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Abstract1

Given a set system (X, S), constructing a matching of X with low crossing number is a key tool in combinatorics2

and algorithms. In this paper we present a new sampling-based algorithm which is applicable to finite set systems.3

Let n = |X|, m = |S| and assume that X has a perfect matching M such that any set in S crosses at most4

κ = Θ(nγ) edges of M . Then our algorithm computes a perfect matching of X with expected crossing number5

at most 8
γ

· κ, in expected time O
(
n2−γ ln2 n + mn1−γ ln m

)
.6

As an immediate consequence, we get improved bounds for constructing low-crossing matchings for a slew7

of both abstract and geometric problems, including many basic geometric set systems (e.g., balls in Rd). This8

further implies improved algorithms for many well-studied problems such as construction of ϵ-approximations.9

Our work is related to two earlier themes: the work of Varadarajan (STOC ’10) / Chan et al. (SODA ’12) that10

avoids spatial partitionings for constructing ϵ-nets, and of Chan (DCG ’12) that gives an optimal algorithm for11

matchings with respect to hyperplanes in Rd.12

Another major advantage of our method is its simplicity. An implementation in C++ is available on Github;13

it is approximately 200 lines of basic code without any non-trivial data-structure. Since the start of the study of14

matchings with low-crossing numbers with respect to half-spaces in the 1980s, this is the first implementation15

made possible for dimensions larger than 2.16
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1 Introduction17

Given a set system (X,S), we say that a set S ∈ S crosses a pair {x, y} ⊆ X iff |S ∩ {x, y}| = 1.18

Define the crossing number of a perfect matching (resp. a spanning tree) G of X with respect to S19

as the maximum number of edges of G crossed by any S ∈ S. The main focus of this paper is on20

constructing perfect matchings of X with low crossing numbers with respect to S.21

Matchings with low crossing numbers were originally introduced by Welzl [34, 35] for the special22

case where X is a set of points in Rd and S is induced on X by half-spaces. His result was then23

generalized by Chazelle and Welzl [10] to a broader class of set systems, which together with an24

improvement due to Haussler [21], gives the following general theorem.25

▶ Theorem A. Let (X,S) be a set system with n = |X|, and dual shatter function1 π∗
S(k) = O(kd).29

1 The dual shatter function π∗
S of (X, S) is defined as follows. For any k ≤ |S|, π∗

S(k) is the maximum number of
equivalence classes on X defined by a k-element subfamily R ⊆ S, where x, y ∈ X are equivalent with respect to
R if x belongs to the same sets of R as y.

26
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XX:2 Matchings with low crossing numbers and their applications

Then there exists a perfect matching of X with crossing number O
(
n1−1/d

)
.30

In the last 30 years, matchings and spanning trees with low crossing numbers have become31

important structures in combinatorics and geometry, with many applications such as low-discrepancy32

colorings, near-optimal constructions of ε-approximations, and range searching, to name a few (see33

the texts [30, 24, 9, 20]).34

Previous constructions. Let (X,S) be a set system with n = |X|, m = |S|, and let κ denote35

the smallest integer such that X has a perfect matching (resp. spanning tree) with crossing number κ36

with respect to S. We review previous constructions in two separate settings.37

Abstract set systems. The original method of Welzl [34, 35, 10] builds a perfect matching using38

the multiplicative weight update (MWU) method. Briefly, the algorithm maintains a weight39

function π on S , with initial weights set to 1. It selects edges iteratively, always choosing an edge40

that is guaranteed to be crossed by sets of low total weight in π; it then updates π based on the41

chosen edge. The algorithmic bottleneck is in finding such an edge: for an abstract set system42

without additional structure, this takes O(n2m) time for each of the n/2 iterations.43

Another approach for the abstract case was proposed by Har-Peled [19] (see also [15]). His result44

implies that if κ = Θ(nγ) for some γ ∈ [1/ log n, 1], then a spanning tree of crossing number45

O(κ/γ) can be found by solving an LP on
(

n
2
)

variables and m + n constraints. Combining46

this with an efficient approximate LP solver (e.g., [11]) leads to a randomized Õ(mn2) time47

algorithm. The approximation factor can be further improved using a general framework of48

rounding fractional solutions of minimax integer programs with matroid constraints. This method49

gives a randomized algorithm that constructs a spanning tree with expected crossing number at50

most κ + O(
√

κ log m) in time Õ(mn4 + n8) [12].51

Geometric set systems. Now we turn to the case where X is a set of n points in Rd and S54

consists of subsets of X that are induced by geometric objects. In this setting, improved bounds55

are made possible using spatial partitioning. The current-best algorithms for geometric set systems56

induced by half-spaces recursively construct simplicial partitions2 using cuttings [23], stored in a57

hierarchical structure called the partition tree, which then at its base level gives a matching with58

low crossing number. This approach is used in the breakthrough result of Chan [7] who gave an59

O(n log n) time algorithm to build partition trees with respect to half-spaces in Rd, which then60

imply the same for computing matchings with crossing number O(n1−1/d).61

While the use of cuttings—and more generally, spatial partitioning—gives o(n2) running times,62

progress remains blocked in several ways:63

a) Simplicial partitions only exist in certain geometric settings. Indeed, as shown by Alon et al.[5],64

they do not always exist in settings satisfying the requirements of Theorem A (e.g., the projective65

plane). Furthermore, spatial partitioning is not possible when dealing with abstract set systems66

such as those arising in graph theory or learning theory.67

b) Optimal bounds for constructing simplicial partitions are only known for the case of half-spaces;68

this is one of the main problems left open by Chan [7]. Despite a series of research for semi-69

algebraic set systems (using linearization, cuttings, and more recently, polynomial partitioning [3]),70

the bounds are still sub-optimal for polynomials of degree > 2, with super-exponential dependence71

on the dimension.72

2 Given a set P of points, a family S of geometric sets in Rd and an integer t, the goal is to partition P into t roughly
equal-sized sets such that the boundary of each object in S intersects the convex-hull of few sets of this partition.

