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Settings

Vertex types
e internal node
o anchor (active leaf)
o leaf (dead leaf)
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Settings

Vertex types
e internal node t=0 o
o anchor (active leaf)
o leaf (dead leaf)

Growing process

m At the beginning (t = 0),
our tree is an anchor o
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Growing process
Settings

Vertex types
e internal node t=1
o anchor (active leaf)
o leaf (dead leaf)

Growing process

m At the beginning (t = 0),
our tree is an anchor o

m At any moment t > 1,
replace each anchor o by

m aleaf O

m or a subtree
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Growing process
Settings

Vertex types
e internal node t=2
o anchor (active leaf)
o leaf (dead leaf)

Growing process

m At the beginning (t = 0),
our tree is an anchor o

m At any moment t > 1,
replace each anchor o by

m aleaf O

m or a subtree
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Growing process
Settings

Vertex types
e internal node t=3
o anchor (active leaf)
o leaf (dead leaf)

Growing process

m At the beginning (t = 0),
our tree is an anchor o

m At any moment t > 1,
replace each anchor o by

m aleaf O

m or a subtree
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Settings

Vertex types
e internal node
o anchor (active leaf)
o leaf (dead leaf)

Growing process

m At the beginning (t = 0),
our tree is an anchor o

m At any moment t > 1,
replace each anchor o by

m aleaf O

m or a subtree

Khaydar Nurligareev (with Antoine Genitrini)

Growing binary trees



Settings

Vertex types
e internal node
o anchor (active leaf)
o leaf (dead leaf)

Growing process

m At the beginning (t = 0),
our tree is an anchor o

m At any moment t > 1,
replace each anchor o by

m aleaf O

m or a subtree
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Settings

Vertex types
e internal node
o anchor (active leaf)
o leaf (dead leaf)

Growing process

m At the beginning (t = 0),
our tree is an anchor o

m At any moment t > 1,
replace each anchor o by

m aleaf O

m or a subtree

Studied objects: active trees (i.e. trees that have anchors)
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Generating functions

Counting

tn,m = {active trees with n internal nodes m anchors}

AT AN

t()’l =1 t172 =1 t2’2 =2 t374 =1
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Generating functions

Counting

tn,m = {active trees with n internal nodes m anchors}

AN

tog =1 tip = thp =2 t34=1
. . o0 oo
Marking variables: T(x,2) = Z Z t.m X 2"
m x marks anchors n=0 m=1
m z marks internal nodes T(x,2) = x + x’z+2x°2> + ...
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Generating functions

Equation

m Growing process replacement:
o — O o — /H\
x—1 X — zx°
m Equation:

T(x,z) =x+ T(1+2x%,2z) — T(1,2)
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Generating functions

Equation

m Growing process replacement:
o — O o — /H\
x—1 X — zx°
m Equation:

T(x,2) =x+T(1+2x%z2) - C(2)

m C, are Catalan numbers e
5 E tn,m = Ln
m C(z) =1+ zC*(2) 1
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Generating functions

Equation

m Growing process replacement:
o — O o — /H\
x—1 X — zx°
m Equation:

T(x,2) =x+T(1+2x%z2) - C(2)

m C, are Catalan numbers e
5 E tn,m = Ln
m C(z) =1+ zC*(2) 1

m Recurrent relation (n, k > 0):

[ee]
m
thok—1 =0 and thok = Z <k> th—k,m
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Generating functions

Recurrent relations

o
2
m Exact: thok = Z ( /T) th—k,2m (n > 0)
m=[k/2]
+ + +
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Generating functions

Recurrent relations

[e.9]

2
m Exact: thok = Z ( /T) th—k,2m (n > 0)

m=[k/2]

r
tn,2k > 2 Z Cmtn—m—1,2k (n > I’)

m=0
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Generating functions

Mandelbrot Polynomials

m Define
pO(XaZ):Xy Pn—&-l(xaz):l'f'ZP%(Xaz)
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Generating functions

Mandelbrot Polynomials

m Define
po(X,Z):X, Pn—&-l(Xaz):l'f'ZP%(Xaz)

m pp(x, z) counts binary trees:

m of height at most n,
m anchors are at level n,
m leaves are at levels k < n

AN Y

pa(x,z) = 14+ z +2x?2% + x*z
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Generating functions

Mandelbrot Polynomials

m Define
po(X,Z):X, Pn—&-l(Xaz):l'f'ZP%(Xaz)

m pp(x, z) counts binary trees:

m of height at most n, for k < n:
m anchors are at level n, [z¥1pn(x, z) = Ck
m leaves are at levels kK < n

