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Abstract

The fundamental result of Li, Long, and Srinivasan [LLS01] on approximations of set systems has
become a key tool across several communities such as learning theory, algorithms, computational
geometry, combinatorics, and data analysis.

The goal of this paper is to give a modular, self-contained, intuitive proof of this result for finite
set systems. The only ingredient we assume is the standard Chernoff’s concentration bound. This
makes the proof accessible to a wider audience, readers not familiar with techniques from statistical
learning theory, and makes it possible to be covered in a single self-contained lecture in a geometry,
algorithms or combinatorics course.
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1 Introduction

Given a finite set system (X,F), our goal is to construct a small set A ⊆ X such that each set of
F is ‘well-approximated’ by A. Research on such approximations started in the 1950s, with random
sampling being the key tool for showing their existence. A breakthrough in the study of approximations
dates back to 1971 when Vapnik and Chervonenkis studied set systems with finite VC-dimension [VC71].
The VC-dimension of (X,F), denoted by VC-dim(X,F), is the size of the largest Y ⊆ X for which
F|Y = 2Y , where F|Y = {Y ∩ S : S ∈ F}. Since then, the notion of approximations has become a funda-
mental structure across several communities—learning theory, statistics, combinatorics and algorithms
(see [Mus22]).

Relative (ε, δ)-approximations. Given a set system (X,F) with n = |X| and parameters 0 < ε, δ < 1,
a set A of size t is a relative (ε, δ)-approximation for (X,F) if for all S ∈ F ,∣∣∣∣ |S|n − |A ∩ S|t

∣∣∣∣ ≤ δ ·max

{
|S|
n
, ε

}
, or equivalently, |A ∩ S| = |S| t

n
± δtmax

{
|S|
n
, ε

}
.

In this paper, we study guarantees for relative (ε, δ)-approximations obtained by random sampling. In
particular, given a set X we say that A is a uniform random sample of X of size t if A is selected
uniformly at random from the

(
n
t

)
subsets of X of size t.
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A basic guarantee follows immediately from Chernoff’s bound (for completeness, we give the standard
proof in the Appendix).

Theorem A. Let X be a set of n elements and A be a uniform random sample of X of size t. Then for
any S ⊆ X and η > 0,

P
[
|A ∩ S| /∈

(
|S|t
n
− η, |S|t

n
+ η

)]
≤ 2 exp

(
− η2n

2|S|t+ ηn

)
.

In particular, setting η = δtmax
{
|S|
n , ε

}
, a uniform random sample A of size t fails to be a relative

(ε, δ)-approximation for a fixed S ∈ F with probability at most 2 exp
(
− εδ

2 t
3

)
.

Theorem A in conjunction with the union bound gives the following upper-bound on relative (ε, δ)-
approximation sizes for any finite set system (the detailed proof is presented in the Appendix).

Theorem 1. Let (X,F) be a finite set system and 0 < ε, δ, γ < 1 be given parameters. Then for any

integer t ≥ 3
εδ2 ln 2|F|

γ , a uniform random sample A ⊆ X of size t is a relative (ε, δ)-approximation for
F with probability at least 1− γ.

This paper addresses the following influential result of Li, Long, and Srinivasan [LLS01], described as
‘the pinnacle of a long sequence of papers’ in [HP11, Section 7.4].1

Theorem 2 ([LLS01]). There exists an absolute constant c such that the following holds. Let (X,F) be

a set system such that |F|Y | ≤ (e|Y |/d)
d

for all Y ⊆ X with |Y | ≥ d, and let 0 < δ, ε, γ < 1/2 be given
parameters. Then for any integer

t ≥ c

εδ2
·
(
d ln

1

ε
+ ln

1

γ

)
,

a uniform random sample A ⊆ X of size t is a relative (ε, δ)-approximation for (X,F) with probability
at least 1− γ.

Remarks.

1. Note that by the Sauer-Shelah lemma, VC-dim (X,F) ≤ d implies that |F|Y | ≤ (e|Y |/d)
d

for
any Y ⊆ X (see e.g., [Mat02, Lemma 10.2.5]). Thus, Theorem 2 also applies to set systems with
VC-dim (X,F) ≤ d.

2. This bound is asymptotically tight [LLS01] and immediately implies many other approximation
bounds such as ε-approximations (Vapnik and Chervonenkis [VC71], Talagrand [Tal94]), sensitive
ε-approximations (Brönnimann et al. [BCM93]), and ε-nets (Haussler and Welzl [HW87], Komlós
et al. [KPW92]).

