Monotonic Subsequences

Three (Nice) Open Problems

Nabil H. Mustafa

Erdős–Szekeres Theorem

Erdős–Szekeres Theorem

Given a sequence S of n reals, there exists a monotonic subsequence of S of size at least \sqrt{n} .

10 1 9 8 7 5 3 11 6 12 4 2

Erdős–Szekeres Theorem

Given a sequence S of n reals, there exists a monotonic subsequence of S of size at least \sqrt{n} .

 10
 1
 9
 8
 7
 5
 3
 11
 6
 12
 4
 2

 10
 1
 9
 8
 7
 5
 3
 11
 6
 12
 4
 2

Erdős–Szekeres Theorem

Erdős–Szekeres Theorem

Erdős–Szekeres Theorem

Erdős–Szekeres Theorem

Erdős–Szekeres Theorem

Erdős–Szekeres Theorem

Given a sequence S of n reals, there exists a monotonic subsequence of S of size at least \sqrt{n} .

10 1 9 8 7 5 3 11 6 12 4 2

Erdős–Szekeres Theorem

Erdős–Szekeres Theorem

10	1	9	8	7	5	3	11	6	12	4	2
1	1	2	2	2	2	2	3	3	4	3	2
10	1	9	8	7	5	3	11	6	12	4	2

Erdős–Szekeres Theorem

Given a sequence S of n reals, there exists a monotonic subsequence of S of size at least \sqrt{n} .

10	1	9	8	7	5	3	11	6	12	4	2
1	1	2	2	2	2	2	3	3	4	3	2
10	1	9	8	7	5	3	11	6	12	4	2

 t_i : length of the longest increasing sequence ending at the *i*-th element

Erdős–Szekeres Theorem

Given a sequence S of n reals, there exists a monotonic subsequence of S of size at least \sqrt{n} .

 t_i : length of the longest increasing sequence ending at the *i*-th element either $\exists i$ with $t_i \geq \sqrt{n}$

Erdős–Szekeres Theorem

Given a sequence S of n reals, there exists a monotonic subsequence of S of size at least \sqrt{n} .

10	1	9	8	7	5	3	11	6	12	4	2
1	1	2	2	2	2	2	3	3	4	3	2
10	1	9	8	7	5	3	11	6	12	4	2

 t_i : length of the longest increasing sequence ending at the *i*-th element either $\exists i$ with $t_i \geq \sqrt{n}$ or the same integer appears $\frac{n}{\sqrt{n}}$ times

[Even, Lotker, Ron, Smorodinsky]

[Even, Lotker, Ron, Smorodinsky]

[Even, Lotker, Ron, Smorodinsky]

[Even, Lotker, Ron, Smorodinsky]

[Even, Lotker, Ron, Smorodinsky]

[Even, Lotker, Ron, Smorodinsky]

[Even, Lotker, Ron, Smorodinsky]

Goal: coloring such that each interval contains a unique color

 \rightarrow possible with $O(\log n)$ colors

[Even, Lotker, Ron, Smorodinsky]

- \rightarrow possible with $O(\log n)$ colors
- \rightarrow need $\Omega(\log n)$ colors

[Even, Lotker, Ron, Smorodinsky]

- \rightarrow possible with $O(\log n)$ colors
- \rightarrow need $\Omega(\log n)$ colors
- \rightarrow **Disks** in \mathbb{R}^2

[Even, Lotker, Ron, Smorodinsky]

- \rightarrow possible with $O(\log n)$ colors
- \rightarrow need $\Omega(\log n)$ colors
- \rightarrow **Disks** in \mathbb{R}^2

[Even, Lotker, Ron, Smorodinsky]

- \rightarrow possible with $O(\log n)$ colors
- \rightarrow need $\Omega(\log n)$ colors
- \rightarrow **Disks** in \mathbb{R}^2

[Even, Lotker, Ron, Smorodinsky]

- \rightarrow possible with $O(\log n)$ colors
- \rightarrow need $\Omega(\log n)$ colors
- \rightarrow **Disks** in \mathbb{R}^2

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if disk D contains points of Q

then D must also contain from $P \setminus Q$

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if disk D contains points of Q

then D must also contain from $P \setminus Q$

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if disk D contains points of Q

then D must also contain from $P \setminus Q$

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if disk D contains points of Q

then D must also contain from $P \setminus Q$

Coloring procedure:

