An Application of the Universality Theorem for Tverberg Partitions to Data Depth and Hitting Convex Sets

Imre Bárány* Nabil H. Mustafa[†]

Abstract

We show that, as a consequence of a new result of Pór on universal Tverberg partitions, any large-enough set P of points in \mathbb{R}^d has a (d+2)-sized subset whose Radon point has half-space depth at least $c_d \cdot |P|$, where $c_d \in (0,1)$ depends only on d. We then give two applications of this result. The first is to computing weak ϵ -nets by random sampling. The second is to show that given any set P of points in \mathbb{R}^d and a parameter $\epsilon > 0$, there exists a set of $O\left(\epsilon^{-\left\lfloor \frac{d}{2}\right\rfloor+1}\right)$ $\left\lfloor \frac{d}{2}\right\rfloor$ -dimensional simplices (ignoring polylogarithmic factors) spanned by points of P such that they form a transversal for all convex objects containing at least $\epsilon \cdot |P|$ points of P.

Keywords: Tverberg's theorem, Radon's lemma, weak ϵ -nets, half-space depth, transversals.

1 Introduction

Radon's lemma states that, given any set Q of (d+2) points in \mathbb{R}^d , there always exists a partition of Q into two sets, say Q_1 and Q_2 , such that conv $Q_1 \cap \operatorname{conv} Q_2 \neq \emptyset$. Further, if Q is in general position, then a dimension argument implies that such a partition $\{Q_1, Q_2\}$ —called a Radon partition of Q—is unique and conv $Q_1 \cap \operatorname{conv} Q_2$ consists of a single point, called the *Radon point* of Q and denoted by Radon Q.

In this paper we present an application of the following statement, which is one consequence of a recent theorem of Pór (see [3]).

Lemma 1 (Proof in Section Section 2). For every $d \in \mathbb{N}$ there is $f(d) \in \mathbb{N}$ such that every set $P \subset \mathbb{R}^d$ of f(d) points in general position contains two disjoint sets $A, B \subset P$ with |A| = d+2, |B| = d+1 such that the Radon point of A is contained in conv B. Furthermore, the Radon partition of A consists of two sets of sizes $\left|\frac{d}{2}\right| + 1$ and $\left[\frac{d}{2}\right] + 1$.

For some background on Lemma 1, we refer the reader to [4].

We use Lemma 1 to prove the following theorem. Given a set P of points in \mathbb{R}^d , the half-space depth of a point $q \in \mathbb{R}^d$ with respect to P is defined to be the minimum number of points of P contained in any half-space containing q.

^{*}Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences 13 Reáltanoda Street Budapest 1053 Hungary and Department of Mathematics University College London Gower Street, London, WC1E 6BT, UK. barany.imre@renyi.mta.hu.

[†]LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France. mustafan@esiee.fr.

Theorem 2 (Proof in Section 2). For every $d \in \mathbb{N}$ there is $h(d) \in \mathbb{N}$ such that every set P of at least h(d) points in \mathbb{R}^d in general position contains a set $P' \subseteq P$ of size (d+2) with Radon P' being contained in at least $\frac{|P|}{h(d)}$ vertex-disjoint simplices spanned by the points of $P \setminus P'$. In particular, Radon P' has half-space depth at least $\frac{|P|}{h(d)}$ with respect to P.

We expect that Theorem 2 will find further applications in algorithms, discrete and combinatorial geometry and data analysis. Here we give two applications related to the computation of weak ϵ -nets.

Definition 3. Given a set P of points in \mathbb{R}^d and a parameter $\epsilon > 0$, a set $N \subseteq \mathbb{R}^d$ is a weak ϵ -net with respect to convex sets for P if for every convex set K with $|K \cap P| \ge \epsilon \cdot |P|$, we have $K \cap N \ne \emptyset$.

Definition 4. Given positive integers d, p, q with $p \ge q > \lfloor \frac{d}{2} \rfloor$, let CHS(d, p, q) denote the smallest integer such that the following holds. For any compact convex object $K \subseteq \mathbb{R}^d$ and any set $P \subseteq \mathbb{R}^d \setminus K$ of points, if every subset of P of size p has a q-sized subset whose convex hull is disjoint from K, then P can be separated from K with CHS(d, p, q) half-spaces (that is, there exists a set \mathcal{H} of CHS(d, p, q) half-spaces such that $K \subseteq \bigcap_{h \in \mathcal{H}} h$ and $(\bigcap_{h \in \mathcal{H}} h) \cap P = \emptyset$).