AT

pa(x,z) = 14+ z +2x%2% + x*28
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Generating functions

Mandelbrot Polynomials

m Define
po(X,Z):X, Pn—&-l(Xaz):l'f'ZP%(Xaz)

® pp(x, z) counts binary trees:

m of height at most n, for k < n:
m anchors are at level n, [z¥1pn(x, z) = Ck
m leaves are at levels k < n

m Define
Gn(x: 2) = 2pa(, 2)

® gn(1,z) are known as Mandelbrot Polynomials
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Generating functions

Mandelbrot Polynomials
m Define
po(X,Z):X, Pn—&-l(Xaz):l'f'ZP%(Xaz)

® pp(x, z) counts binary trees:

m of height at most n, for k < n:
m anchors are at level n, [z¥1pn(x, z) = Ck
m leaves are at levels k < n

m Define
Gn(x: 2) = 2pa(, 2)

® gn(1,z) are known as Mandelbrot Polynomials

m Corollary: for k < n, [z257Yqn(1,2) = Ck
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Generating functions

Cumulative value of anchors

m Denote

T(x,z) = ?))7<-(X’ z)

m Equation: B B
T(x,2z) =14 2xzT(1 + 2x?, 2)
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Generating functions

Cumulative value of anchors

m Denote oT
T’(x, z) = a(x,z)
m Equation: B B
T(x,2z) =14 2xzT(1 + 2x?, 2)
m Relation:

o0 k—1
T(x,z)=1+ Z(Zz)k H pe(x, 2)
k=1 (=0
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Generating functions

Cumulative value of anchors

m Denote oT
T’(x, z) = a(x,z)
m Equation: B B
T(x,2z) =14 2xzT(1 + 2x?, 2)
m Relation:

o0 k—1
T(x,z) =1+ Z(Zz)k H pe(x, 2)
k=1 £=0
m In terms of Mandelbrot polynomials:

o0
Zthm,,z —l—i-ZZquglz
k=1 ¢=0

n=0 m=1
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Anchor distributions

Small values of t, 2«

n |1 23 4 5 6 7 8 9 10

tha |1 2 4 12 32 104 328 1080 3648 12544

the [0 0 1 2 10 24 92 308 1028 3584

the [0 0 O O 0O 4 8 40 176 584

thg |00 0O 0 0 0 1 2 10 8

th10|/0 0 0 0O 0O 0 0 0 0 0

n | 11 12 13 14 15 16

tho | 43600 153504 546272 1960368 7085456 25773296
ta | 12736 45160 161152 581632 2114504 7727656
te | 2144 8192 30720 112496 416528 1553776
thg | 282 1048 4368 18224 69676 265220
thio | 24 104 352 1616 8208 34704
thiz| O 4 36 96 456 2936
thia| O 0 0 8 16 80
tais| O 0 0 0 1 2
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Anchor distributions

Anchor distributions

n |1 2 3 4 5 6 7 8 9 10 11
tho |1 2 4 12 32 104 328 1080 3648 12544 43600
tha |O 0O 1 2 10 24 92 308 1028 3584 12736
the |0 O O 0 0 4 8 40 176 584 2144
thge |0 0O 0O 0O 0 O 1 2 10 84 282
thio|0 0O 0 0O O O 0 0 0 0 24
thbi2{0 0 0 0 0 O 0 0 0 0 0
C, |1 2 5 14 42 132 429 1430 4862 16796 58786

It looks like eventually

"2 is decreasing n 2
G, ' Cn

and there are some limits.

is increasing for k > 1,
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Anchor distributions

Proportions of the first three lines

P

el~

S~ i

0g0000

1 100 n

Coo 9
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Anchor distributions

Proportions of the first three lines

P
l ® ®Ceceeqs,
10 5
8
2 | .
9 ® .
1 1
18 T 16
1 100 n
. . tho 5 . tha 1 L tn6 1
Proposition:  liminf -2 > =: liminf > —: liminf =— > —
Troposition: - I, T8 how G, © 16 nhee G, © 256
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Anchor distributions

Simple lower bound for t, >

The proportion of trees with two anchors satisfies

. ..t 1
lim inf —22 > —
n—o0 n 2
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Anchor distributions

Simple lower bound for t, >

The proportion of trees with two anchors satisfies

. ..t 1
lim inf —22 > —
n—o0 n 2

thy = 2t 12+ 4th14+6th 16+ 8th-18+...
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Anchor distributions