52

53
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c) There are large constants in the asymptotic notation depending on the dimension d both in the73

running time as well as the crossing number bounds, due to the use of cuttings (see [14]). For74

instance, in Chan’s algorithm the constants are quite large—Theorem 3.2 [7] requires δ ≤ 1
d2 ,75

b = 22 (see [22]), which then implies that it constructs a spanning tree with a guaranteed crossing76

number no better than 12·22·d4n1−1/d; this is at least 20000·n1−1/d even for d = 3. Furthermore,77

the actual construction running time is at least 264 · d2n log n, not counting the typically large78

constants in the several complex data structures that the algorithm needs (simplex range searching79

in Rd with dynamic insertion; see [22] for a discussion of its practical aspects in R2).80

d) Practical implementation of spatial partitioning in Rd, d > 2, even cuttings for hyperplanes,81

remains an open problem in geometric computing. Cuttings have been implemented in the planar82

case [18], which have then been used recently for computing ε-approximations w.r.t. half-spaces83

in R2 [22]. In particular, for d > 2, we know of no implementations for low-crossing matchings.84

Recently there have been algorithms proposed for ε-nets and ε-approximations that avoid spatial85

partitioning [32, 8, 28, 27]. Our work can be considered another step along this theme.86

2 Our Results87

We state our main result assuming that we have access to a membership Oracle of (X,S), which for88

a given element x ∈ X and a set S ∈ S returns whether x ∈ S. Our main theoretical result is the89

following.90

▶ Theorem 1. Let (X,S) be a set system, n = |X|, m = |S|. Let a > 0, b and γ ∈
[

1
log n , 1

]
be91

constants such that any Y ⊆ X has a perfect matching with crossing number at most a|Y |γ + b92

and a|Y |γ + b ≥ 12 ln(|Y | · |S|Y |). Then BUILDMATCHING
(
(X,S), a, b, γ

)
computes a perfect93

matching of X with expected crossing number at most
(

8a
γ

)
nγ + 4b log n, and with an expected94

O
(
n2−γ ln2 n + mn1−γ ln m

)
calls to the membership Oracle of (X,S).95

Remarks:96

The algorithm BUILDMATCHING is presented in Section 3.97

In this paper, we mainly focus on constructing perfect matchings with low crossing numbers.98

However, our method can easily be modified to construct a spanning tree or a spanning path with99

the same guarantees up to a constant factor. In fact, Theorem 1 implies improved algorithmic100

bounds for problems where spanning paths with low crossing numbers are used in abstract settings,101

we present two examples in Section 6.102

Now we give a list of consequences of Theorem 1, divided into three topics. All stated crossing103

number and running time bounds are in expectation.104

1. Low-crossing matchings. Our results improve upon several previous constructions, see Ta-108

ble 1. For abstract set systems with dual shatter function π∗
S(k) = O(kd), we improve the running109

time from Õ(mn2) to Õ(mn1/d). Further, we provide the first sub-quadratic time construction110

for matchings with asymptotically-optimal crossing number with respect to balls. For set systems111

induced by semialgebraic sets in Rd (each set defined by at most s polynomial inequalities of112

degree at most ∆), we significantly improve the crossing number guarantee by removing the113

exponential dependence on d. However in contrast to the previous best algorithm for this setup [3],114

our running time depends on m.115

Importantly, our method does not use spatial partitioning, which makes it possible to handle116

abstract set-systems, and geometric set systems in Rd (not only in R2) without additonal com-117

plications. The precise guarantees for various set systems and their proofs are presented in118

Section 4.119

SoCG 2021



XX:4 Matchings with low crossing numbers and their applications

MATCHINGS / SPANNING TREES
Our method Previous-best

Set system Crossing number time Crossing number time

arbitrary
with π∗

S(k) ≤ ckd

(
8c

1/dd
d−1 + o(1)

)
n1−1/d

Õ
(
mn

1/d
)

(Corollary 9)
O
(
n1−1/d

) Õ(mn2)
[19, 11]

geometric
induced byHd

(
6d2 + o(d2)

)
· n1−1/d

Õ
(
d2n1+1/d

)
(Corollary 13)

≥ 264d4n1−1/d
Õ(d2n)

[7]

geometric
induced by Bd

(
6d2 + o(d2)

)
· n1−1/d

Õ
(
d2n1+2/d

)
(Corollary 15)

O
(
n1−1/d

) O
(
n3+1/d

)
[19, 11]

geometric
induced by Γd,∆,s

32e∆sn1−1/d + o
(
n1−1/d

) Õ
(
s∆dmn

1/d
)

(Corollary 11)
O
(
10ds∆n1−1/d

) O
(

nO(d3)
)

[3]

Table 1 Summary of our results for set systems (X, S) with n = |X|, m = |S|, and n ≤ m. We use the
notation π∗

S(·) for the dual shatter function of (X, S), Hd for half-spaces in Rd, Bd for balls in Rd, and Γd,∆,s

for semialgebraic ranges in Rd described by at most s equations of degree at most ∆ (see Sec. 4).

105

106

107

2. Practical aspects. Our algorithm consists of n
2 iterations, where each iteration adjusts the120

weight of a random subset of
(

X
2
)

and S and adds a randomly picked edge to the matching. The121

only black-box needed is the membership Oracle that returns for a given x ∈ X and S ∈ S,122

if x ∈ S. The time complexity of this operation depends on the precise way (X,S) is given;123

typically this is independent of |X| and |S| (using indexing, hashing).124

A preliminary multi-threaded implementation in C++ for set systems induced on points by half-125

spaces in Rd is available on Github. It is approximately 200 lines of basic code without any126

non-trivial data-structures, being the first such implementation for d > 2.127

The figures below show the matchings with respect to half-planes returned by our algorithm for128

5, 000 points in R2 uniformly placed on a circle (in 17.39s), sine curve (in 17.17s), and randomly129

perturbed in a uniform grid (in 17.41s), each with a zoomed-in region. We find it surprising that130

our method, that is based only on random sampling, gives a matching that adapts so well to the131

each specific instance.

