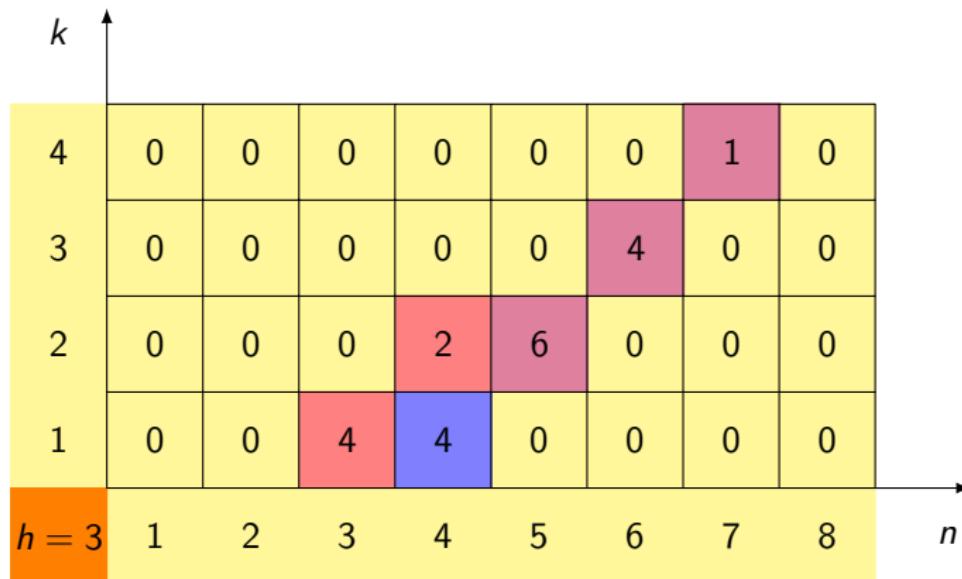
- Question. How to explain this recurrence combinatorially?
- (a_n) is known as a **meta-Fibonacci sequence**

Corollary (Tanny, 1992)

- $\lim_{n \rightarrow \infty} \frac{a_n}{n} = \frac{1}{2}$
- $\sum_{n=0}^{\infty} a_n z^n = z \sum_{n=0}^{\infty} \prod_{i=1}^n (z + z^{2^i})$

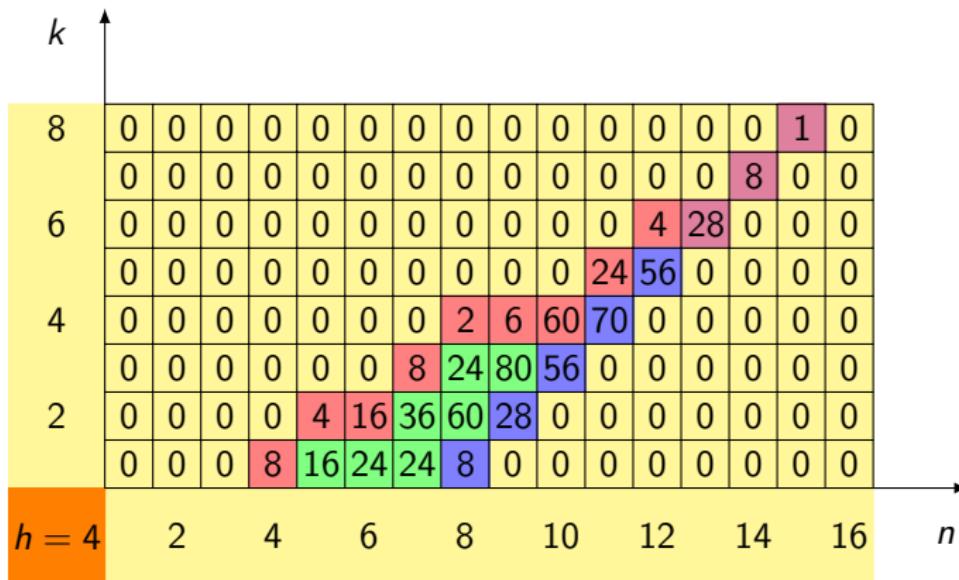
Trees of fixed height

$t_{n,2k,h} = \#\{\text{active trees with } n \text{ internal nodes } 2k \text{ anchors of height } h\}$