It is known that CHS(d, p, q) is finite for large-enough values of q; in fact it is a special case of the more general so-called Hadwiger-Debrunner (p, q) problem for convex sets in \mathbb{R}^d (see [12]). In particular,

1. ([8]) For $p \ge q = d + 1$ we have

$$CHS(d, p, q) = O\left(p^{d^2} \log^{c'd^3 \log d} p\right),\,$$

where c' is an absolute constant.

2. ([12]) For any real $\beta > 0$ and $p \ge q = (1+\beta) \cdot \left\lfloor \frac{d}{2} \right\rfloor$ we have

$$\mathrm{CHS}(d,p,q) = O\left(q^2 p^{1+\frac{1}{\beta}} \log p\right).$$

Theorem 5 states our application of Theorem 2. The proof follows the method of Mustafa and Ray [11]; we present their proof modified appropriately to give a general explicit bound in terms of CHS (d, p, q) and h(d).

Theorem 5 (Proof in Section 3). Let P be a set of n points in \mathbb{R}^d and $\epsilon \in \left[0, \frac{1}{2}\right]$ a given parameter. Further let $q > \left\lfloor \frac{d}{2} \right\rfloor$ be an integer and define $p = q \cdot h(d)$, where h(d) is the function from Theorem 2. Let R be a uniform random sample of P of size

$$\frac{c_2 \cdot d \cdot \text{CHS}(d, p, q) \cdot \log \text{CHS}(d, p, q)}{\epsilon} \log \frac{1}{\epsilon},$$

where c_2 is a large-enough constant independent of d, ϵ and q. Then with probability at least $\frac{9}{10}$, the following holds.

- 1. Let Q be the set of Radon points of all (d+2)-sized subsets of R. Then $Q \cup R$ is a weak ϵ -net for P, of size $O(|R|^{d+2})$.
- 2. Let T be the set of convex-hulls of all $(\lfloor \frac{d}{2} \rfloor + 1)$ -sized subsets of R. Then each convex object containing at least $\epsilon |P|$ points of P intersects at least one element of T. Note that $|T| = O(|R|^{\lfloor \frac{d}{2} \rfloor + 1})$.

In particular, one can set q = (d+1) to get a random sample R satisfying the above, of size

$$|R| = O\left(d \cdot \text{CHS}\left(d, \left(d+1\right) \cdot h\left(d\right), \left(d+1\right)\right) \cdot \log \text{CHS}\left(d, \left(d+1\right) \cdot h\left(d\right), \left(d+1\right)\right) \frac{1}{\epsilon} \log \frac{1}{\epsilon}\right).$$

Remark 1. The first part of Theorem 5 gives a bound on the size of the ϵ -net that is weaker than the current best bound due to Matoušek and Wagner [10], which is of the order of $O\left(\frac{1}{\epsilon^d}\right)$ (ignoring polylogarithmic factors; see also [1, 5]). Yet our construction of a weak ϵ -net is novel and interesting as it uses certain Radon points of the underlying set P. It also shows that one can get close to the best-known bounds by using a single random sample of P.

Remark 2. The existence of weak ϵ -nets of size $o\left(\frac{1}{\epsilon^d}\right)$ is a long-standing open problem, and the case in \mathbb{R}^d has seen no substantial progress since 1995 (recently the bound in two dimensions was improved in [15]). The second part of Theorem 5 shows that it is possible to improve the upper-bound if one is willing to consider hitting with higher-dimensional simplices instead of points.

Remark 3. The function h(d) in Theorem 2 depends on f(d) of Lemma 1, and is unlikely to be near-tight. We leave improving it as an open question; in particular, given $d \in \mathbb{N}$, the determination of the smallest h(d) such that any set P of points in \mathbb{R}^d has a set $Q \subseteq P$ of size d+2 with Radon Q having half-space depth at least $\frac{|P|}{h(d)}$.