132

This makes progress towards the goals expressed at the end of the survey on range searching and133

its applications [1]: “...an interesting open question is to develop simple data structures that work134

well under some assumptions on input points and query ranges”.135

3. Discrepancy and approximations. By plugging in various upper-bounds on crossing num-136

bers given by Theorem 1 and using techniques in Matoušek et al.[26], we immediately get137

improved construction bounds for discrepancy and ε-approximations. In particular, if d is a138

constant such that (X,S) has dual shatter function π∗
S(k) = O(kd), then we improve the run-139

ning time of computing colorings with expected discrepancy O
(√

n1−1/d ln m
)

from O(mn2)140

to Õ(mn1/d). Moreover if in addition, (X,S) has VC dimensionbounded by a constant D,141

https://github.com/csikosm/LowCrossingMatchings
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then our method can be used to compute an ε-approximations of size Õ
((

D
ε2

) d
d+1
)

in time142

Õ
(

n +
(

D
(

D
ε2

)D+ 1
d

))
, improving upon the previous-best time O

(
n +

(
D
ε2

)D+2
)

. As these143

are standard applications of matchings with low crossing number, the proofs are omitted (see the144

survey [29]).145

Organization. In Section 3, we describe our algorithm and prove Theorem 1. In Section 4, we146

show how Theorem 1 implies the bounds stated in Table 1 for various set systems. In Section 5, we147

present our experiments, and finally, in Section 6 we give some examples of applications in learning148

theory and graph theory.149

3 Proof of Theorem 1150

The proof rests on the following four key ideas:151

1. We replace the bottleneck algorithmic step of finding a light edge in the multiplicative weights152

update technique by simply sampling an edge according to a carefully maintained distribution. In153

particular, we maintain weights not only on the sets in S, but also on
(

X
2
)
. At each iteration we154

sample an edge e and a set S according to the current weights. Then we add e to our matching155

and update the weights by doubling the weight of each set that crosses e and halving the weight156

of each edge that is crossed by S. The idea of maintaining ‘primal-dual’ weights has been used157

earlier to approximately solve matrix games [17] and in geometric optimization [4].158

2. In our case, the process is more elaborate as we are constructing a matching M at the same time159

as reweighing. Therefore, at the end of each iteration, as we add e to M , we are forced to set160

the weight of e and all edges adjacent to e to 0. This breaks down the reweighing scheme, as the161

removal of the edges amplifies the error introduced in later iterations and thus our maintained162

weights degrade over time. However, we prove that ‘resetting’ all the weights a logarithmic163

number of times suffices to ensure the required low crossing numbers.164

3. The next idea is to show that an initial uniform random sample of O (n ln n) edges from
(

X
2
)

165

already contains many good almost-matchings, and that it can be integrated in the proof to ensure166

that we end up, in expectation, with a good matching. We remark that this observation can be167

combined with some of the previous algorithms to improve their running times, though they168

remain Ω (mn).169

4. This still does not get us to our goal as updating the weights of all edges and sets crossing the170

randomly picked set and edge would be too expensive. Instead, we show that updating the weights171

of a uniform sample of O
(
n1−γ ln n

)
edges and O(mn−γ ln m) sets at each iteration is sufficient172

for our purposes. The key observation here is that the standard multiplicative weights proof has173

an additive smaller-order term; we take advantage of this gap to improve the running time at the174

cost of amplifying this additive term, just enough so that it is still within a constant factor of the175

optimal solution.176

Proof of Theorem 1. Later in this section, we prove the following statement for MATCHHALF.206

▶ Theorem 2. Let (X,S) be a set system, n = |X|, m = |S|, and let κ > max{12 ln n, 2 ln m}207

be such that any Y ⊆ X has a perfect matching of crossing number at most κ with respect to208

S. Let E ⊆
(

X
2
)

be a random edge-set obtained by adding each e ∈
(

X
2
)

to E independently209

with probability 12 ln(n)/n. Then MATCHHALF
(
(X,S), E, κ

)
returns a matching of size n/4 with210

expected crossing number at most 4κ, with an expected O
(
n2 ln2(n)/κ + mn ln(m)/κ

)
calls to the211

membership Oracle of (X,S).212

SoCG 2021



XX:6 Matchings with low crossing numbers and their applications

Algorithm 1 BUILDMATCHING
(
(X, S), a, b, γ

)
177

178 M ← ∅
179 while |X| ≥ 4 do
180 E ← ∅
181 for each e ∈

(
X
2
)

do
182 add e to E with probability 12 ln(|X|)/|X|
183 M ′ ← MATCHHALF ((X,S), E, a|X|γ + b) // M ′ covers |X|/2 elements
184 M ←M ∪M ′

185 X ← X \ vertices(M ′) // remove elements covered by M ′

186 M ←M ∪ {edge connecting the remaining two elements of X}
187 return M

The proof of Theorem 1 follows by applying Theorem 2 to each of the log n calls of MATCHHALF. We213

get that the expected crossing number of the matching returned by BUILDMATCHING
(
(X,S), a, b, γ

)
214

is at most215

4
log n−1∑

i=0

[
a
( n

2i

)γ

+ b
]
≤ 8

γ
· anγ + 4b log n,216

and the overall expected number of calls to the membership Oracle is at most217

log n−1∑
i=0

O

((
n
2i

)2 ln2 ( n
2i

)
a
(

n
2i

)γ + b
+

m
(

n
2i

)
ln m

a
(

n
2i

)γ + b

)
= O

(
n2−γ ln2 n + mn1−γ ln m

)
.218

◀219

Proof of Theorem 2. The proof relies on the following technical lemma, whose proof is presented220

later in this section. For an edge e and a set S, we define I (e, S) to be 1 if S crosses e and 0 otherwise.221

222

▶ Lemma 3 (Main Lemma). Let Ẽ denote the set of edges that have non-zero weight when223

MATCHHALF
(
(X,S), E, κ

)
terminates. Then224

Ee1,...,en/4

 max
S∈S

n/4∑
i=1

I (ei, S)

 ≤ 2 · ES1,...,Sn/4

 min
e∈Ẽ

n/4∑
i=1

I (e, Si)