The original proof of Theorem 2 uses two techniques:

Symmetrization. To prove that a random sample A satisfies the required properties, one takes another
random sample G, sometimes called a ‘ghost sample’. Properties of A are then proven by comparing
it with G. Note that G is not used in the algorithm or its construction—it is solely a method of
analysis, a ‘thought experiment’ of sorts.

Chaining. The idea is to analyze the interaction of the sets in F with a random sample by partitioning
each S ∈ F into a logarithmic number of smaller sets, each belonging to a distinct ‘level’. The
number of sets increase with increasing level while the size of each set decreases. The overall sum
turns out to be a geometric series, which then gives the optimal bounds [KT59, Tal16].

1The original result was stated using the notion of (ε, δ)-samples, but they are asymptotically equivalent: an (ε, δ)-sample
is a relative (ε, 4δ)-approximation and a relative (ε, δ)-approximation is an (ε, δ)-sample; see [HS11].



What makes the proof of Theorem 2 in [LLS01] difficult is that it combines chaining and symmetrization
intricately. All the tail bounds are stated in their ‘symmetrized’ forms and symmetrization is carried
through the entire proof. It is not an easy proof to explain to undergraduate or even graduate students in
computer science, as it is difficult to see what is really going on in terms of the significance and intuition of
these two ideas. In fact, even the proofs of simpler statements involving just symmetrization, as given in
textbooks2—e.g., see [KV94, DGL96, Mat99, Cha00, Mat02, AB09, HP11, AS12, Mus22]—often come
with the caveat that the idea is ingenious but difficult to understand intuitively (e.g., “one might be
tempted to believe that it works by some magic” [Mat02, Section 10.2]).

Our Results.

This work is an attempt to improve this state of affairs. We show that in fact one can separate the
roles of chaining and symmetrization, giving two separate statements which together immediately imply
Theorem 2. The role of symmetrization is to get a bound on relative (ε, δ)-approximations that is
independent of |F| (but contains an additional factor of log 1

δ ):

Theorem 3. There exists an absolute constant c1 such that the following holds. Let (X,F) be a

set system such that |F|Y | ≤ (e|Y |/d)
d

for all Y ⊆ X, |Y | ≥ d, and let 0 < δ, ε, γ < 1/2 be given
parameters. Then for any integer

t ≥ c1
εδ2
·
(
d ln

1

εδ
+ ln

1

γ

)
,

a uniform random sample A ⊆ X of size t is a relative (ε, δ)-approximation for (X,F) with probability
at least 1− γ.

Remark. The proof of Theorem 3 is standard using symmetrization. For completeness, we present a
different, folklore proof at the end of the paper (Section 3), which in fact shows that symmetrization is
not really necessary for finite set systems3 and can be replaced by a more intuitive argument that makes
it obvious, pedagogically, why the bound is independent of |F|.

On the other hand, the role of chaining is to get rid of logarithmic factors that arise when applying
union bound, by more carefully analyzing the failure probability for a collection of events. The key
observation is that Theorem A provides a bound on the probability of failure for a set S ∈ F which
decreases as the size of S decreases. One can take advantage of this by partitioning each S ∈ F into a
logarithmic number of smaller sets, each belonging to a distinct level, such that the levels strike a proper
balance—the number of sets (arising from partitioning every S ∈ F) increase each level, but their size
across levels decreases geometrically. This way one gets an improved bound by applying the union bound
separately to sets of different levels.

The resulting bound is captured in the next statement (it removes the factor of log 1
δ , but depends on

|F|):

Theorem 4. There exists an absolute constant c2 such that the following holds. Let (X,F) be a

set system such that |F|Y | ≤ (e|Y |/d)
d

for all Y ⊆ X, |Y | ≥ d, and let 0 < δ, ε, γ < 1/2 be given
parameters. Then for any integer

t ≥ c2 max

{
1

εδ
ln
|F|
γ
,

1

εδ2
ln

(
1

εdγ

)}
,

a uniform random sample A ⊆ X of size t is a relative (ε, δ)-approximation for (X,F) with probability
at least 1− γ.

2Also used in teaching; to pick two arbitrary examples, see here for an example from the perspective of statistics/learning
and here from the algorithmic side.