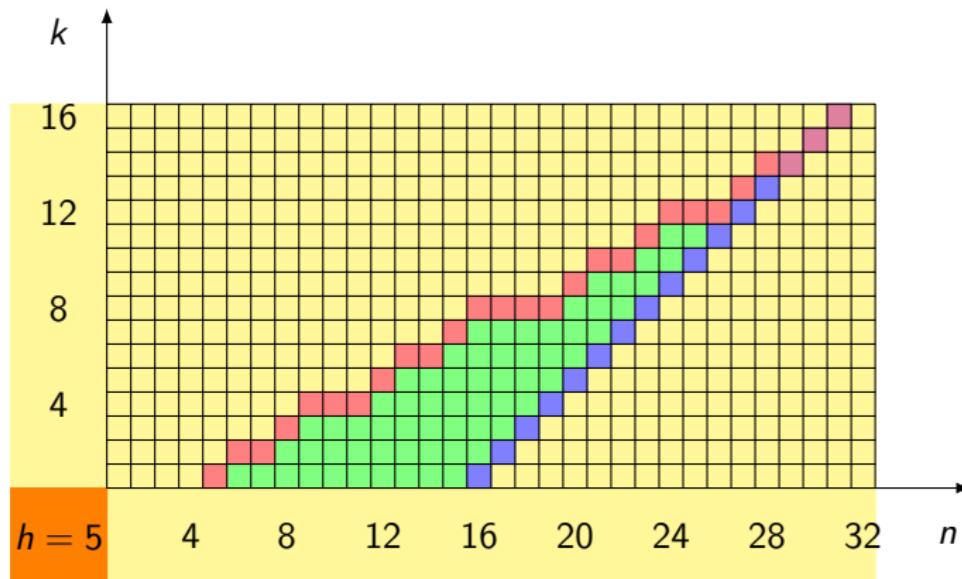
Trees of fixed height

$t_{n,2k,h} = \#\{\text{active trees with } n \text{ internal nodes } 2k \text{ anchors of height } h\}$



Trees of fixed height

$t_{n,2k,h} = \#\{\text{active trees with } n \text{ internal nodes } 2k \text{ anchors of height } h\}$

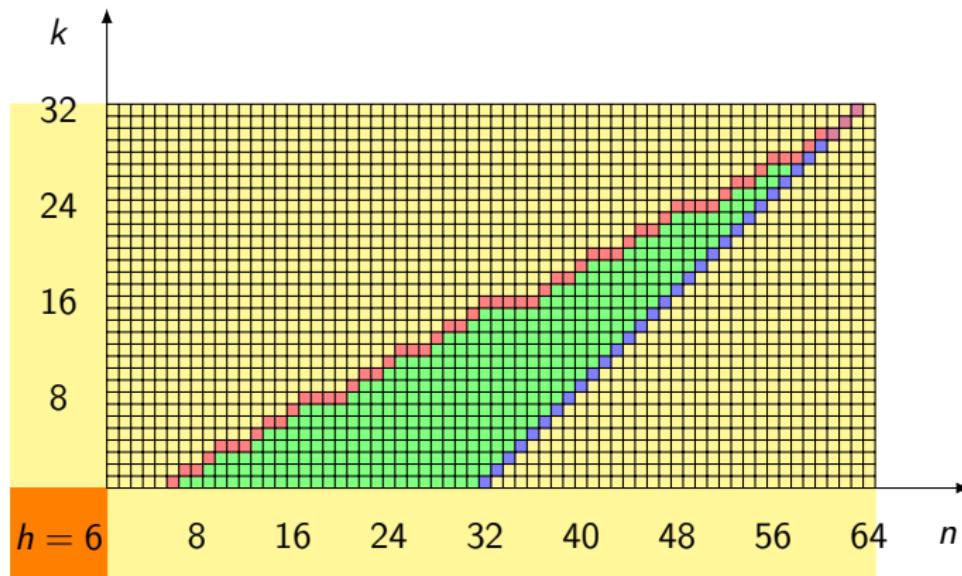


$$S_h = \{(n, k) : t_{n,2k,h} \neq 0\},$$

$$|S_h| = 2^{h-2}(2^{h-1} - h + 2)$$

Trees of fixed height

$t_{n,2k,h} = \#\{\text{active trees with } n \text{ internal nodes } 2k \text{ anchors of height } h\}$