+ κ. (1)225

The left-hand side of Equation (1) is precisely the expected crossing number of the edges returned226

by MATCHHALF. The edge where the minimum in the right-hand side of Equation (1) is attained is227

commonly referred to as the ‘shortest edge’ with respect to {S1, . . . , Sn/4}. Note that we cannot use228

the classical short-edge lemma [10] directly in this setting as we need to find a short edge within a229

random set of edges Ẽ. Hence, we prove the following version of the short-edge lemma which is also230

sensitive to the crossing number κ.231

▶ Lemma 4. Let (Y,R) be any set system and κ be such that Y has a perfect matching with232

crossing number κ with respect toR. Then there are at least |Y |/6 edges spanned by the points of Y233

such that any of them is crossed by at most 3|R|κ
|Y | sets ofR.234
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Algorithm 2 MATCHHALF
(
(X, S), E, κ)

)
188

189 ω1(e)← 1, π1(S)← 1 ∀e ∈ E, S ∈ S
190 p← 6 ln |E|/κ

191 q← 3 ln |S|/κ

192 for i = 1, . . . , n/4 do
193 ωi(E)←

∑
e∈E ωi(e)

194 πi(S)←
∑

S∈S πi(S)
195 choose ei ∼ ωi // P[ei = e] = ωi(e)

ωi(E) ∀e ∈ E

196 choose Si ∼ πi // P[Si = S] = πi(S)
πi(S) ∀S ∈ S

197 Ei ← sample from E with probability p // P[e ∈ Ei] = p ∀e ∈ E

198 Si ← sample from S with probability q // P[S ∈ Si] = q ∀S ∈ S
199 // I (e, S) = 1 if e crosses S, I (e, S) = 0 otherwise
200 for e ∈ Ei do
201 ωi+1(e)← ωi(e)

(
1− 1

2 I (e, Si)
)

// halve weight if Si crosses e

202 for S ∈ Si do
203 πi+1(S)← πi(S)

(
1 + I (ei, S)

)
// double weight if S crosses ei

204 set the weight in ωi+1 of ei and of each edge adjacent to ei to zero

205 return {e1, . . . , en/4}

Proof. Let M be a matching of Y such that any set ofR crosses at most κ edges of M . Then there235

are at most |R| · κ crossings between the edges of M and sets in R. By the pigeonhole principle,236

there are at least |M |/3 = |Y |/6 edges in M such that each of them is crossed by at most237

|R| · κ
2
3 · |M |

= |R| · κ
|Y |/3 = 3|R|κ

|Y |
238

sets ofR. ◀239

Now we are ready to present the proof of Theorem 2, assuming the Main Lemma. First, we240

show that Ẽ contains a short edge with high probability. Let X̃ ⊂ X denote the set of points that241

are not covered by the edges {e1, . . . , en/4} returned by MATCHHALF
(
(X,S), E, κ

)
. Applying242

Lemma 4 to Y = X̃ and R = {S1, . . . , Sn/4}, we get that there is a set Eshort ⊂
(

X̃
2
)

of at least243

|X̃|/6 = n/12 edges such that each e ∈ Eshort satisfies244

n/4∑
i=1

I (e, Si) ≤
3 · |R| · κ
|X̃|

= 3 · n/4 · κ
n/2 = 3

2κ. (2)245

We want to bound the probability of the event Ẽ ∩ Eshort ̸= ∅. Observe that Ẽ = E ∩
(

X̃
2
)

as we246

set the weight of an edge in E to zero if and only if it was equal or adjacent to some of e1, . . . , en/4.247

Thus E ∩ Eshort = Ẽ ∩ Eshort, and since each edge in Eshort was added to E with probability248

12 ln(n)/n independently, we get249

P
[

Ẽ ∩ Eshort ̸= ∅
]

= P [ E ∩ Eshort ̸= ∅ ] ≥ 1−
(

1− ln n

n/12

)n/12
≥ 1− 1

n
.250

SoCG 2021



XX:8 Matchings with low crossing numbers and their applications

Since each edge in Eshort crosses at most 3
2 κ sets of {S1, . . . , Sn/4}, we get251

P

 min
e∈Ẽ

n/4∑
i=1

I (e, Si) ≤
3
2κ

 ≥ P [ E ∩ Eshort ̸= ∅ ] ≥ 1− 1
n

.252

Now we return to Equation (1). We bound the expectation in the right-hand side using the fact that253

min
e∈Ẽ

n/4∑
i=1

I (e, Si) ≤ n
4 always holds254

ES1,...,Sn/4

 min
e∈Ẽ

n/4∑
i=1

I (e, Si)

255

≤ 3
2κ · P

 min
e∈Ẽ

n/4∑
i=1

I (e, Si) ≤
3
2κ

+ n

4 · P

 min
e∈Ẽ

n/4∑
i=1

I (e, Si) >
3
2κ

 ≤ 3
2κ + n

4 ·
1
n

.256

Thus, by using the Main Lemma, the expected crossing number of the edges {e1, . . . , en/4} with257

respect to S can be bounded as258

Ee1,...,en/4

 max
S∈S

n/4∑
i=1

I (ei, S)

 ≤ 2 · ES1,...,Sn/4

 min
e∈Ẽ

n/4∑
i=1

I (e, Si)

+ κ ≤ 4κ.259

Finally, we bound the number or membership Oracle calls. At each iteration i = 1, . . . , n/4, we260

update the weights of |Ei| + |Si| = O
(
n ln2(n)/κ + m ln(m)/κ

)
elements in expectation, each261

requiring one call to the membership Oracle. Thus in expectation, the total number of membership262

Oracle calls is O
(
n2 ln2(n)/κ + mn ln(m)/κ

)
. This concludes the proof of Theorem 2. ◀263

Proof of Main Lemma. The proof is subdivided into three lemmas. For brevity, we set t = n/4.264

The first lemma is proved by examining the total weight of the sets of S in πt+1.265

▶ Lemma 5.