2 Proof of Lemma 1 and Theorem 2.

We need some definitions. We set m = (r-1)(d+1)+1, and for $k \in [d+1]$ the block B_k is the set of integers $\{(r-1)(k-1)+1, (r-1)(k-1)+2, \ldots, (r-1)k+1\}$. The blocks are of size r each and they almost form a partition of [m], only neighboring blocks have a common element, namely $(r-1)k+1 \in B_k \cap B_{k+1}$ for all $k \in [d]$. Call an r-partition $\{I_1, \ldots, I_r\}$ of [m] special if $|I_j \cap B_k| = 1$ for every $j \in [r]$ and every $k \in [d+1]$.

Pór's result is about sequences $S=(a_1,\ldots,a_N)$ of vectors in \mathbb{R}^d . A sequence (b_1,\ldots,b_t) is a subsequence of S of length t if $b_j=a_{i_j}$ for all $j\in[t]$ where $1\leq i_1< i_2<\ldots< i_t\leq N$. Given a sequence $S=(a_1,\ldots,a_m),\ a_i\in\mathbb{R}^d$, an r-partition $\{S_1,S_2,\ldots,S_r\}$ of S is in one-to-one correspondence with an r-partition $\{I_i,\ldots,I_r\}$ of [m] via $a_i\in S_j$ if and only if $i\in I_j$. An r-partition of S is called special if the corresponding S-partition of S-partition

Tverberg's theorem states that given a set P of (r-1)(d+1)+1 points in \mathbb{R}^d , there exists a partition of P into r sets whose convex-hulls contain a common point.

We can now state Pór's result [14].

Theorem A (Universality theorem for Tverberg partitions). Assume $d, r, t \in \mathbb{N}$, $r \geq 2$, and $m = (r-1)(d+1) + 1 \leq t$. Then there exists $N = N(d,r,t) \in \mathbb{N}$ such that every sequence $S = (a_1, \ldots, a_N)$ of vectors (in general position) in \mathbb{R}^d contains a subsequence $S' = (b_1, \ldots, b_t)$ (of length t) such that the Tverberg partitions of every subsequence of length m of S' are exactly the special partitions.

Remark. When the points of S (or P) come from the moment curve $\Gamma(x) = \{\gamma(x) : x \in \mathbb{R}^+\}$ where $\gamma(x) = (x, x^2, \dots, x^d)$, then there is a natural ordering $S = (\gamma(x_1), \dots, \gamma(x_n))$ with $x_1 < x_2 < \dots < x_n$. Now let $0 < x_1 < \dots < x_n$ a rapidly increasing sequence of real numbers, meaning that, for every $h \in [n-1]$, x_{h+1}/x_h is at least as large as some (large) constant $c_{d,r,h}$ depending only on d, r, h. It is not hard to check that in this case all Tverberg partitions of all m = (r-1)(d+1)+1 long subsequences of S are the special ones. This (and other examples as well) show that no other set of partitions can be universal, i.e., that exist as Tverberg partitions in a large-enough point set.

We are going to apply the universality theorem in the special case r = 3 and t = m = (r - 1)(d + 1) + 1 = 2d + 3. In this case N(d, r, t) depends on d only and thus we can set f(d) = N(d, r, t) = N(d, 3, 2d + 3).

Proof of Lemma 1. Order the elements of P arbitrarily to obtain a sequence $S = (p_1, \ldots, p_{f(d)})$. Apply Theorem A to S with r = 3, t = m = 2d + 3. We get a subsequence S' of length m all of whose Tverberg 3-partitions are exactly the special ones. Define $I_1 = \{z \in [m] : z \equiv 1 \mod 4\}$ and $I_2 = \{z \in [m] : z \equiv 3 \mod 4\}$ and $I_3 = \{z \in [m] : z \text{ is even}\}$. Note that $|I_1| = \left\lceil \frac{d}{2} \right\rceil + 1$, $|I_2| = \left\lfloor \frac{d}{2} \right\rfloor + 1$ and $|I_3| = d + 1$. See figure for an example with d = 5 (elements of I_1, I_2 and I_3 are depicted with crosses, squares and circles, respectively).

	B_1		B_2			B_3	B_4			B_5	B_6		
	×	0	_	0	×	0		0	×	0	0	0	×

It is easy to see that $\{I_1, I_2, I_3\}$ is a special partition of [m]: every block contains exactly one element of I_1, I_2, I_3 . Let the corresponding partition of S' be $\{S_1, S_2, S_3\}$. Theorem A implies that $\bigcap_{1}^{3} \operatorname{conv} S_i \neq \emptyset$. Set $A = S_1 \cup S_2$ and $B = S_3$. Then the Radon point of A, which is $\operatorname{conv} S_1 \cap \operatorname{conv} S_2$, is contained in $\operatorname{conv} B$.

