Monotonic Subsequences

Three (Nice) Open Problems

NABIL H. MUSTAFA

LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

101 9875 3 11 6 12 4 2

LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

101 9875 3 11 6 12 4 2

1 D 11 12

LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

101 9875 3 11 6 12 4 2

1 D 11 12
10 9 8 7 6 4 2

LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

101 9875 3 11 6 12 4 2

1 D 11 12
10 9 8 7 6 4 2

3216954987

LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

101 9875 3 11 6 12 4 2

1 D 11 12
10 9 8 7 6 4 2

3216549 87

LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

101 9875 3 11 6 12 4 2

1 D 11 12
10 9 8 7 6 4 2

3 2]. 6 5 4 9 8 7 — leads to the proof

LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

101 9875 3 11 6 12 4 2

LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

101 9875 3 11 6 12 4 2
1 122222 3 34 3 2

LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

101 9875 3 11 6 12 4 2
1 122222 3 34 3 2

98 75 3 2

LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

101 9875 3 11 6 12 4 2
1 122222 3 34 3 2

98 75 3 2

t; . length of the longest increasing sequence ending at the i-th element

LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

101 9875 3 11 6 12 4 2
1 122222 3 34 3 2

98 75 3 2

t; . length of the longest increasing sequence ending at the i-th element

either 3 ¢ with ¢; > /n

LARGE MONOTONE SUBSEQUENCE

Erdos—Szekeres Theorem

Given a sequence S of n reals,
there exists a monotonic subsequence of S of size at least /n.

101 9875 3 11 6 12 4 2
1 122222 3 34 3 2

98 7 5 3 2

t; . length of the longest increasing sequence ending at the i-th element

either 3 ¢ with ¢; > /n or the same integer appears % times

CONFLICT-FREE
COLORINGS

CONFLICT-FREE COLORINGS

CONFLICT-FREE COLORINGS

[Even, Lotker, Ron, Smorodinsky]

o——410—4o06—06—90—06—0—90—06—0—0—0—0

Goal : coloring such that each interval contains a unique color

CONFLICT-FREE COLORINGS
[Even, Lotker, Ron, Smorodinsky]

0—0-—0 0 0 0 0—0—0—0 0000

Goal : coloring such that each interval contains a unique color

CONFLICT-FREE COLORINGS

[Even, Lotker, Ron, Smorodinsky]

o—— -6 —o6—606—06—06—06—"0—0—0—0—0—90

Goal : coloring such that each interval contains a unique color

CONFLICT-FREE COLORINGS

[Even, Lotker, Ron, Smorodinsky]

o—— -6 —o6—606—06—06—06—"0—0—0—0—0—90

Goal : coloring such that each interval contains a unique color

CONFLICT-FREE COLORINGS

[Even, Lotker, Ron, Smorodinsky]

o—— -6 —o6—606—06—06—06—"0—0—0—0—0—90

Goal : coloring such that each interval contains a unique color

CONFLICT-FREE COLORINGS
[Even, Lotker, Ron, Smorodinsky]

0—0-—0 0 0 0 0—0—0—0 0000

Goal : coloring such that each interval contains a unique color

CONFLICT-FREE COLORINGS
[Even, Lotker, Ron, Smorodinsky]

o—— -6 —o6—606—06—06—06—"0—0—0—0—0—90

Goal : coloring such that each interval contains a unique color

— possible with O (logn) colors

CONFLICT-FREE COLORINGS

[Even, Lotker, Ron, Smorodinsky]

o—— -6 —o6—606—06—06—06—"0—0—0—0—0—90

Goal : coloring such that each interval contains a unique color

— possible with O (logn) colors

— need {2 (logn) colors

CONFLICT-FREE COLORINGS
[Even, Lotker, Ron, Smorodinsky]

o—— -6 —o6—606—06—06—06—"0—0—0—0—0—90

Goal : coloring such that each interval contains a unique color

— possible with O (logn) colors

— need {2 (logn) colors

— Disks in R?