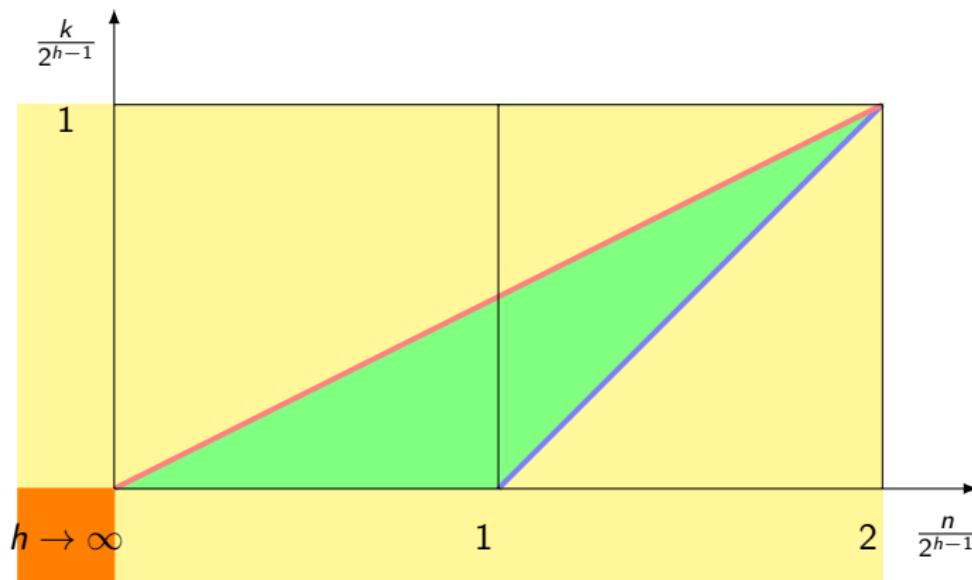


$$S_h = \{(n, k) : t_{n,2k,h} \neq 0\},$$

$$|S_h| = 2^{h-2}(2^{h-1} - h + 2)$$

Trees of fixed height

$t_{n,2k,h} = \#\{\text{active trees with } n \text{ internal nodes } 2k \text{ anchors of height } h\}$

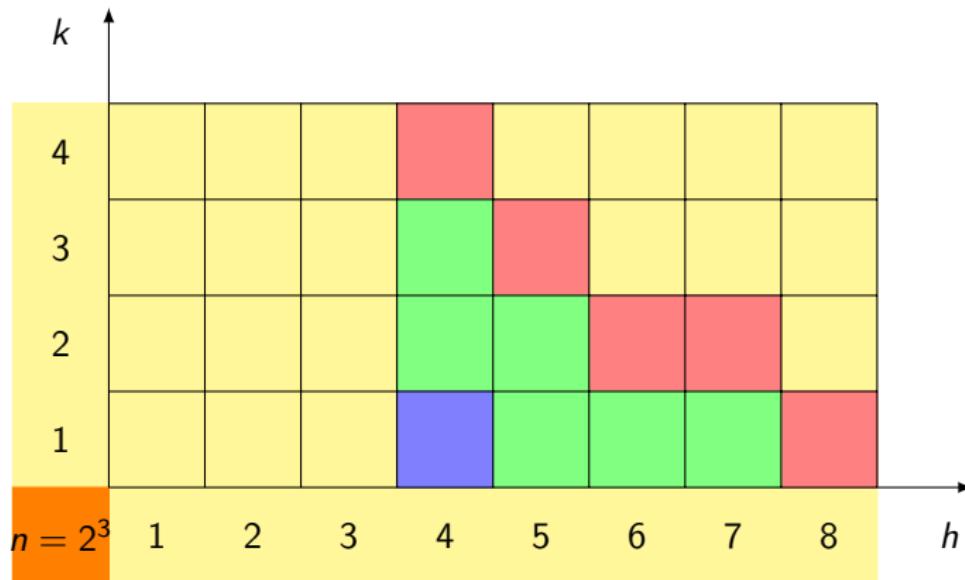


$$S_h = \{(n, k) : t_{n, 2k, h} \neq 0\},$$

$$|S_h| = 2^{h-2}(2^{h-1} - h + 2)$$

Trees of fixed size

$t_{n,2k,h} = \#\{\text{active trees with } n \text{ internal nodes } 2k \text{ anchors of height } h\}$