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if disk D contains points of Q

then D must also contain from $P \setminus Q$

Coloring procedure:

while (P not empty)

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if disk D contains points of Q

then D must also contain from $P \setminus Q$

Coloring procedure:

while (P not empty)

find Q and color with the same new color

[Even, Lotker, Ron, Smorodinsky]

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if disk D contains points of Q

then D must also contain from $P \setminus Q$

Coloring procedure:

while (P not empty)

find Q and color with the same new color

$$P = P - Q$$

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if disk D contains points of Q

then D must also contain from $P \setminus Q$

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if disk D contains points of Q

then D must also contain from $P \setminus Q$

Intervals: Q exists of size $\frac{n}{2}$

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if disk D contains points of Q

then D must also contain from $P \setminus Q$

Intervals: Q exists of size $\frac{n}{2}$ \rightarrow coloring with $\Theta(\log n)$ colors

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if disk D contains points of Q

then D must also contain from $P \setminus Q$

Intervals: Q exists of size $\frac{n}{2}$ \rightarrow coloring with $\Theta(\log n)$ colors

Disks: Q exists of size $\frac{n}{4}$ (4-color theorem)

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if disk D contains points of Q

then D must also contain from $P \setminus Q$

Intervals: Q exists of size $\frac{n}{2}$ \rightarrow coloring with $\Theta(\log n)$ colors

Disks: Q exists of size $\frac{n}{4}$ \rightarrow coloring with $\Theta(\log n)$ colors (4-color theorem)

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if disk D contains points of Q

then D must also contain from $P \setminus Q$

Intervals: Q exists of size $\frac{n}{2}$

 \rightarrow coloring with $\Theta(\log n)$ colors

Disks:

Q exists of size $\frac{n}{4}$

(4-color theorem)

 \rightarrow coloring with $\Theta(\log n)$ colors

Rectangles:

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if rectangle R contains points of Q

then R must also contain from $P \setminus Q$

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if rectangle R contains points of Q

then R must also contain from $P \setminus Q$

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if rectangle R contains points of Q

then R must also contain from $P \setminus Q$

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if rectangle R contains points of Q

then R must also contain from $P \setminus Q$

Claim: Such a Q of size $\Omega(\sqrt{n})$ exists

 \rightarrow sort by x-coordinate

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if rectangle R contains points of Q

then R must also contain from $P \setminus Q$

- \rightarrow sort by x-coordinate
- \rightarrow monotone subsequence of size $\Omega(\sqrt{n})$

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if rectangle R contains points of Q

then R must also contain from $P \setminus Q$

- \rightarrow sort by x-coordinate
- \rightarrow monotone subsequence of size $\Omega(\sqrt{n})$
- $\rightarrow Q$: alternate points in this subsequence

Goal: Given a set P of n points, find $Q \subseteq P$ such that

if rectangle R contains points of Q

then R must also contain from $P \setminus Q$

- \rightarrow sort by x-coordinate
- \rightarrow monotone subsequence of size $\Omega(\sqrt{n})$
- $\rightarrow Q$: alternate points in this subsequence
 - \rightarrow coloring with $O(\sqrt{n})$ colors

•	•	•		•	
	•				\sqrt{n}
•	•	•		•	
•	•	•	•	•	

		•			
•	•	•	•	•	
•					\sqrt{n}
	•	•			
•	•	•	•	•	

		•		•	
•	•	•	•	•	-
•				•	\sqrt{n}
•	•	•	•	•	

each column has $n^{\frac{1}{2}}$ points

each column has $n^{\frac{1}{2}}$ points

 \rightarrow pick a monotone subsequence of size $\Omega\left(n^{\frac{1}{4}}\right)$

each column has $n^{\frac{1}{2}}$ points

 \rightarrow pick a monotone subsequence of size $\Omega\left(n^{\frac{1}{4}}\right)$

for each row:

each column has $n^{\frac{1}{2}}$ points

 \rightarrow pick a monotone subsequence of size $\Omega\left(n^{\frac{1}{4}}\right)$

for each row:

 \rightarrow monotonic subsequence of points in it

•	•	•		•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

each column has $n^{\frac{1}{2}}$ points

 \rightarrow pick a monotone subsequence of size $\Omega\left(n^{\frac{1}{4}}\right)$

for each row:

 \rightarrow monotonic subsequence of points in it

Worst case:

