Equipe
CALIN
GDR
CNRS Renormalisation
Bures
sur Yvette, les Jeudi 9 et Vendredi 10 Novembre
2017.
IHES, 35 Route de Chartres 91440 Bures-sur-Yvette, France.
Rencontre organisée par Gérard H.E. DUCHAMP, Maxim KONTSEVITCH, Gleb KOSHEVOY et HOANG NGOC MINH
Combinatorics and Arithmetic for Physics : special days
In order to facilitate discussions a free lunch will be taken on the spot.
Liste des participants/List of participants
(provisoire)
9/11/17 09h00-09h30 |
|
Accueil des participants |
|
09h30-10h30 |
Maxim Kontsevitch |
Multiplication kernels |
About 10 years I proposed an approach to theory of special functions based on a notion of associative commutative integral kernels, associated with integrable systems. It has origins in Langlands correspondence for curves over finite fields, but formulas make sense in any characteristic. All this was done analyzing one specific example related to Heun equation. I'll talk about recent progress in this direction based on interesting manipulations with formal power series. |
10h30-11h00 |
|
pause |
|
11h00-11h45 |
Nicolas Behr |
Combinatorics of chemical reaction systems |
Reporting on recent work with GHE Duchamp and KA Penson, I will present a treatment of the theory of chemical reactions from the viewpoint of so-called stochastic mechanics in the spirit of Doi's formalism. This approach allows to uncover some deep relationships between the combinatorial techniques of boson normal-ordering and the dynamics of chemical reaction networks: each semi-linear reaction type induces an evolution within a space of probability distributions that can be computed explicitly via our techniques. For the interesting remaining types of reactions, some results involving systems of orthogonal polynomials will be presented. (paper) |
11h45-12h30 |
Gérard H.E. Duchamp |
Noncommutative evolution equation |
In this talk, I will show tools and sketch proofs about Noncommutative Evolution Equations (in particular, preparing Hoang Ngoc Minh's talk about associators). Starting from the very simple setting of Noncommutative Formal Power Series with variable coefficients, we can explore in a compact and effective (in the sense of computability) way the Hausdorff group of Lie exponentials in particular the one linked to Hyperlogarithms (and then Polylogarithms) and show some multiplicative renormalisations (as those of Drinfeld). Some parts of this work are connected with Dyson series and take place within the project "Evolution Equations in Combinatorics and Physics". (slides) |
12h30-14h00 |
|
déjeuner |
|
14h00-15h00 |
Gleb Koshevoy |
Combinatorics of canonical bases and superpotentials |
….................. |
15h00-15h30 |
|
pause |
|
15h30-16h30 |
Vladimir Fock |
TBA |
(slides) |
16h30-17h00 |
|
pause |
|
17h00-18h00 |
Dimity Grigoryev |
TBA |
….................. |
10/11/17 |
|
|
|
09h30-10h30 |
Marek Bozejko |
Anyonic Fock spaces, q-CCR relation for complex q in the unit disc and relations with Hecke-Yang-Baxter operators with applications to non-commutative functional analysis |
….................. |
10h30-11h00 |
|
pause |
|
11h00-11h45 |
Karol Penson |
Aerated Poisson Distributions and their Continuous Approximants |
We analyze the properties of combinatorial numbers appearing in the normal ordering of powers of certain differential operators. They are natural generalizations of the conventional Bell numbers. We explicitly construct the solutions of the Stieltjes moment problems with these combinatorial sequences as moments. It turns out that in certain cases one encounters as solutions discrete probability distributions located on lacunary subsets of positive integers. They generalize the standard Poisson laws and are called aerated Poisson distributions. We furnish explicit approximants of the aerated Poisson distributions through continuous positive functions via reparametrization of auxiliary solutions for other generalized Bell numbers. These approximants can be expressed via Meijer's G-functions (joined work with Wlotkowski). (slides) |
h45-12h30 |
Pierre Lairez |
Calcul des périodes : applications aux sommes binomiales et au volume d'ensembles semi-algébriques
|
L'étude des intégrales de fonctions algébriques est très fructueuse en géométrie algébrique, comme l'illustre, par exemple, les travaux d'Euler sur les intégrales elliptiques. Les applications aux calculs effectifs sont moins connues. J'en présenterai quelques unes. Plus précisément, je vais m'intéresser aux « périodes », c'est le résultat de l'intégration sur un cycle d'une fractions rationnelle en plusieurs variables. Je montrerai comment les calculer, sous la forme d'équations différentielles, et j'expliquerai deux applications à des problèmes bien différents : la démonstrations automatiques d'identités entre sommes binomiales et le calcul du volume de certains ensembles semi-algébriques (i.e., définis par un ensemble d'inégalités polynomiales). (slides) |
h30-14h00 |
|
déjeuner |
|
14h00-15h00 |
V. Hoang Ngoc Minh |
On a group of « associators » |
Starting from the equation $KZ_3$ and its differential Galois group, we describe a group of “associators”, containing the unique $\Phi_ {KZ}$ (determined by asymptotic conditions). We also exhibit non trivial examples of “ associator” with rational coefficients. (slides) |
15h00-15h30 |
|
pause |
|
15h30-16h30 |
Leila Schneps |
TBA |
(slides) |
16h30-17h00 |
|
pause |
|
17h00-18h00 |
Pierre Cartier |
TBA |
….................. |
Nicolas Behr (Paris 7), Gourab Bhattacharya (IHES), Marek Bozejko (Wrocław), Pierre Cartier (IHES), Gérard H.E. Duchamp (Paris 13), Vladimir Fock (Strasbourg), Dimity Grigoryev (CNRS-Lille 1), Hoàng Ngoc Minh (Lille2, Paris 13), Maxim Kontsevitch (IHES), Gleb Koshevoy (Poncelet Lab, IHES), Adrian Kosowski (INRIA-Paris 7), Pierre Lairez (INRIA-LIX), Pierre Lockac (CNRS-Paris6), Paul André Méliès (CNRS-Paris 7), Karol Penson (Paris 6), Leila Schneps (CNRS-Paris 6).