Simple lower bound for t, >

The proportion of trees with two anchors satisfies

tn,2 2 1
G, ~ 2

lim inf
n—o0o

tho = 2thp_1p+4th_14+6th_16+8th_18+...
> 2th_12+2th14+2th-16 +2th_18+ ...
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Anchor distributions

Simple lower bound for t, >

The proportion of trees with two anchors satisfies

tn,2 2 1
G, ~ 2

lim inf
n—o0o

thpy = 2thp-12+4th-14+6th 16+ 8th-18+ ...
> 2tp12 4+ 2tho14 + 2th16 + 2th_18+ ...
= 2Cn—l
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Anchor distributions

Simple lower bound for t, >

The proportion of trees with two anchors satisfies

. tho 1
9 > —
e, 22
tho = 2thp_1p+4th_14+6th_16+8th_18+...
> 2tp12 4+ 2tho14 + 2th16 + 2th_18+ ...
= 2Ch1
4n t 2C,_ 1
Cn ~ N n,2 > n—1 o=
n3/2\/m Cn Cn 2
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Anchor distributions

Elaborated lower bound for ¢,

The proportion of trees with two anchors satisfies

th2 5
2 —

lim inf
imin C. ~ 8

n—o0

Khaydar Nurligareev (with Antoine Genitrini)

Growing binary trees



Anchor distributions

Elaborated lower bound for ¢,

The proportion of trees with two anchors satisfies

th2 5
2 —

lim inf
imin C. ~ 8

n—o0

tn2 =3Ch-1+ (— tn-12+ th-14+3th16+5th18+...)
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Anchor distributions

Elaborated lower bound for ¢,

The proportion of trees with two anchors satisfies

th2 5
2 —

lim inf
imin C. ~ 8

n—o0

tn2 =3Ch-1+ (— tn-12+ th-14+3th16+5th18+...)

th-12=2Ch—2 + (0ty_22 + 2tn—24 + 4th_26 + 6tn28+...)
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Anchor distributions

Elaborated lower bound for ¢,

The proportion of trees with two anchors satisfies

th2 5
2 —

lim inf
imin C. ~ 8

n—o0

tn2 =3Ch-1+ (— tn-12+ th-14+3th16+5th18+...)

th-12=2Ch—2 + (0ty_22 + 2tn—24 + 4th_26 + 6tn28+...)

tn,2 > 3Cn—l - 2Cn—2

t > 2t = >
n2k = £tn—12k Cn Cn 3
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Anchor distributions

Advanced lower bound for ¢,

m Forany i€ [2,6]:

tna = iCr1—2(i—=2)Coa+ Y ((2k = )tn-1.26 — (2k = 2)(i = 2)tn—2.2%)
k=2
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Anchor distributions

Advanced lower bound for ¢,

m Forany i€ [2,6]:

tna = iCr1—2(i—=2)Coa+ Y ((2k = )tn-1.26 — (2k = 2)(i = 2)tn—2.2%)
k=2

m Take i =10/3:
th2 10C,_1 — 8C,_» 4tn_2)4 2 4 3 C,» 2 1 61

c,~ 3C, 3, '3 38 C, T3 3 @
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Anchor distributions

Advanced lower bound for ¢,

m Forany i€ [2,6]:

tna = iCr1—2(i—=2)Coa+ Y ((2k = )tn-1.26 — (2k = 2)(i = 2)tn—2.2%)
k=2

m Take i =10/3:
th2 10C,_1 — 8C,_» 4tn_2)4 2 4 3 C,» 2 1 61

c,~ 3C, 3, '3 38 C, T3 3 @

The proportion of trees with two anchors satisfies

th2 61
Cs 96

liminf
n—o0o
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Anchor distributions

Lower bounds for t, 4

The proportions of trees with four anchors satisfies

tha _ 1 21
i o) miaf 2 5 2

- .
) M= 2 5 e C, ~ 256

n—o0
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Anchor distributions

Lower bounds for t, 4

The proportions of trees with four anchors satisfies

L th.4 1 .. tha 21
— > — > —
LT P e, = 256
tha 1 o= (2K Coo 1
) cn‘cnz<2>t”‘2’2k> G, " 16
k=1
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Anchor distributions

Lower bounds for t, 4

The proportions of trees with four anchors satisfies

L tea 1 o 21

> — > i

3) liminf 2~ > 76 b) "nrgg;f C, ~ 256
tn4 1 > < > Ch_n 1
a = E th— > ~ —
) n n ) n—22k Cn 16

b)

Z‘,,,4 6Cn_2 — 51‘,,_272 C,,_2 15 21
G~ Cn e (6 > 16) 162
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Anchor distributions