CONFLICT-FREE COLORINGS
[Even, Lotker, Ron, Smorodinsky]

o—— -6 —o6—606—06—06—06—"0—0—0—0—0—90

Goal : coloring such that each interval contains a unique color

— possible with O (logn) colors

— need {2 (logn) colors

. - 2
— Disks in R ®

CONFLICT-FREE COLORINGS

[Even, Lotker, Ron, Smorodinsky]

o—— -6 —o6—606—06—06—06—"0—0—0—0—0—90

Goal : coloring such that each interval contains a unique color

- ~<

— possible with O (logn) colors

— need {2 (logn) colors

. - 2
— Disks in R ®

S~ -

CONFLICT-FREE COLORINGS

[Even, Lotker, Ron, Smorodinsky]

o—— -6 —o6—606—06—06—06—"0—0—0—0—0—90

Goal : coloring such that each interval contains a unique color

° . . ———— = o
— possible with O (logn) colors -
o/ °
,’II—-—~ . \\‘
— need € (logn) colors T |
/ '\ .\\ ’,'
L e o
— Disks in R? ® . '

CONFLICT-FREE COLORINGS

CONFLICT-FREE COLORINGS

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

Coloring procedure:

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

Coloring procedure:

while (P not empty)

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

Coloring procedure:

while (P not empty)

find () and color with the same new color

CONFLICT-FREE COLORINGS
[Even, Lotker, Ron, Smorodinsky]|

Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

Coloring procedure:

o
o ® o
while (P not empty) o ®
find () and color with the same new color °
o ° o
P=P—qQ o

CONFLICT-FREE COLORINGS

CONFLICT-FREE COLORINGS

O e N
o -7 0 o
© o
o l’ o
i o
\‘\\o
‘ o
o
o . o

CONFLICT-FREE COLORINGS

o

CONFLICT-FREE COLORINGS

o

CONFLICT-FREE COLORINGS

CONFLICT-FREE COLORINGS

CONFLICT-FREE COLORINGS

CONFLICT-FREE COLORINGS

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

Intervals : () exists of size 3

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

Intervals : @ exists of size — coloring with © (logn) colors

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

Intervals : @ exists of size — coloring with © (logn) colors

N|3

Disks : () exists of size

=3

(4-color theorem)

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

Intervals : @ exists of size — coloring with © (logn) colors

N|3

Disks - Q exists of size — coloring with © (logn) colors

=3

(4-color theorem)

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if disk D contains points of ()

then D must also contain from P\ @

Intervals : @ exists of size — coloring with © (logn) colors

N|3

Disks - Q exists of size — coloring with © (logn) colors

=3

(4-color theorem)

Rectangles : ? ?

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if rectangle R contains points of ()

then R must also contain from P\ @

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if rectangle R contains points of ()

then R must also contain from P\ @

Claim : Such a @ of size €2 (/n) exists

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if rectangle R contains points of ()

then R must also contain from P\ @

Claim : Such a @ of size €2 (/n) exists

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if rectangle R contains points of ()

then R must also contain from P\ @

Claim : Such a @ of size €2 (/n) exists

— sort by x-coordinate °

v

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if rectangle R contains points of ()

then R must also contain from P\ @

Claim : Such a Q of size Q (y/n) exists o

— sort by x-coordinate o

— monotone subsequence of size 2 (1/n)

v

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if rectangle R contains points of ()

then R must also contain from P\ @

Claim : Such a Q of size Q (y/n) exists o

— sort by x-coordinate o
— monotone subsequence of size 2 (1/n)

— (): alternate points in this subsequence

v

CONFLICT-FREE COLORINGS

Goal : Given a set P of n points, find () C P such that

if rectangle R contains points of ()

then R must also contain from P\ @

Claim : Such a Q of size Q (y/n) exists o

— sort by x-coordinate o
— monotone subsequence of size 2 (1/n)

— (): alternate points in this subsequence

— coloring with O (y/n) colors o

v

CONFLICT-FREE COLORINGS

CONFLICT-FREE COLORINGS

CONFLICT-FREE COLORINGS

CONFLICT-FREE COLORINGS

CONFLICT-FREE COLORINGS

1.
each column has n2 points

CONFLICT-FREE COLORINGS

1.
each column has n2 points

=

)

— pick a monotone subsequence of size () (n

CONFLICT-FREE COLORINGS

1.
each column has n2 points

=

)

— pick a monotone subsequence of size () (n

for each row :

CONFLICT-FREE COLORINGS

1.
each column has n2 points

=

)

— pick a monotone subsequence of size () (n

for each row :

— monotonic subsequence of points in it

CONFLICT-FREE COLORINGS

1.
each column has n2 points

=

)

