Monotonic Subsequences

Three (Nice) Open Problems

NABIL H. MUSTAFA
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LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

101 9875 3 11 6 12 4 2
1 122222 3 34 3 2

98 7 5 3 2

t; . length of the longest increasing sequence ending at the i-th element

either 3 ¢ with ¢; > /n or the same integer appears % times
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[Even, Lotker, Ron, Smorodinsky]

o—— -6 —o6—606—06—06—06—"0—0—0—0—0—90

Goal : coloring such that each interval contains a unique color

° . . ———— = o
— possible with O (logn) colors -
o/ °
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— need € (logn) colors T |
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CONFLICT-FREE COLORINGS
[Even, Lotker, Ron, Smorodinsky]|

Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

Coloring procedure:

o
o ® o
while ( P not empty ) o ®
find () and color with the same new color °
o ° o
P=P—qQ o
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Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

Intervals : @ exists of size — coloring with © (logn) colors

N|3

Disks - Q exists of size — coloring with © (logn) colors

=3

(4-color theorem)

Rectangles : ? ?
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Goal : Given a set P of n points, find () C P such that

if rectangle R contains points of ()

then R must also contain from P\ @

Claim : Such a Q of size Q (y/n) exists o

— sort by x-coordinate o
— monotone subsequence of size 2 (1/n)

— (): alternate points in this subsequence

— coloring with O (y/n) colors o

v



CONFLICT-FREE COLORINGS




CONFLICT-FREE COLORINGS




CONFLICT-FREE COLORINGS




CONFLICT-FREE COLORINGS




CONFLICT-FREE COLORINGS

1.
each column has n2 points




CONFLICT-FREE COLORINGS

1.
each column has n2 points

=

)

— pick a monotone subsequence of size () (n




CONFLICT-FREE COLORINGS

1.
each column has n2 points

=

)

— pick a monotone subsequence of size () (n

for each row :




CONFLICT-FREE COLORINGS

1.
each column has n2 points

=

)

— pick a monotone subsequence of size () (n

for each row :

— monotonic subsequence of points in it




CONFLICT-FREE COLORINGS

1.
each column has n2 points

=

)

— pick a monotone subsequence of size () (n

for each row :

— monotonic subsequence of points in it

Worst case :




CONFLICT-FREE COLORINGS

1.
each column has n2 points

=

)

— pick a monotone subsequence of size () (n

for each row :

— monotonic subsequence of points in it

o
Worst case :
o
first n1 rows full of chosen points for all columns
o
o
o
o




CONFLICT-FREE COLORINGS

1.
each column has n2 points

=

)

— pick a monotone subsequence of size () (n

for each row :

— monotonic subsequence of points in it

Worst case :

first n1 rows full of chosen points for all columns

s
() has size: Q(\/Tgni) :Q(n%) o
o




CONFLICT-FREE COLORINGS

1.
each column has n2 points

=

)

— pick a monotone subsequence of size () (n

for each row :

— monotonic subsequence of points in it

o
Worst case :
o
first n1 rows full of chosen points for all columns
o
() has size: Q(\/n% -ni) :Q(n%) °
. o
Insight : many monotone subsequences
o
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1 .
each column has n2 points
.. . 1 .
— partition into O (n4) monotonic subsequences

— pick one uniformly at random

expected points in each row : O (% : n%) =0 (ni)

Go|—

A o

— monotonic subsequence has size O (n

— strongly concentrated (Chernoff’s bound) o
. = 1 1 ~ 5 ®
() has size: O (frﬁ -ng) =0 (ng)
o
— coloring with O (n%) colors .
[Elbassioni, M.] °
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00l

— coloring with O (n ) =0 (n0'375) colors
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°
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Grid case :

00l

— coloring with O (n ) =0 (n0'375) colors

General case with O(n'~¢) Steiner points :
° °
: : 8(1+e) °
— coloring with O (n 8 ) colors e
o | ©
General case : o
— coloring with O (n"3%2) colors o ®
[Ajwani, Elbassioni, Govindarajan, Ray]
— coloring with O (n"3%®) colors o, ¢

[Chan)]
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\

-

A
/

Question: how many can be separated ?
— approximation for independent set
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Claim : possible to get € (1/n) segments separated

— sort segments by intersection with line

— monotonic subsequence by slopes
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[Pach, Tardos]
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Claim : can separate a monotonic subsequence
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O (y/n)-approximation
O (n¢)-approximation
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[Fox, Pach]

Q(yn) = 77 =
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— order-preserving mapping f (+)

al az as aq as ag a7 as

B PN

flaz) f(as) f(as) f(a7) f(as)

— NP-hard



CONTACT-MAP SIMILARITY

— In R?, a nice decomposition is possible



CONTACT-MAP SIMILARITY

— In R?, a nice decomposition is possible

Claim: Contact-map in R? decomposed into 2 stacks and 1 queue



CONTACT-MAP SIMILARITY

— In R?, a nice decomposition is possible

Claim: Contact-map in R? decomposed into 2 stacks and 1 queue

R

EL N\




CONTACT-MAP SIMILARITY

— In R?, a nice decomposition is possible

Claim: Contact-map in R? decomposed into 2 stacks and 1 queue

ﬁ\ [ %&y ‘Q\\\




CONTACT-MAP SIMILARITY

— In R?, a nice decomposition is possible

Claim: Contact-map in R? decomposed into 2 stacks and 1 queue

S e\
‘T?/ N o~ Ty
m / /T~ \ )
|'I. -'Ir ‘\\ ‘l
v—

Claim: Optimal matching of a stack and a contact-map

Approximate matching of a queue and a contact-map



CONTACT-MAP SIMILARITY

— In R?, a nice decomposition is possible

Claim: Contact-map in R? decomposed into 2 stacks and 1 queue

[Goldman, Istrail, Papadimitriou]

- —-.- — —,..f s I _‘--H\\
wf/ ;&. -~ T
|'I. -'Ir ‘\\ ‘l
v—o

Claim: Optimal matching of a stack and a contact-map

Approximate matching of a queue and a contact-map

— 3-approximation in R?



CONTACT-MAP SIMILARITY

—~ In R3 ?



CONTACT-MAP SIMILARITY

—~ In R3 ?

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues



CONTACT-MAP SIMILARITY

— In Ri’) ? [Agarwal, M., Wang]

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

ay a40



CONTACT-MAP SIMILARITY

— In Ri’) ? [Agarwal, M., Wang]

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

ay a40

— increasing subsequence is a



CONTACT-MAP SIMILARITY

— In RS ‘? [Agarwal, M., Wang]

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

al @40

— increasing subsequence is a queue



CONTACT-MAP SIMILARITY

— In RS ‘? [Agarwal, M., Wang]

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

] @40

— increasing subsequence is a queue

— decreasing subsequence is a



CONTACT-MAP SIMILARITY

— In RS ‘? [Agarwal, M., Wang]

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

al @40

— increasing subsequence is a queue

— decreasing subsequence is a stack



CONTACT-MAP SIMILARITY

— In RS ‘? [Aga.l‘\x-'al? M., \-‘"\-""ang]

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

al @40

— increasing subsequence is a queue
— decreasing subsequence is a stack

in practice, small number of stacks and queues



CONTACT-MAP SIMILARITY

— In Ri’) ? [Agarwal, M., Wang]

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

] @40

— increasing subsequence is a queue
— decreasing subsequence is a stack

in practice, small number of stacks and queues

OPEN PROBLEM 3
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