•	•	•		•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

each column has $n^{\frac{1}{2}}$ points

 \rightarrow pick a monotone subsequence of size $\Omega\left(n^{\frac{1}{4}}\right)$

for each row:

 \rightarrow monotonic subsequence of points in it

Worst case:

first $n^{\frac{1}{4}}$ rows full of chosen points for all columns

•	•	•		•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

each column has $n^{\frac{1}{2}}$ points

 \rightarrow pick a monotone subsequence of size $\Omega\left(n^{\frac{1}{4}}\right)$

for each row:

 \rightarrow monotonic subsequence of points in it

Worst case:

first $n^{\frac{1}{4}}$ rows full of chosen points for all columns

$$Q$$
 has size: $\Omega\left(\sqrt{n^{\frac{1}{2}}}\cdot n^{\frac{1}{4}}\right) = \Omega\left(n^{\frac{1}{2}}\right)$

		1		
•	•	•		•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

CONFLICT-FREE COLORINGS

each column has $n^{\frac{1}{2}}$ points

 \rightarrow pick a monotone subsequence of size $\Omega\left(n^{\frac{1}{4}}\right)$

for each row:

 \rightarrow monotonic subsequence of points in it

Worst case:

first $n^{\frac{1}{4}}$ rows full of chosen points for all columns

$$Q$$
 has size: $\Omega\left(\sqrt{n^{\frac{1}{2}}}\cdot n^{\frac{1}{4}}\right) = \Omega\left(n^{\frac{1}{2}}\right)$

Insight: many monotone subsequences

	•	•	•		•
	•	•	•	•	•
1	•	•	•	•	•
	•	•	•	•	•
	•	•	•	•	•

each column has $n^{\frac{1}{2}}$ points

each column has $n^{\frac{1}{2}}$ points

 \rightarrow partition into $O\left(n^{\frac{1}{4}}\right)$ monotonic subsequences

each column has $n^{\frac{1}{2}}$ points

- \rightarrow partition into $O\left(n^{\frac{1}{4}}\right)$ monotonic subsequences
- \rightarrow pick one uniformly at random

each column has $n^{\frac{1}{2}}$ points

- \rightarrow partition into $O\left(n^{\frac{1}{4}}\right)$ monotonic subsequences
- \rightarrow pick one uniformly at random

expected points in each row :
$$O\left(\frac{1}{n^{\frac{1}{4}}} \cdot n^{\frac{1}{2}}\right) = O\left(n^{\frac{1}{4}}\right)$$

•	•	•		•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

each column has $n^{\frac{1}{2}}$ points

- \rightarrow partition into $O\left(n^{\frac{1}{4}}\right)$ monotonic subsequences
- \rightarrow pick one uniformly at random

expected points in each row :
$$O\left(\frac{1}{n^{\frac{1}{4}}} \cdot n^{\frac{1}{2}}\right) = O\left(n^{\frac{1}{4}}\right)$$

 \rightarrow monotonic subsequence has size $O\left(n^{\frac{1}{8}}\right)$

•	•	•		•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

each column has $n^{\frac{1}{2}}$ points

- \rightarrow partition into $O\left(n^{\frac{1}{4}}\right)$ monotonic subsequences
- \rightarrow pick one uniformly at random

expected points in each row :
$$O\left(\frac{1}{n^{\frac{1}{4}}} \cdot n^{\frac{1}{2}}\right) = O\left(n^{\frac{1}{4}}\right)$$

- \rightarrow monotonic subsequence has size $O\left(n^{\frac{1}{8}}\right)$
- → strongly concentrated (Chernoff's bound)

•	•	•		•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

each column has $n^{\frac{1}{2}}$ points

- \rightarrow partition into $O\left(n^{\frac{1}{4}}\right)$ monotonic subsequences
- \rightarrow pick one uniformly at random

expected points in each row :
$$O\left(\frac{1}{n^{\frac{1}{4}}} \cdot n^{\frac{1}{2}}\right) = O\left(n^{\frac{1}{4}}\right)$$

- \rightarrow monotonic subsequence has size $O\left(n^{\frac{1}{8}}\right)$
- \rightarrow strongly concentrated (Chernoff's bound)

$$Q$$
 has size: $\tilde{O}\left(n^{\frac{1}{2}}\cdot n^{\frac{1}{8}}\right) = \tilde{O}\left(n^{\frac{5}{8}}\right)$