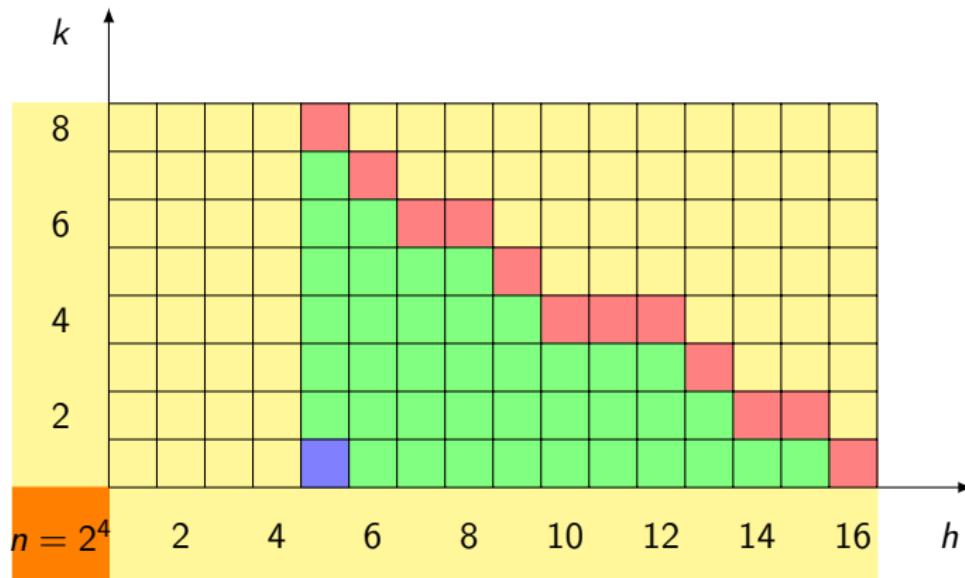


$$\widehat{S}_n = \{(h, k) : t_{n,2k,h} \neq 0\},$$

$$|\widehat{S}_{2^m}| = 2^{m-2}(2^m - m + 1)$$

Trees of fixed size

$t_{n,2k,h} = \#\{\text{active trees with } n \text{ internal nodes } 2k \text{ anchors of height } h\}$

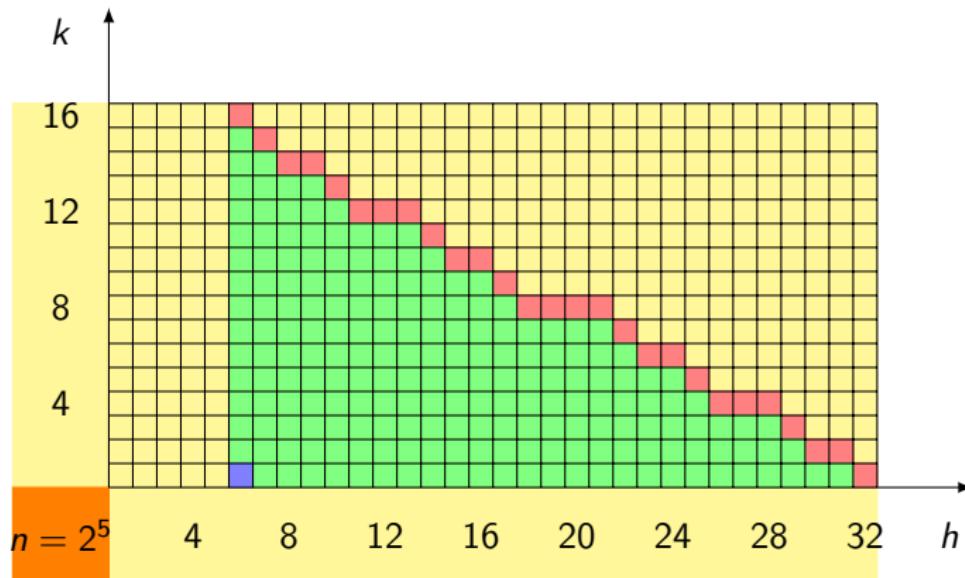


$$\widehat{S}_n = \{(h, k) : t_{n,2k,h} \neq 0\},$$

$$|\widehat{S}_{2^m}| = 2^{m-2}(2^m - m + 1)$$

Trees of fixed size

$t_{n,2k,h} = \#\{\text{active trees with } n \text{ internal nodes } 2k \text{ anchors of height } h\}$