Lower bound for t, ¢

The proportion of trees with six anchors satisfies

. . tn6 1
) > _
liminf =~ > 556
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Anchor distributions

Lower bound for t, ¢

The proportion of trees with six anchors satisfies

tn.6 > i
Cn 256

the = 4 t + 0 t + 8 t +
n6 — 3 n—3,4 3 n—3,6 3 n—3,8

liminf
n—oo
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Anchor distributions

Lower bound for t, ¢

The proportion of trees with six anchors satisfies

tn.6 > i
Cn 256

the = 4 t + 0 t + 8 t +
n6 — 3 n—3,4 3 n—3,6 3 n—3,8

fno  ACn-s —4tn-32  4Chs (4 15) 1
Cn Gy Cn 16 162

liminf
n—oo
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Column nonzero values

Column nonzero values

n |12 3 4 5 6 7 8 9 10 11
tho |1 2 4 12 32 104 328 1080 3648 12544 43600
tha |0 0 1 2 10 24 92 308 1028 3584 12736
the |0 O O 0 0 4 8 40 176 584 2144
thge |0 0O 0O 0O 0O O 1 2 10 84 282
thio|0 0O 0 0O O O 0 0 0 0 24
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Column nonzero values

Column nonzero values

n 1 2 3 4 5 6 7 8 9 10 11
tho |1 2 4 12 32 104 328 1080 3648 12544 43600
tha |0 0 1 2 10 24 92 308 1028 3584 12736
the |0 O 0O 0 O 4 8 40 176 584 2144
the |0 0 0 0 O 0 1 2 10 84 282
thio|0 0 0 0 O 0 0 0 0 0 24
m Define ap = max{k: t,ox > 0}

n 1 2 3 4 5 6 7 8 9 10
2, |1 1 2 2 2 3 4 4 4 4
ap+w0| 5 6 6 7 8 8 8 8 8 9
ant+20 | 10 10 11 12 12 12 13 14 14 15
ant+30 | 16 16 16 16 16 16 17 18 18 19
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Column nonzero values

Column nonzero values

n 1 2 3 4 5 6 7 8 9 10 11
tho |1 2 4 12 32 104 328 1080 3648 12544 43600
tha |0 0 1 2 10 24 92 308 1028 3584 12736
the |0 O 0O 0 O 4 8 40 176 584 2144
the |0 0 0 0 O 0 1 2 10 84 282
thio|0 0 0 0 O 0 0 0 0 0 24
m Define ap = max{k: t,ox > 0}

n 2 3 5 6 8 9 10
an 1 2 2 3 4 4 4
dn+10 8 8 8 8 9
ant+20 | 10 10 11 12 12 12 13 14 14 15
ant+30 | 16 16 16 16 16 16 17 18 18 19

m Lemma: The sequence (a,) satisfies

a, = max{k: k < 2a,_«}

31:1,
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Column nonzero values

One property of (a,)

Lemma

The sequence (a,) satisfies

ap =1, ap = max{k: k <2ap_x}
We have ;
X /2m
tn,2k = Z k tn—k,2m
m=[k/2]
and
thok # 0 & dm: k <2m < 2a,_k

Hence,

k <2ap_k
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Column nonzero values

Sequence of repeating elements of (a,)

n |1 2 3 4 5 6 7 8 9 10
a, |1 1 2 2 2 3 4 4 4 4
6 7 8 8 8 8 8 9

antw0 | 5 6
ant+20 |10 10 11 12 12 12 13 14 14 15
17

ant+30 |16 16 16 16 16 16 18 18 19

Define
lp=F#{k: ax = n}
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Column nonzero values

Sequence of repeating elements of (a,)

n |1 2 3 4 5 6 7 8 9 10
a, |1 1 2 2 2 3 4 4 4 4

ant10| 5 6 6 7 8 8 8 8 8 9
10 10 11 12 12 12 13 14 14 15

dn+-20
ant30 | 16 16 16 16 16 16 17 18 18 19
Define
lp=F#{k: ax = n}
We have

((n)=2,3,1,4,1,2,1,5,1,2,1,3,1,2,1,6, 1,2, 1, ...
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Limit forms Conclusion

Anchor distributions Column nonzero values

Growing process Generating functions
g F g

Description of (¢,)

The sequence (¢,) satisfies

p+2 if n= 2P,
p+1 if n=2Pa, aisodd, a>1.

o =
In particular,

m />, = ¢, + 1 for even indices,
m /r,11 = 1 for odd indices greater than 1,

I€1:2.