3This is typically the case in its use in algorithms, computational geometry, combinatorics. The infinite case can usually
be reduced to the finite case by a sufficiently fine grid, see [MWW93].

https://web.stanford.edu/class/cs229t/2015
https://www.ti.inf.ethz.ch/ew/courses/CG12/index.html


The proof of Theorem 4 is given in Section 2.

The above two statements immediately imply a proof of Theorem 2: given (X,F), apply Theorem 3 to

get a set A1 ⊆ X of size O
(

1
εδ2 ln 1

εdδdγ

)
, which is a relative (ε, δ3 )-approximation of F with probability

at least 1− γ
2 . Now apply Theorem 4 to F|A1

to get A2 ⊆ A1 of size

O

max

 1

εδ
ln

(
e

dεδ2 ln 1
εdδdγ

)d
γ

,
1

εδ2
ln

(
1

εdγ

)
 = O

(
1

εδ2
·
(
d ln

1

ε
+ ln

1

γ

))
,

which is a relative (ε, δ3 )-approximation of F|A1
with probability at least 1 − γ

2 . Thus A2 is a relative
(ε, δ)-approximation of F of the required size with probability at least 1− γ.

2 Proof of Theorem 4

Let n = |X| and t = |A|. We use the following consequence of Theorem 3 (better bounds exist [Hau95,
Mus16]; however the one derived below suffices for our needs):

Lemma 5. There is an absolute constant c3 such that the following holds. Let α ≥ 2 and let P ⊆ F
be an α-packing of F ; that is, for any S, S′ ∈ P, the symmetric difference of S and S′, denoted by

∆(S, S′), has size at least α. Then |P| ≤
(
c3n
α

)2d
.

Proof. Let G = {∆ (S, S′) : S, S′ ∈ P}. By Theorem 3 there exists a relative (αn ,
1
2 )-approximation

A′ for G of size

|A′| = c1
α
n ·

1
4

(
d ln

2n

α
+ ln

2n

α

)
≤ 8c1dn

α
· ln 2n

α
≤ 8c1dn

2

α2
,

where we set γ = α
2n (note that we could set any positive value for γ as we only use the existence of

such approximations). Then for any S, S′ ∈ P, we get

|∆ (S, S′) ∩A′| ≥ |∆ (S, S′)| |A′|
n

− |A
′|

2
·max

{
|∆ (S, S′)|

n
,
α

n

}
=

1

2
· |∆ (S, S′)| |A′|

n
> 0.

This implies that A′ ∩ S 6= A′ ∩ S′ for any S, S′ ∈ P, and so we have that |P| = |P|A′ |. Finally,

we use that P ⊂ F and thus |P| = |P|A′ | ≤ |F|A′ | ≤
(

8ec1n
2

α2

)d
=
(√

8ec1n
α

)2d
. Setting c3 =

√
8ec1

concludes the proof.

Set k =
⌈
log 1

δ

⌉
and for i ∈ [0, k], let Pi be a maximal εn

2i -packing of F and set Pk+1 = F . For any
S ∈ Pi+1 \ Pi there exists a set FS ∈ Pi such that |∆(S, FS)| < εn

2i . Define

Ai = {S \ FS : S ∈ Pi+1 \ Pi} and Bi = {FS \ S : S ∈ Pi+1 \ Pi} .

Lemma 5 implies that

|Ai|, |Bi| ≤ |Pi+1| ≤
(
c3 · 2i

ε

)2d

.

Claim 6. Let εi =
√

(i+ 1)/2i ε. With probability 1− γ, A is simultaneously

(i) a relative (ε, δ)-approximation for Ak ∪ Bk, and

(ii) a relative (εi, δ)-approximation for Ai ∪ Bi for all i ∈ [0, k − 1], and

(iii) a relative (ε, δ)-approximation for P0.



Proof. (i) Each set in Ak ∪ Bk has size less than εn
2k
≤ εnδ ≤ εn. Therefore, we apply Theorem A with

η = δtε and take the union bound over |Ak ∪ Bk| ≤ 2|F| sets which gives that for a large-enough value
of c2, A fails to be an (ε, δ)-approximation for Ak ∪ Bk with probability at most

2|F| · 2 exp

(
− δ2t2ε2 · n

2εnδ · t+ δtε · n

)
= 2|F| · 2 exp

(
−δεt

3

)
≤ γ

3
.