•	•	•		•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

each column has $n^{\frac{1}{2}}$ points

- \rightarrow partition into $O\left(n^{\frac{1}{4}}\right)$ monotonic subsequences
- \rightarrow pick one uniformly at random

expected points in each row :
$$O\left(\frac{1}{n^{\frac{1}{4}}} \cdot n^{\frac{1}{2}}\right) = O\left(n^{\frac{1}{4}}\right)$$

- \rightarrow monotonic subsequence has size $O\left(n^{\frac{1}{8}}\right)$
- \rightarrow strongly concentrated (Chernoff's bound)

$$Q$$
 has size: $\tilde{O}\left(n^{\frac{1}{2}}\cdot n^{\frac{1}{8}}\right) = \tilde{O}\left(n^{\frac{5}{8}}\right)$

 \rightarrow coloring with $\tilde{O}\left(n^{\frac{3}{8}}\right)$ colors

•	•	•		•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

[Elbassioni, M.]

Grid case:

$$\rightarrow$$
 coloring with $O\left(n^{\frac{3}{8}}\right) = O\left(n^{0.375}\right)$ colors

Grid case:

$$\rightarrow$$
 coloring with $O\left(n^{\frac{3}{8}}\right) = O\left(n^{0.375}\right)$ colors

General case with $O(n^{1-\epsilon})$ Steiner points :

 \rightarrow coloring with $O\left(n^{\frac{3(1+\epsilon)}{8}}\right)$ colors

•	•	•		•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

Grid case:

$$\rightarrow$$
 coloring with $O\left(n^{\frac{3}{8}}\right) = O\left(n^{0.375}\right)$ colors

General case with $O(n^{1-\epsilon})$ Steiner points :

$$\rightarrow$$
 coloring with $O\left(n^{\frac{3(1+\epsilon)}{8}}\right)$ colors

General case:

 \rightarrow coloring with $O\left(n^{0.382}\right)$ colors

[Ajwani, Elbassioni, Govindarajan, Ray]

•	•	•		•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

Grid case:

$$\rightarrow$$
 coloring with $O\left(n^{\frac{3}{8}}\right) = O\left(n^{0.375}\right)$ colors

General case with $O(n^{1-\epsilon})$ Steiner points :

$$\rightarrow$$
 coloring with $O\left(n^{\frac{3(1+\epsilon)}{8}}\right)$ colors

General case:

 \rightarrow coloring with $O\left(n^{0.382}\right)$ colors

[Ajwani, Elbassioni, Govindarajan, Ray]

 \rightarrow coloring with $O\left(n^{0.368}\right)$ colors [Chan]

•	•	•		•
	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

Grid case:

$$\rightarrow$$
 coloring with $O\left(n^{\frac{3}{8}}\right) = O\left(n^{0.375}\right)$ colors

General case with $O(n^{1-\epsilon})$ Steiner points :

$$\rightarrow$$
 coloring with $O\left(n^{\frac{3(1+\epsilon)}{8}}\right)$ colors

General case:

 \rightarrow coloring with $O\left(n^{0.382}\right)$ colors

[Chan]

- [Ajwani, Elbassioni, Govindarajan, Ray]
- \rightarrow coloring with $O\left(n^{0.368}\right)$ colors

•	•	•		•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

Independent Sets

Goal: linear separation

Goal: linear separation

Goal: linear separation

Goal: linear separation

Question: how many can be separated?

Goal: linear separation

Question: how many can be separated?

 \rightarrow approximation for independent set

Claim: possible to get $\Omega(\sqrt{n})$ segments separated

Claim: possible to get $\Omega(\sqrt{n})$ segments separated

 \rightarrow sort segments by intersection with line

Claim: possible to get $\Omega(\sqrt{n})$ segments separated

- \rightarrow sort segments by intersection with line
- \rightarrow monotonic subsequence by slopes

Claim: possible to get $\Omega(\sqrt{n})$ segments separated

- \rightarrow sort segments by intersection with line
- \rightarrow monotonic subsequence by slopes

Claim: possible to get $\Omega(\sqrt{n})$ segments separated

[Pach, Tardos]

- \rightarrow sort segments by intersection with line
- \rightarrow monotonic subsequence by slopes