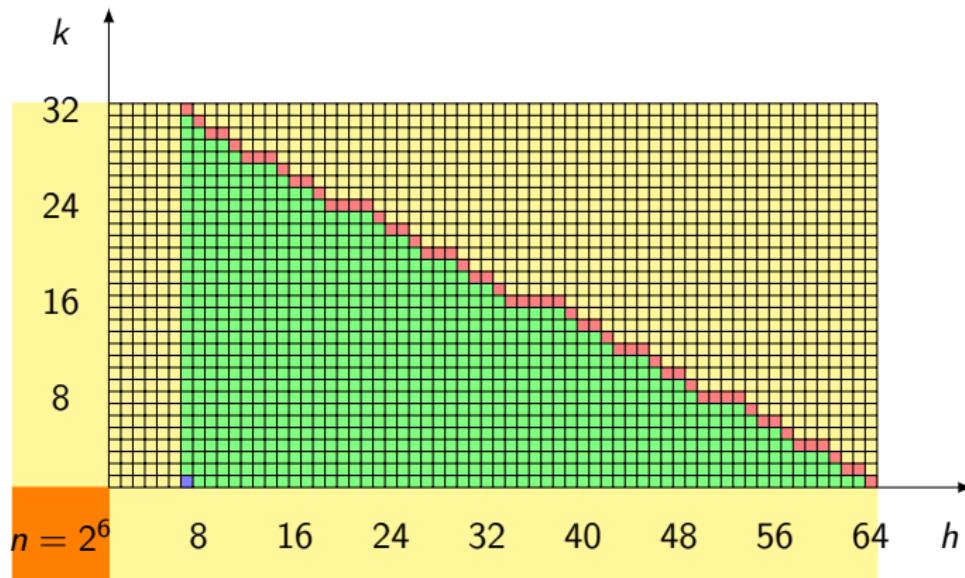


$$\widehat{S}_n = \{(h, k) : t_{n,2k,h} \neq 0\},$$

$$|\widehat{S}_{2^m}| = 2^{m-2}(2^m - m + 1)$$

Trees of fixed size

$t_{n,2k,h} = \#\{\text{active trees with } n \text{ internal nodes } 2k \text{ anchors of height } h\}$

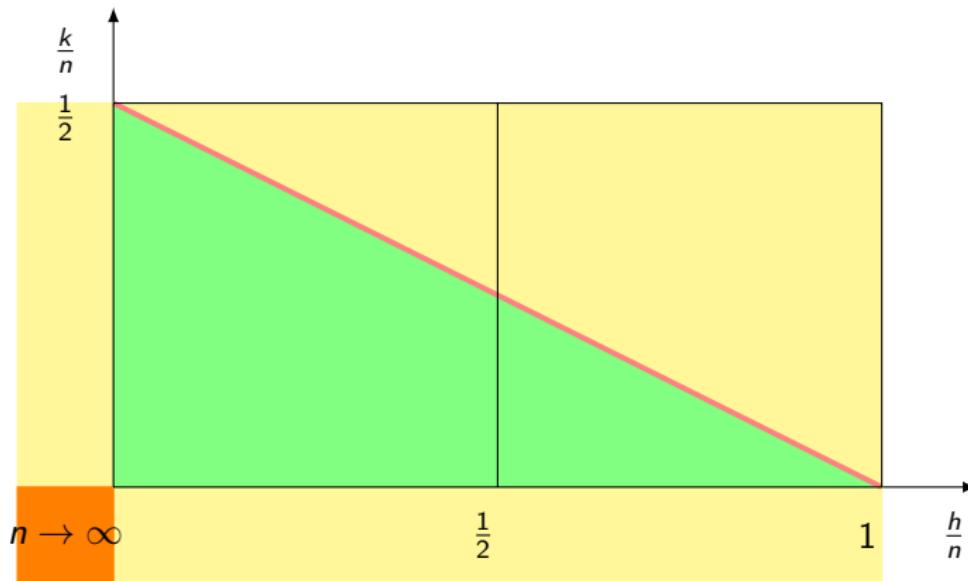


$$\widehat{S}_n = \{(h, k) : t_{n,2k,h} \neq 0\},$$

$$|\widehat{S}_{2^m}| = 2^{m-2}(2^m - m + 1)$$

Trees of fixed size

$$t_{n,2k,h} = \#\{\text{active trees with } n \text{ internal nodes } 2k \text{ anchors of height } h\}$$



$$\widehat{S}_n = \{(h, k) : t_{n,2k,h} \neq 0\},$$

$$|\widehat{S}_{2^m}| = 2^{m-2}(2^m - m + 1)$$

Conclusion

1 Studied objects:

- growing binary trees.

2 Related objects:

- Mandelbrot polynomials,
- meta-Fibonacci sequences.

3 Results:

- relations for generating functions,
- bounds for anchor distributions,
- behavior of the maximal number of anchors,
- limit forms of nonzero domains.

Conclusion

1 Studied objects:

- growing binary trees.

2 Related objects:

- Mandelbrot polynomials,
- meta-Fibonacci sequences.

3 Results:

- relations for generating functions,
- bounds for anchor distributions,
- behavior of the maximal number of anchors,
- limit forms of nonzero domains.

Thank you for your attention!

Literature I

- **Neil J. Calkin, Eunice Y. S. Chan, Robert M. Corless**
Some Facts and Conjectures about Mandelbrot Polynomials
Maple Transactions, 2021.
- **Stephen M. Tanny**
A well-behaved cousin of the Hofstadter sequence
Discrete Mathematics, 105 (1-3), 1992, pp. 227–239.