(ii) For a fixed S ∈ Ai ∪ Bi, we have |S| ≤ εn
2i ≤ εin. Thus, applying Theorem A with η = δtεi implies

that the probability of failure for a fixed set S ∈ Ai ∪ Bi is at most

2 exp

(
− δ2t2ε2in

2|S|t+δεitn

)
≤ 2 exp

(
− δ2tε2(i+1)/2i

2ε/2i+δε
√

(i+1)/2i

)
≤ 2 exp

(
−εδ

2t(i+1)

4

)
.

Hence, by the union bound, the overall probability of failure is at most

k−1∑
i=0

|Ai ∪ Bi| · 2 exp

(
−εδ

2t(i+1)

4

)
≤
k−1∑
i=0

2

(
c3 · 2i

ε

)2d

2
(
εdγ
)c2(i+1)/4 ≤ γ

k−1∑
i=0

4
(
c3 · 2i−1

)2d
2(d+1)c2(i+1)/4

≤ γ
∞∑
i=1

1

5i
≤ γ

3
,

for c2 = 8 log2 c3 + 18 ≥ 8
(

log2 c3 + log2(5)
2d+2 + 1

)
.

(iii) Since |P0| ≤
(
c3
ε

)2d
, Theorem 1 implies that this failure probability is at most γ

3 if t ≥ 3
εδ2 ln 2(c3/ε)

2d

γ/3 .

Observe that for any set S ∈ F , there exists a set Sk ∈ Pk, with Ak = S \Sk ∈ Ak and Bk = Sk \S ∈ Bk,
such that S = (Sk \Bk) ∪ Ak. Similarly, one can express Sk in terms of Sk−1 ∈ Pk−1, Ak−1 ∈ Ak−1,
Bk−1 ∈ Bk−1 and so on until we reach S0 ∈ P0. Thus using Claim 6, with probability at least 1− γ,∣∣∣∣ |S|n − |A ∩ S|t

∣∣∣∣ =

∣∣∣∣ |Sk|n − |Bk|
n

+
|Ak|
n
−
(
|A ∩ Sk|

t
− |A ∩Bk|

t
+
|A ∩Ak|

t

)∣∣∣∣
(i)

≤
∣∣∣∣ |Sk|n − |A ∩ Sk|

t

∣∣∣∣+ δmax

{
ε,
|Ak|
n

}
+ δmax

{
ε,
|Bk|
n

}
=

∣∣∣∣ |Sk|n − |A ∩ Sk|
t

∣∣∣∣+ 2δε ≤ · · ·

(ii)

≤
∣∣∣∣ |S0|
n
− |A ∩ S0|

t

∣∣∣∣+ 2δ

k−1∑
j=0

εj + 2δε

(iii)

≤ δmax

{
ε,
|S0|
n

}
+ 14δε ≤ δ |S|

n
+ 16δε ≤ 2δmax

{
|S|
n
, 16ε

}
,

where the second-last step uses the fact that |S0| ≤ |S|+
k∑
j=0

|Bi| ≤ |S|+
∞∑
j=0

εn
2j ≤ |S|+ 2εn.

Therefore, A is a relative (16ε, 2δ)-approximation of F with probability at least 1 − γ. Repeating the
same arguments with δ′ = δ/2 and ε′ = ε/16, we get a relative (ε, δ)-approximation of F , as required.

3 Proof of Theorem 3

The proof uses an argument similar to the discrepancy-based argument used for ε-approximations [MWW93],
though it is somewhat simpler as it does not need discrepancy, and it applies to the more general notion
of a relative (ε, δ)-approximation.

To see the intuition, observe that since |F| ≤ (e|X|/d)d, the bound of Theorem 1 depends only on
|X|—in particular that a random sample A1 ⊆ X of size O

(
1
εδ2 ln |X|d

)
= O

(
d
εδ2 ln |X|

)
is a relative

(ε, δ)-approximation. The size of A1 is much smaller than that of X and so applying Theorem 1 again
to F|A1

gives a relative (ε, δ)-approximation A2 ⊆ A1 for F|A1
, with

|A2| = O

(
1

εδ2
ln |A1|d

)
= O

(
d

εδ2
ln

(
d

εδ2
ln |X|

))
= O

(
d

εδ2
ln

d

εδ
+

d

εδ2
ln ln |X|

)
.



The size of A2 is again much smaller than that of A1. Furthermore, it follows immediately from the
definition of relative (ε, δ)-approximations that A2 is a relative (ε, 3δ)-approximation for F . With each
successive application of Theorem 1, the size of the set decreases rapidly, while the error of approximation
increases only linearly, giving the required bound that is independent of |F|.