Induction based on a, = max{k: k < 2a,_x}

Khaydar Nurligareev (with Antoine Genitrini)
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Column nonzero values

Description of (a,)

The sequence (a,) satisfies

an = an—1-a,_; + an—2—a,_,) ag=ar=a =1

m Question. How to explain this recurrence combinatorially?
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Column nonzero values

Description of (a,)

The sequence (a,) satisfies

an = an—1-a,_; + an—2—a,_,) ag=ar=a =1

m Question. How to explain this recurrence combinatorially?

m (ap) is known as a meta-Fibonacci sequence

Corollary (Tanny, 1992)

an 1 00 00
m lim —== B az'=z),
n—oo n n=0 n=0 /=1

(z+2%)

s
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Limit forms

Trees of fixed height

tn ok, = #{active trees with n internal nodes 2k anchors of height h}

A

k
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Trees of fixed height

tn ok, = #{active trees with n internal nodes 2k anchors of height h}
k A
8 |0|0|0|0O|O|O|O|O|O|O|O|O|O|OfL|O
0[{0|0|0O|O|0O|0O|O|O|O|O|O|0O|8|0]|O0
6 |(0/0|/0|0|0[0|0|0|O|0O|0[4]28/0|0|0
0[{0|0|0|0|0|0|0|0]|O0|24 0(0|0]|0
4 |0[{0|0|0|0|0|0|2]|6 |60 0|0(0|0|0
0[{0|{0|0|0|0|8|24/|80 0(0|0|0|0O|0
2 |0|/0|0|0[4(16]|36/60 0[{0(0|0|0|0O|O
0[0|0|8|16/24|24 0[{0|0|0O|O(0O|O]|O .
2 4 6 8 10 12 14 16 n
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Trees of fixed height

tn ok, = #{active trees with n internal nodes 2k anchors of height h}

k A

16

12

4 8 12 16 20 24 28 32 n

Sh = {(n7 k): th2k,h 7& 0}, |Sh| — 2h—2(2h—1 —h+ 2)
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Trees of fixed height

tn ok, = #{active trees with n internal nodes 2k anchors of height h}
k A

32

24

16

8 16 24 32 40 48 56 64 n

Sh = {(n7 k): th2k,h 7& 0}, |Sh| — 2h—2(2h—1 —h+ 2)
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Trees of fixed height

tn ok, = #{active trees with n internal nodes 2k anchors 1
_k
>h—1
1
h— o0 1 2 wir
Sh=1{(n,k): thoxn # 0}, ISk = 2”*2(2/7*1 — h+2)
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Limit forms

Trees of fixed size

thok,n = #{active trees with n internal nodes 2k anchors of height h}

k A

1 ]

1 2 3 4 5 6 7 8 h

S ={(h, k): taown # O}, 1Sl = 27227 — m 4 1)
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Trees of fixed size

thok,n = #{active trees with n internal nodes 2k anchors }
P
8
6
4
2 N

n=2% 2 4 6 8 10 12 14 16 h

§n = {(h7 k) tn,2k,h # 0}’ |§2m| — 2m72(2m —m+ 1)
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Trees of fixed size

thok,n = #{active trees with n internal nodes 2k anchors of height h}
k A

16

12

4 8 12 16 20 24 28 32 h

S, = {(h, k) th,2k,h 750}, |52m| :2m72(2m_m+1)
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Trees of fixed size

thok,n, = #{active trees with n internal nodes 2k anchors of height h}
P
32
24
16
8
H

8 16 24 32 40 48 56 64 h

Sy ={(h,k): thokn # 0},
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Trees of fixed size

tnok,n = F#{active trees with n internal nodes 2k anchors }
A
k
1
2
n— oo % 1 g
So={(h, k) tnin # 0}, |Som| = 2m2(2™ — m + 1)
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Conclusion

Conclusion

Studied objects:
m growing binary trees.

A Related objects:

m Mandelbrot polynomials,
m meta-Fibonacci sequences.

Results:
m relations for generating functions,
m bounds for anchor distributions,
m behavior of the maximal number of anchors,
m limit forms of nonzero domains.

Khaydar Nurligareev (with Antoine Genitrini)

Growing binary trees



Conclusion

Conclusion

Studied objects:
m growing binary trees.

A Related objects:

m Mandelbrot polynomials,
m meta-Fibonacci sequences.

Results:
m relations for generating functions,
m bounds for anchor distributions,
m behavior of the maximal number of anchors,
m limit forms of nonzero domains.

Thank you for your attention!
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