Proof of Theorem 2. Consider a (2d+3)-uniform hypergraph $\mathcal{H}=(P,E)$ on the vertex set P, where $e \in E$ if and only if the (2d+3) points of e can be partitioned into two sets $e=e_1 \cup e_2$ such that $|e_1|=d+2$, and Radon $e_1 \in \text{conv } e_2$. We will call the set e_1 the Radon-base of the edge e. By the result of de Caen [7], any r-uniform hypergraph on n vertices and m edges contains an independent set of size at least

$$\frac{r-1}{r^{\frac{r}{r-1}}} \cdot \frac{n^{\frac{r}{r-1}}}{m^{\frac{1}{r-1}}}.$$

On the other hand, Lemma 1 implies that any set Q of f(d) points of P must contain two disjoint sets— $A_Q \subseteq Q$ of size (d+2) and $B_Q \subseteq Q$ of size (d+1)—such that Radon $A_Q \in \text{conv } B_Q$. Then the (2d+3) points $A_Q \cup B_Q$ form an edge in \mathcal{H} . This implies that no subset of P of size f(d) can be independent in \mathcal{H} . Thus, with r = 2d+3, we have

$$\frac{2d+2}{(2d+3)^{\frac{2d+3}{2d+2}}} \cdot \frac{|P|^{\frac{2d+3}{2d+2}}}{|E|^{\frac{1}{2d+2}}} \le \text{ size of max. ind. set in } \mathcal{H} < f(d) \implies |E| \ge \frac{|P|^{2d+3}}{2(2d+3)f(d)^{2d+2}}.$$

By the pigeonhole principle, there exists a (d+2)-sized set $P' \subseteq P$ that is the Radon-base of a set E' of edges of E, where

$$|E'| \ge \frac{|E|}{\binom{|P|}{d+2}} \ge \frac{\frac{|P|^{2d+3}}{2(2d+3)f(d)^{2d+2}}}{\binom{|P|}{d+2}}.$$

The (d+1)-uniform hypergraph consisting of the sets $E'' = \{e' \setminus P' : e' \in E'\}$ has the property that the convex hull of the elements of each set contains Radon P'. It suffices to show that it contains a matching of size $\Omega(|P|)$ —and this follows from known lower-bounds on matchings in uniform hypergraphs (see [2]). For simplicity, we instead present a direct argument, though with worse constants.

Iteratively construct a matching by adding a (d+1)-sized set from E'' to the matching, and deleting all sets from E'' whose intersection with this added set is non-empty. Each set added to the matching can cause the deletion of at most $(d+1) \cdot \binom{|P|}{d}$ sets of E'', as a vertex of $P \setminus P'$ can belong to at most $\binom{n}{d}$ sets of E'' (each set in E'' has size (d+1)). The size of the final matching is the number of iterations, which, by the above discussion, is lower-bounded by

$$\frac{\frac{|P|^{2d+3}}{2(2d+3)f(d)^{2d+2}}}{\binom{|P|}{d+2}} / \binom{|P|}{d} (d+1).$$

A calculation then shows that

$$\frac{\frac{|P|^{2d+3}}{2(2d+3)f(d)^{2d+2}}}{\binom{|P|}{d+2}} \left/ \binom{|P|}{d}(d+1) \ge \frac{|P|}{h(d)}, \quad \text{where } h(d) = \frac{2(2d+3)(d+1)f(d)^{2d+2}}{(d+2)!d!}.$$

3 Proof of Theorem 5

Proof of Theorem 5. Consider the system system induced on P by the intersection of CHS (d, p, q) half-spaces in \mathbb{R}^d . It has VC-dimension Θ $(d \cdot \text{CHS}(d, p, q) \cdot \log \text{CHS}(d, p, q))$ [6] and so the ϵ -net theorem ([9]; see also [13]) implies that R is an ϵ -net for this set system with probability at least $\frac{9}{10}$. Assume this is the case and let K be any convex set containing at least $\epsilon |P|$ points of P.

Claim 6. There exists $R_K \subseteq R$ of size p such that the convex hull of every subset of R_K of size q intersects K.