Now we turn to the formal proof of Theorem 3. Let T (ε, δ, γ) be the smallest integer such that a uniform
random sample of size at least T (ε, δ, γ) from X is a relative (ε, δ)-approximation for F with probability

at least 1− γ. Further define δ0 = 0 and δi = 3i−1√
|X|

for i = 1, . . . ,
⌈
1
2 log3(

√
|X|)

⌉
+ 1. We prove that for

all i, for all ε, γ ∈ (0, 1/2) and for all δ ∈ (δi−1, δi], it holds that T (ε, δ, γ) ≤ c1
εδ2 ·

(
d ln 1

εδ + ln 1
γ

)
, which

is equivalent to the desired statement. The proof is by induction on i.
Base case (i = 1): When δ ∈ (0, δ0], we have |X| ≤ 1

δ2 and thus T (ε, δ, γ) is upper-bounded as required
for any ε, γ ∈ (0, 1/2).
Inductive hypothesis (j ≤ i): Assume that the statement holds for all j ≤ i, that is, for any δ ∈ (0, δi]

and ε, γ ∈ (0, 1/2), we have T (ε, δ, γ) ≤ c1
εδ2 ·

(
d ln 1

εδ + ln 1
γ

)
.

Inductive step (i → i + 1): Let δ ∈ (δi, δi+1]. Since δ
3 ∈ (0, δi], the inductive hypothesis gives that a

random sample A′ ⊆ X of size T
(
ε, δ3 ,

γ
2

)
≤ 9c1

εδ2 ·
(
d ln 3

εδ + ln 2
γ

)
, is a relative

(
ε, δ3
)
-approximation for

F with probability at least 1− γ
2 . By Theorem 1, a uniform random sample A of A′ of size

3

ε(δ/3)2
ln

2 |F|A′ |
(γ/2)

is a relative
(
ε, δ3
)
-approximation for F|A′ with probability 1− γ

2 . Thus A is a uniform random sample
of X that is a relative (ε, δ)-approximation for F with probability at least 1−γ, implying the recurrence

T (ε, δ, γ) ≤ |A| = 3

ε(δ/3)2
ln

2 |F|A′ |
(γ/2)

≤ 27

εδ2
ln

 4

γ

(
e T
(
ε, δ3 ,

γ
2

)
d

)d .

The required bound on T (ε, δ, γ) now follows by the inductive hypothesis. As
(

1 + 1
d ln 2

γ

)d
≤ 2

γ ,

27

εδ2
ln

 4

γ

e 9 c1
εδ2

(
d ln 3

εδ + ln 2
γ

)
d

d
 ≤ 27

εδ2
ln

(
4

γ

(
e 27 c1
ε2δ3

)d(
1 +

1

d
ln

2

γ

)d)
≤ c1
εδ2

ln
1

(εδ)
d
γ
,

for any constant c1 ≥ 318, which concludes the proof of Theorem 3.
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Appendix

Proof of Theorem A. |A ∩ S| follows hypergeometric distribution with expectation |S|tn . Thus, we
can apply the standard Chernoff’s tail estimate [FK16, Theorem 21.6 and Section 21.5] to get

P
[
|A ∩ S| /∈

(
|S|t
n
− η, |S|t

n
+ η

)]
= P

[
|A ∩ S| ≤ |S|t

n
− η
]

+ P
[
|A ∩ S| ≥ |S|t

n
+ η

]
≤ exp

(
− η2

2 (|S|t/n− η/3)

)
+ exp

(
− η2

2 (|S|t/n+ η/3)

)
≤ 2 exp

(
− nη2

2|S|t+ nη

)
.



Proof of Theorem 1. By Theorem A, a uniform random sample A of size t fails to be a relative

(ε, δ)-approximation for a fixed S ∈ F with probability at most 2 exp
(
− εδ

2 t
3

)
. By the union bound,

P
[
∃S ∈ F s.t. |A ∩ S| /∈

(
|S|t
n
− δtmax

{
|S|
n
, ε

}
,
|S|t
n

+ δtmax

{
|S|
n
, ε

})]
≤ |F| · 2 exp

(
−εδ

2 t

3

)
≤ γ.

Therefore, with probability at least 1− γ, A is a relative (ε, δ)-approximation for any set S ∈ F .
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