Ee1,...,et

[
max
S∈S

t∑
i=1

I (ei, S)
]
≤ 1

ln 2

t∑
i=1

Eei

[ ∑
S∈S

πi(S)
πi(S) I (ei, S)

]
+ κ

3 ln 2 .266

Proof. Let πt+1(S) denote the total weight of the sets of S in πt+1. We bound πt+1(S) in two267

different ways. On the one hand, πt+1(S) is clearly lower-bounded by the weight of the set of268

maximum weight in πt+1. Recall that the weight of a set S is doubled in iteration i if and only if S269

crosses ei, therefore270

πt+1(S) ≥ max
S∈S

πt+1(S) = 2
max
S∈S

t∑
i=1

I (ei,S)·1{S∈Si}

,271

where 1A denotes the indicator whether an event A happens. On the other hand, we can express272

πt+1(S) using the update rule of the algorithm273

πt+1(S) =
∑
S∈S

πt+1(S) =
∑
S∈S

πt(S)
(
1 + I (et, S) · 1{S∈St}

)
274

=
∑
S∈S

πt(S) +
∑
S∈S

πt(S)I (et, S) · 1{S∈St}275
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= πt(S) + πt(S)
∑
S∈S

πt(S)
πt(S) I (et, S) · 1{S∈St}276

= πt(S)
(

1 +
∑
S∈S

πt(S)
πt(S) I (et, S) · 1{S∈St}

)
.277

Unfolding this recursion and using the fact that 1 + a ≤ exp(a), we get278

πt+1(S) = π1(S)
t∏

i=1

(
1 +

∑
S∈S

πi(S)
πi(S) I (ei, S) · 1{S∈Si}

)
279

≤ |S| · exp
(

t∑
i=1

∑
S∈S

πi(S)
πi(S) I (ei, S) · 1{S∈Si}

)
.280

Putting together the obtained upper and lower bounds on πt+1(S), we get281

2
max
S∈S

t∑
i=1

I (ei,S)·1{S∈Si}

≤ |S| · exp
(

t∑
i=1

∑
S∈S

πi(S)
πi(S) I (ei, S) · 1{S∈Si}

)
.282

Taking the logarithm of each side yields283

ln(2) ·max
S∈S

t∑
i=1

I (ei, S) · 1{S∈Si} ≤
t∑

i=1

∑
S∈S

πi(S)
πi(S) I (ei, S) · 1{S∈Si} + ln |S| . (3)284

Now we take the expectation with respect to the random edges e1, . . . , et and the random collections285

of sets S1, . . . ,St. Note that these edges and sets are picked independently.286

First, we have a look at the left-hand side of Equation (3). Using linearity of expectation and the fact287

that E[max{X, Y }] ≥ max{E[X],E[Y ]} holds for random variables X and Y , we get288

Ee1,...,et
ES1,...,St

[
ln (2) ·max

S∈S

t∑
i=1

I (ei, S) · 1{S∈Si}

]
289

≥ ln (2) · Ee1,...,et

[
max
S∈S

t∑
i=1

I (ei, S) · ESi

[
1{S∈Si}

] ]
290

= ln (2) · Ee1,...,et

[
max
S∈S

t∑
i=1

I (ei, S) · P [ S ∈ Si ]
]

291

= ln (2) · q · Ee1,...,et

[
max
S∈S

t∑
i=1

I (ei, S)
]

.292

In the last step we used that P [ S ∈ Si ] = q for all S ∈ S . For the expectation of the right-hand side293

of Equation (3), we can write294

t∑
i=1

Eei
ESi

[ ∑
S∈S

πi(S)
πi(S) I (ei, S) · 1{S∈Si}

]
+ ln |S|295

=
t∑

i=1
Eei

[ ∑
S∈S

πi(S)
πi(S) I (ei, S) · ESi

[
1{S∈Si}

] ]
+ ln |S|296

=
t∑

i=1
Eei

[ ∑
S∈S

πi(S)
πi(S) I (ei, S) · P [ S ∈ Si ]

]
+ ln |S|297
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= q ·
t∑

i=1
Eei

[ ∑
S∈S

πi(S)
πi(S) I (ei, S)

]
+ ln |S| .298

Hence Equation (3) implies299

ln (2) · q · Ee1,...,et

[
max
S∈S

t∑
i=1

I (ei, S)
]
≤ q ·

t∑
i=1

Eei

[ ∑
S∈S

πi(S)
πi(S) I (ei, S)

]
+ ln |S|.300

Dividing each side by ln(2) · q = (3 ln 2 ln |S|)/κ gives the required inequality. ◀301

The next lemma is proven by applying analogous arguments for the total weight of edges in ωt+1302

with a small adjustment as in each iteration we set some edge weights to zero. Recall that Ẽ denotes303

the set of edges that have non-zero weight in ωt+1.304

▶ Lemma 6.
t∑

i=1
ESi

[ ∑
e∈E

ωi(e)
ωi(E) I (e, Si)

]
< 2 ln(2) · ES1,...,St

[
min
e∈Ẽ

t∑
i=1

I (e, Si)
]

+ κ

3 .305

Proof. Let ωt+1(E) denote the total weight of edges in ωt+1. Again, we lower-bound ωt+1(E) by306

the largest edge-weight in ωt+1, which is now attained at some edge of Ẽ307

ωt+1(E) ≥ max
e∈E

ωt+1(e) = max
e∈Ẽ

ωt+1(e) =
(

1
2

)min
e∈Ẽ

t∑
i=1

I (e,Si)·1{e∈Ei}

.308

The upper bound is obtained by using the algorithm’s weight update rule. Since et has positive weight309

in ωt, but its weight in ωt+1 is set to 0, we have a strict inequality310

ωt+1(E) =
∑
e∈E

ωt+1(e) <
∑
e∈E

ωt(e)
(

1− 1
2I (e, St) · 1{e∈Et}

)
311

=
∑
e∈E

ωt(e)− 1
2
∑
e∈E

ωt(e)I (e, St) · 1{e∈Et}312

= ωt(E)
(

1− 1
2
∑
e∈E

ωt(e)
ωt(E) I (e, St) · 1{e∈Et}

)
.313

Unfolding this recursion and using the fact that 1 + a ≤ exp(a), we get314

ωt+1(E) ≤ |E| · exp
(
−1

2

t∑
i=1

∑
e∈E

ωi(e)
ωi(E) I (e, Si) · 1{e∈Ei}

)
.315

Combining the obtained upper and the lower bounds on ωt+1(E) and taking the logarithm of each316