Proof. If for every subset of R of size p there exists a q-sized subset whose convex hull is *disjoint* from K, then by the definition of CHS (d, p, q), all points of R can be separated from K by a set \mathcal{H} of CHS (d, p, q) half-spaces. The common intersection of these half-spaces contains K and hence at least $\epsilon |P|$ points of P and no point of R, a contradiction to the assumption that R is an ϵ -net for the set system induced on P by the intersection of CHS (d, p, q) half-spaces.

By Theorem 2, R_K has a (d+2)-sized subset, say R'_K , such that Radon $R'_K \in Q$ is contained in at least $\frac{|R_K|}{h(d)}$ vertex-disjoint simplices spanned by points of $R_K \setminus R'_K$. Now Radon R'_K must lie inside K: otherwise the half-space separating it from K must contain at least one point from each simplex

containing Radon R'_K —namely it must contain at least $\frac{|R_K|}{h(d)} = \frac{p}{h(d)} = q$ points of R_K . But then the convex hull of these q points does not intersect K, a contradiction to Claim 6. Thus $R \cup Q$ is a weak ϵ -net for P.

The proof of 2. follows from the fact that one of the two Radon partitions of R'_K has size at most $\left|\frac{d}{2}\right| + 1$, and its convex-hull must intersect K.

This completes the proof. \Box

Acknowledgements. We thank the reviewers whose insightful comments improved the content and presentation of this paper. The first author was supported by the Hungarian National Research, Development and Innovation Office NKFIH Grants K 111827 and K 116769. The second author was supported by the grant ANR grant ADDS (ANR-19-CE48-0005).

References

- [1] N. Alon, I. Bárány, Z. Füredi, and D. J. Kleitman. Point selections and weak ϵ -nets for convex hulls. Combinatorics, Probability & Computing, 1:189–200, 1992.
- [2] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński, and B. Sudakov. Large matchings in uniform hypergraphs and the conjectures of Erdős and Samuels. *Journal of Combinatorial Theory, Series A*, 119(6):1200–1215, 2012.
- [3] I. Bárány and P. Soberón. Tverberg's theorem is 50 years old: a survey. *Bull. Amer. Math. Soc.*, 55:459–492, 2018.
- [4] B. Bukh and J. Matoušek. Erdős-Szekeres-type statements: Ramsey function and decidability in dimension 1. *Duke Mathematical Journal*, 163:2243–2270, 2014.
- [5] B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, M. Sharir, and E. Welzl. Improved bounds on weak epsilon-nets for convex sets. *Discrete & Computational Geometry*, 13:1–15, 1995.
- [6] M. Csikós, N. H. Mustafa, and A. Kupavskii. Tight lower bounds on the VC-dimension of geometric set systems. *Journal of Machine Learning Research*, 20(81):1–8, 2019.
- [7] D. de Caen. Extension of a theorem of Moon and Moser on complete subgraphs. Ars Combin., 16:5–10, 1983.
- [8] C. Keller, S. Smorodinsky, and G. Tardos. Improved bounds on the Hadwiger–Debrunner numbers. *Israel Journal of Mathematics*, 225(2):925–945, Apr 2018.
- [9] J. Komlós, J. Pach, and G. J. Woeginger. Almost tight bounds for epsilon-nets. *Discrete & Computational Geometry*, 7:163–173, 1992.
- [10] J. Matoušek and U. Wagner. New constructions of weak epsilon-nets. *Discrete & Computational Geometry*, 32(2):195–206, 2004.
- [11] N. H. Mustafa and S. Ray. Weak ϵ -nets have a basis of size $O(1/\epsilon \log 1/\epsilon)$. Comp. Geom: Theory and Appl., 40(1):84–91, 2008.

- [12] N. H. Mustafa and S. Ray. On a problem of Danzer. *Combinatorics, Probability and Computing*, page 110, 2018.
- [13] N. H. Mustafa and K. Varadarajan. Epsilon-approximations and epsilon-nets. In J. E. Goodman, J. O'Rourke, and C. D. Tóth, editors, *Handbook of Discrete and Computational Geometry*, pages 1241–1268. CRC Press LLC, 2017.
- [14] A. Pór. Universality of vector sequences and universality of Tverberg partitions. arXiv:1805.07197, 2018.
- [15] N. Rubin. An improved bound for weak epsilon-nets in the plane. In *Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS)*, pages 224–235, 2018.