Claim: can separate a monotonic subsequence

Claim: can separate a monotonic subsequence

Claim: can separate a monotonic subsequence

CONTACT-MAP MATCHING

Contact-map similarity

Measuring protein similarity

Measuring protein similarity

 \rightarrow contact-maps

Measuring protein similarity

 \rightarrow contact-maps

Measuring protein similarity

 \rightarrow contact-maps

 \rightarrow order-preserving mapping $f\left(\cdot\right)$

 \rightarrow order-preserving mapping $f\left(\cdot\right)$

Contact-map similarity

 \rightarrow order-preserving mapping $f\left(\cdot\right)$

$$\mathcal{B}$$
 $f(a_2) \ f(a_4) \ f(a_5) \ f(a_7) \ f(a_8)$

Contact-map similarity

 \rightarrow order-preserving mapping $f(\cdot)$

$$\mathcal{B}$$
 $f(a_2) \ f(a_4) \ f(a_5) \ f(a_7) \ f(a_8)$

 \rightarrow NP-hard

 \rightarrow In \mathbb{R}^2 , a nice decomposition is possible

 \rightarrow In \mathbb{R}^2 , a nice decomposition is possible

Claim: Contact-map in \mathbb{R}^2 decomposed into 2 stacks and 1 queue

 \rightarrow In \mathbb{R}^2 , a nice decomposition is possible

Claim: Contact-map in \mathbb{R}^2 decomposed into 2 stacks and 1 queue

 \rightarrow In \mathbb{R}^2 , a nice decomposition is possible

Claim: Contact-map in \mathbb{R}^2 decomposed into 2 stacks and 1 queue

 \rightarrow In \mathbb{R}^2 , a nice decomposition is possible

Claim: Contact-map in \mathbb{R}^2 decomposed into 2 stacks and 1 queue

Claim: Optimal matching of a stack and a contact-map

Approximate matching of a queue and a contact-map

 \rightarrow In \mathbb{R}^2 , a nice decomposition is possible

Claim: Contact-map in \mathbb{R}^2 decomposed into 2 stacks and 1 queue

[Goldman, Istrail, Papadimitriou]

Claim: Optimal matching of a stack and a contact-map

Approximate matching of a queue and a contact-map

 \rightarrow 3-approximation in \mathbb{R}^2

Contact-map similarity

 \rightarrow In \mathbb{R}^3 ?

 \rightarrow In \mathbb{R}^3 ?

Claim: Contact-map in \mathbb{R}^3 decomposed into $O(\sqrt{n})$ stacks and queues

 \rightarrow In \mathbb{R}^3 ?

[Agarwal, M., Wang]

Claim: Contact-map in \mathbb{R}^3 decomposed into $O(\sqrt{n})$ stacks and queues

 \rightarrow In \mathbb{R}^3 ?

[Agarwal, M., Wang]

Claim: Contact-map in \mathbb{R}^3 decomposed into $O(\sqrt{n})$ stacks and queues

 \rightarrow increasing subsequence is a

 \rightarrow In \mathbb{R}^3 ?

[Agarwal, M., Wang]

Claim: Contact-map in \mathbb{R}^3 decomposed into $O(\sqrt{n})$ stacks and queues

 \rightarrow increasing subsequence is a **queue**

 \rightarrow In \mathbb{R}^3 ?

[Agarwal, M., Wang]

Claim: Contact-map in \mathbb{R}^3 decomposed into $O(\sqrt{n})$ stacks and queues

- \rightarrow increasing subsequence is a **queue**
- \rightarrow decreasing subsequence is a

 \rightarrow In \mathbb{R}^3 ?

[Agarwal, M., Wang]

Claim: Contact-map in \mathbb{R}^3 decomposed into $O(\sqrt{n})$ stacks and queues

- \rightarrow increasing subsequence is a **queue**
- \rightarrow decreasing subsequence is a **stack**

 \rightarrow In \mathbb{R}^3 ?

[Agarwal, M., Wang]

Claim: Contact-map in \mathbb{R}^3 decomposed into $O(\sqrt{n})$ stacks and queues

- \rightarrow increasing subsequence is a **queue**
- \rightarrow decreasing subsequence is a **stack**

in practice, small number of stacks and queues

 \rightarrow In \mathbb{R}^3 ?

[Agarwal, M., Wang]

Claim: Contact-map in \mathbb{R}^3 decomposed into $O(\sqrt{n})$ stacks and queues

- \rightarrow increasing subsequence is a **queue**
- \rightarrow decreasing subsequence is a **stack**

in practice, small number of stacks and queues

OPEN PROBLEM 3

Thank you