side, we get317

ln
(

1
2

)
·min

e∈Ẽ

t∑
i=1

I (e, Si) · 1{e∈Ei} ≤ −
1
2

t∑
i=1

∑
e∈E

ωi(e)
ωi(E) I (e, Si) · 1{e∈Ei} + 2 ln |E|,318

which is equivalent to319

t∑
i=1

∑
e∈E

ωi(e)
ωi(E) I (e, Si) · 1{e∈Ei} ≤ 2 ln(2) ·min

e∈Ẽ

t∑
i=1

I (e, Si) · 1{e∈Ei} + 2 ln |E|. (4)320
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Now we take the expectation with respect to the random sets S1, . . . , St and the random collections321

of edges E1, . . . , Et. Note that these sets and edge-sets are picked independently. First look at the322

right-hand side of Equation (4). Using the linearity of expectation and the fact that E[min{X, Y }] ≤323

min{E[X],E[Y ]} for random variables X and Y , we get324

ES1,...,St
EE1,...,Et

[
2 ln(2) ·min

e∈Ẽ

t∑
i=1

I (e, Si) · 1{e∈Ei} + 2 ln |E|
]

325

≤ 2 ln(2) · ES1,...,St

[
min
e∈Ẽ

t∑
i=1

I (e, Si) · EEi

[
1{e∈Ei}

] ]
+ 2 ln |E|326

= 2 ln(2) · ES1,...,St

[
min
e∈Ẽ

t∑
i=1

I (e, Si) · P [ e ∈ Ei ]
]

+ 2 ln |E|327

= 2 ln(2) · p · ES1,...,St

[
min
e∈Ẽ

t∑
i=1

I (e, Si)
]

+ 2 ln |E|.328

Again, the last equation follows as P [ e ∈ Ei ] = p for all e ∈ E. Using the same argument as in the329

proof of Lemma 5, we can express the expectation of the left-hand side of Equation (4) as330

t∑
i=1

ESi
EEi

[ ∑
e∈E

ωi(e)
ωi(E) I (e, Si) · 1{e∈Ei}

]
= p ·

t∑
i=1

ESi

[ ∑
e∈E

ωi(e)
ωi(E) I (e, Si)

]
331

Thus Equation (4) implies332

p ·
t∑

i=1
ESi

[ ∑
e∈E

ωi(e)
ωi(E) I (e, Si)

]
≤ p · 2 ln(2) · ES1,...,St

[
min
e∈Ẽ

t∑
i=1

I (e, Si)
]

+ 2 ln |E|.333

Dividing each side by p = (6 ln |E|)/κ gives the required inequality. ◀334

We need one more lemma to tie the previous two together. The proof simply follows from the335

definition of expectation.336

▶ Lemma 7. For any i ∈ [1, t], we have337

Eei

[ ∑
S∈S

πi(S)
πi(S) I (ei, S)

]
= ESi

[ ∑
e∈E

ωi(e)
ωi(E) I (e, Si)

]
.338

Proof.

Eei

[ ∑
S∈S

πi(S)
πi(S) I (ei, S)

]
=
∑
e∈E

ωi(e)
ωi(E) ·

(∑
S∈S

πi(S)
πi(S) I (e, S)

)
339

=
∑
e∈E

∑
S∈S

ωi(e)
ωi(E) ·

πi(S)
πi(S) I (e, S)340

=
∑
S∈S

πi(S)
πi(S) ·

(∑
e∈E

ωi(e)
ωi(E) I (e, S)

)
= ESi

[ ∑
e∈E

ωi(e)
ωi(E) I (e, Si)

]
.341

◀342

Finally, we combine Lemmas 5, 6, and 7 in the following way343
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Ee1,...,et

[
max
S∈S

t∑
i=1

I (ei, S)
]

344

≤ 1
ln 2

t∑
i=1

Eei

[ ∑
S∈S

πi(S)
πi(S) I (ei, S)

]
+ κ

3 ln 2 (Lemma 5)345

= 1
ln 2

t∑
i=1

ESi

[ ∑
e∈E

ωi(e)
ωi(E) I (e, Si)

]
+ κ

3 ln 2 (Lemma 7)346

<
1

ln 2

(
ES1,...,St

[
2 ln(2) min

e∈Ẽ

t∑
i=1

I (e, Si)
]

+ κ

3

)
+ κ

3 ln 2 (Lemma 6)347

≤ 2 · ES1,...,St

[
min
e∈Ẽ

t∑
i=1

I (e, Si)
]

+ κ.348

This completes the proof of the Main Lemma and thus of Theorem 2. ◀349

4 Corollaries of Theorem 1350

Set systems with bounded dual shatter function. As before, let (X,S) be a set system,351

n = |X| and m = |S|. We first recall the definition of the dual shatter function π∗
S of (X,S). For any352

R ⊆ S , we say that the elements x, y ∈ X are equivalent with respect toR if x belongs to the same353

sets ofR as y. Then π∗
S(k) is defined as the maximum number of equivalence classes on X defined354

by a k-element subfamilyR ⊆ S . The following theorem shows that set systems with polynomially355

bounded dual shatter function possess matchings with sublinear crossing number [24, Chap. 5.4].356

▶ Lemma 8. Let (X,S) be a set system and c, d be constants such that π∗
S(k) ≤ ckd for all357

k ∈ [1, n]. Then there is a perfect matching of X such that any set S ∈ S crosses at most358

c1/dn1−1/d + ln m edges of the matching.359

Observe that by definition, the dual shatter function of (Y,S|Y ) is upper-bounded by the dual360

shatter function of (X,S) for any Y ⊆ X . Thus Lemma 8 implies that any Y ⊆ X has a perfect361

matching with crossing number at most c1/d|Y |1−1/d + ln m with respect to S . Applying Theorem 1362

with we get the following corollary.363

▶ Corollary 9. Let (X,S) be a set system and c, d be constants such that π∗
S(k) ≤ ckd for364

all k ∈ [1, n]. Then BUILDMATCHING
(
(X,S), c1/d, ln m, 1 − 1

d

)
returns a perfect match-365

ing of X with expected crossing number at most 8c1/dd
d−1 · n

1−1/d + 4 ln m log n with an expected366

Õ
(
n1+1/d + mn1/d

)
calls to the membership Oracle of (X,S).367

Semialgebraic set systems. Let Γd,∆,s denote all subsets of Rd such that each is induced by368

some semialgebraic set defined as the solution set of a Boolean combination of at most s polynomial369

inequalities of degree at most ∆. First, we give a bound on the dual shatter function of Γd,∆,s.370

▶ Lemma 10. Let (X,S) be a set system such that X is a set of points in Rd and each set in S is371

induced by an element Γd,∆,s. Then the dual shatter function of (X,S) can be upper-bounded as372

π∗
S(k) ≤ (4e∆s)d · kd.373

Proof. LetR ⊆ Γd,∆,s be a set of k ranges, defined by P = {pij : 1 ≤ i ≤ k, 1 ≤ j ≤ s}, where374

each element is a d-variate polynomial of degree at most ∆. Observe that two points x, y ∈ Rd are375
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equivalent with respect toR if sign [ p(x) ] = sign [ p(y) ] for all p ∈ P . Therefore, π∗
Γd,∆,s

(k) can376

be upper-bounded by the number of different sign patterns in {−1, 1}ks induced by ks d-variate377

polynomials of degree at most ∆. This quantity is bounded by (4e∆s)d · kd, see [33, Theorem 3].378

◀379

Now we can apply Corollary 9 and obtain the following guarantees for our algorithm.380

▶ Corollary 11. Let (X,S) be a set system such that X is a set of n points in Rd and S consists of m381

subsets of X , each induced by an element of Γd,∆,s. Then BUILDMATCHING
(
(X,S), 4e∆s, ln m, 1−382

1
d

)
returns a perfect matching of X with expected crossing number at most 32e∆sd

d−1 · n1−1/d +383

4 ln m log n with respect to S in expected time Õ(s∆d ·mn1/d).384

▶ Remark. The previous best algorithm for constructing matchings with low crossing numbers with385

respect to Γd,∆,s relies on the polynomial partitioning technique [3]. It computes a perfect matching386

of n points in general position with crossing number O(10ds∆n1−1/d) with respect to any set in387

Γd,∆,s in time O(nO(d3)), notably the running time is independent of m. Our algorithm provides388

improved running time bounds for specific instances with m = no(d3).389

Half-spaces. Let Hd denote the set of all half-spaces in Rd and consider set systems on points390

in Rd induced by Hd. For this setting, a typical pre-processing step is constructing a small-sized391

subfamily ofHd—called a test-set—such that it suffices to construct a low-crossing matching with392

respect to this subfamily. We use a result of Matoušek [23] on test-sets, with a small addition: the393

bounds are stated with precise constants, in particular, with precise cutting constants from [14].394

▶ Lemma 12 (Test set lemma [23]). Let X be a set of n points in Rd, Hd be the set of all395

half-spaces in Rd, and t be a parameter. There exists a set T (t) of at most (d + 1)td hyperplanes396

such that if a perfect matching of X has crossing number κ with respect to T (t), then its crossing397

number with respect toHd is at most (d + 1)κ + 6d2n
t .398

Now let X be a set of n points in Rd and T = T (n1/d) be the set of (d + 1)n half-spaces in Rd
399

provided by Lemma 12. Notice that T ⊂ Hd = Γd,1,1, thus by Lemma 10, π∗
T (k) ≤ (4e)dkd. We400

apply Corollary 9 for (X, T ) and obtain the following.401

▶ Corollary 13. Let X be a set of n points in Rd and T = T (n1/d) be the set of half-spaces402

provided by Lemma 12. Then BUILDMATCHING
(
(X, T ), 4e, ln n, 1− 1

d

)
returns a perfect matching403

of X with expected crossing number at most
[

6d2 + (d + 1) · 32ed
d−1

]
n1−1/d + 4 ln2 n with respect404

to half-spaces in Rd, in expected time O
(
d2n1+1/d ln2 n

)
.405

▶ Remark. The state-of-the-art algorithm for constructing matchings with low crossing number406

with respect to half-spaces is due to Chan [7]. While his method has a better dependence on n,407

there are large constants in the asymptotic notation: its crossing number guarantee is no better than408

264d4n1−1/d and the running time is at least 264d2n. Moreover, its implementation is non-trivial409

and is only available in R2 [22].410

Balls. Let Bd denote the subsets of X that are induced by balls in Rd. It is well known that there411

are mappings α : X → Rd+1 and β : Bd → Hd+1 such that for any x ∈ X and B ∈ Bd, we have412

x ∈ B iff α(x) ∈ β(B), see eg. [25, Chap. 10]. This mapping and Lemma 12 applied in Rd+1 with413

t = n1/d give the following test set lemma for Bd.414

▶ Lemma 14. Let X be a set of n points in Rd. There exists a set Q of at most (d + 2)n1+1/d
415

balls such that if a perfect matching of X has crossing number κ with respect to Q, then its crossing416

number with respect to Bd is at most (d + 2)κ + 6(d + 1)2n1−1/d.417
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Given a set X of n points in Rd, let Q be the set of balls provided by Lemma 12. As Q ⊂ Bd ⊂418

Γd,2,1, the dual shatter function of Q can be bounded as π∗
Q(k) ≤ (8e)dkd (Lemma 10). We apply419

Corollary 9 for (X,Q), and obtain the following corollary.420

▶ Corollary 15. Let X be a set of n points in Rd and letQ be the set of balls provided by Lemma 14.421

Then BUILDMATCHING
(
(X,Q), 8e, ln(n1+1/d), 1 − 1

d

)
returns a perfect matching of X with422

expected crossing number at most
[

6(d + 1)2 + (d + 2) · 64ed
d−1

]
n1−1/d + 4(d+1)

d ln2 n with respect423

to balls in Rd, in expected time O(d2n1+2/d).424

▶ Remark. The previous-best algorithm to construct spanning trees with crossing number O(n1−1/d)425

with respect to Bd is based on randomized LP rounding and has time complexity Õ(mn2) [19, 11].426

Alternatively, one can obtain a matching with suboptimal crossing number O(n1−1/(d+1)) by lifting427

X into Rd+1, where the image of each range in Bd can be represented by a range in Hd+1 and428

applying Chan’s algorithm [7] with time complexity O(n).429

5 Empirical Aspects of BUILDMATCHING430

In this section we present preliminary experimental results and provide some implementation details.431

Experimental setup. We apply our algorithm for set systems induced by half-spaces in dimensions432

2, 4, 6, 8, and 10. We consider two different types of input point sets:433

Grid: each point is picked randomly in a cell of the uniform grid;434

Moment Curve: each point is a slightly perturbed element of the moment curve.435

These examples capture two extremal cases: in the case of the Grid the optimal crossing number436

is Θ(n1−1/d), while it is Θ(d) in the case of the Moment Curve input. All the experiments are437

performed with dual Xeon E5-2643 v3 processors, each with 6 cores, 12 threads, at 3.4 GHz. We438

run our experiments with the parameters BUILDMATCHING
(
(X, T ), 0.6, 0, 1− 1/d

)
.439

Grid
Input d = 2 d = 4 d = 6 d = 8 d = 10
size cr # time (s) cr # time (s) cr # time (s) cr # time (s) cr # time (s)

10000 162 58.89 699 11.84 1238 8.07 1639 6.38 1863 6.73
25000 330 279.82 1509 37.33 2804 26.49 3912 20.32 4525 20.76
50000 630 918.26 2732 99.62 5251 61.21 7387 47.02 8797 48.66
100000 1170 3001.16 5040 271.29 9774 147.91 13683 120.53 16754 110.48

Moment Curve

10000 57 58.51 324 11.68 807 7.9 1028 6.47 1354 6.12
25000 89 275.96 706 37.35 1698 24.08 2642 22.79 3411 20.62
50000 132 916.39 1151 98.25 2608 61.06 4836 52.4 6263 44.79
100000 209 2978.21 2797 268.95 5502 161.1 7743 133.25 10713 113.01

Table 2 Summary of the experimental results for set systems induced by half-spaces on two input types.440

Evaluation. We present our experimental results in Table 2. It shows the observed crossing numbers441

and running times on inputs of size up to 100000. We see that the algorithm becomes faster as442

the dimension increases (note that the crossing number increases with dimension). For example,443

in dimension 6, it takes only around 160 seconds to create a matching for 100000 points. We444

highlight again that this is the first implementation of matching construction in dimensions larger445
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than 2, and that even in R2, this is a big step forward from previous experimental results that only446

considered inputs of size at most 159, see [16].447

Implementation details. Recall that our algorithm maintains weights on each pre-sampled edge,448

and these weights can be halved at each iteration. Instead of storing these potentially exponentially449

small weights explicitly, we simply maintain a partition of the edges into groups such that each450

group consists of elements that have been updated the same number of times, and thus have the451

same weight. We store the (exponentially increasing) weights of the test set half-spaces in the452

same way. To sample an edge or a half-space with respect to the current weights, it suffices to453

sample from the heaviest Θ (log n) groups. The remaining groups have o
( 1

n

)
-th fraction of the454

total weight, which can be shown to not effect the analysis. We perform an initial n
2 iterations to455

set more accurate edge weights and start constructing the final matching only afterwards.456

Test set generation. Linear-sized test set that achieves the guarantee of Lemma 12 can be con-457

structed via cuttings, which are impractical in higher dimensions. Since the study of test-sets is458

not the main focus of this work and to speed-up the computations, our implementation, builds459

the test set by n log n random d-tuples of the input points; Table 2 reports the crossing numbers460

with respect to this particular test set. We refer to [2] for a detailed overview on constructions and461

sizes of test-sets for various geometric objects.462

6 Applications463

Here we present applications from learning and graph theory.464

Approximating sign rank. Let (X,S) be a set system and let A ∈ Rn×m be its signed member-465

ship matrix, that is, (A)x,S = 1 if x ∈ S and (A)x,S = −1 otherwise. The sign rank of (X,S) is466

defined as the minimum rank of a matrix having the same sign pattern as A. Geometrically, it captures467

the minimum dimension of a Euclidean space in which (X,S) can be embedded and realized by468

half-spaces through the origin. This embedding is linked to the efficiency of many practical machine469

learning algorithms, such as support vector machines and kernel classifiers. Using a connection470

between the sign-rank and the crossing number of a spanning path established in Alon et al.[6], we471

get the following corollary.472

▶ Corollary 16. Let (X,S) be a set system and let a > 0, b and γ ∈
[

1
log n , 1

]
such that any473

Y ⊆ X has a spanning path with crossing number at most a|Y |γ + b. Then there is a randomized474

algorithm that constructs an embedding of X into RD with D ≤
(

8a
γ

)
nγ + 4b log n in expectation475

such that each S ∈ S can be represented with a half-space in RD. The expected running time of476

the algorithm is upper-bounded by the time complexity of O
(
n2−γ ln2 n + mn1−γ ln m

)
calls to the477

membership Oracle of (X,S).478

Approximating diameter of graphs. It is known that the diameter of a graph cannot be com-479

puted in subquadratic time under the Strong Exponential-Time Hypothesis [31]. However, the480

situation can be improved if we restrict ourselves to graphs with bounded VC-dimension. Given a481

graph G = (V, E), its VC-dimension is defined as the VC-dim(V,N ), where N = {N(v) | v ∈ V }482

with N(v) = {u ∈ V : uv ∈ E}. Recently, Ducoffe et al.[13] proposed a subquadratic time483

algorithm for deciding whether a graph with bounded VC dimension has diameter 2. Their algorithm484

relies on constructing a spanning path of V with low crossing number with respect to N and has485

running time Õ(|E| · |V |1−εd), where εd = (2d+1[3(d + 1)− 1] + 1)−1 and d = VC-dim(G). Using486

our algorithm we can obtain the following mild improvement over their result.487
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XX:16 Matchings with low crossing numbers and their applications

▶ Corollary 17. Let G be a graph with VC dimension bounded by a constant d. Then there is a488

randomized algorithm that decides whether G has diameter 2 in expected time Õ
(
|E| · |V |1−1/2d+1

)
.489
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