— pick a monotone subsequence of size () (n

for each row :

— monotonic subsequence of points in it

Worst case :

CONFLICT-FREE COLORINGS

1.
each column has n2 points

=

)

— pick a monotone subsequence of size () (n

for each row :

— monotonic subsequence of points in it

o
Worst case :
o
first n1 rows full of chosen points for all columns
o
o
o
o

CONFLICT-FREE COLORINGS

1.
each column has n2 points

=

)

— pick a monotone subsequence of size () (n

for each row :

— monotonic subsequence of points in it

Worst case :

first n1 rows full of chosen points for all columns

s
() has size: Q(\/Tgni) :Q(n%) o
o

CONFLICT-FREE COLORINGS

1.
each column has n2 points

=

)

— pick a monotone subsequence of size () (n

for each row :

— monotonic subsequence of points in it

o
Worst case :
o
first n1 rows full of chosen points for all columns
o
() has size: Q(\/n% -ni) :Q(n%) °
. o
Insight : many monotone subsequences
o

CONFLICT-FREE COLORINGS

CONFLICT-FREE COLORINGS

1.
each column has n2 points

CONFLICT-FREE COLORINGS

1.
each column has n2 points

.. . 1 .
— partition into O (n4) monotonic subsequences

CONFLICT-FREE COLORINGS

1 .
each column has n2 points
.. . 1 .
— partition into O (n4) monotonic subsequences

— pick one uniformly at random

CONFLICT-FREE COLORINGS

1 .
each column has n2 points
.. . 1 .
— partition into O (n4) monotonic subsequences

— pick one uniformly at random

expected points in each row : O (% : n%) =0 (ni)
n 4

CONFLICT-FREE COLORINGS

1 .
each column has n2 points
.. . 1 .
— partition into O (n4) monotonic subsequences

— pick one uniformly at random

expected points in each row : O (% : n%) =0 (ni)

n 4

: : 1
— monotonic subsequence has size O (ns

CONFLICT-FREE COLORINGS

1 .
each column has n2 points
.. . 1 .
— partition into O (n4) monotonic subsequences

— pick one uniformly at random

expected points in each row : O (% : n%) =0 (ni)

Go|—

— monotonic subsequence has size O (n

A o

— strongly concentrated (Chernoff’s bound)

CONFLICT-FREE COLORINGS

1 .
each column has n2 points
.. . 1 .
— partition into O (n4) monotonic subsequences

— pick one uniformly at random

expected points in each row : O (% : n%) =0 (ni)

Go|—

A o

— monotonic subsequence has size O (n

— strongly concentrated (Chernoff’s bound) o
= 1 1 ~ 5 o
() has size: O (frﬁ -ng) =0 (ng)
o
o
o

CONFLICT-FREE COLORINGS

1 .
each column has n2 points
.. . 1 .
— partition into O (n4) monotonic subsequences

— pick one uniformly at random

expected points in each row : O (% : n%) =0 (ni)

Go|—

A o

— monotonic subsequence has size O (n

— strongly concentrated (Chernoff’s bound) o
. = 1 1 ~ 5 ®
() has size: O (frﬁ -ng) =0 (ng)
o
— coloring with O (n%) colors .
[Elbassioni, M.] °

CONFLICT-FREE COLORINGS

Grid case :

00l

— coloring with O (n) =0 (n0'375) colors

CONFLICT-FREE COLORINGS

Grid case :

00l

— coloring with O (n) =0 (n0'375) colors

General case with O(n'~¢) Steiner points :

°
— coloring with O (ng(lsj E)) colors °
°

°

°

°

CONFLICT-FREE COLORINGS

Grid case :

00l

— coloring with O (n) =0 (n0'375) colors

General case with O(n'~¢) Steiner points :
°
: : 3(14¢) °
— coloring with O (n™ = colors
°
General case : o
— coloring with O (n0'382) colors o
[Ajwani, Elbassioni, Govindarajan, Ray]
°

CONFLICT-FREE COLORINGS

Grid case :

00l

— coloring with O (n) =0 (n0'375) colors

General case with O(n'~¢) Steiner points :
°
: : 3(1+e) °
— coloring with O (n™ = colors
°
General case : o
— coloring with O (n0'382) colors o
[Ajwani, Elbassioni, Govindarajan, Ray]
— coloring with O (n0'368) colors ¢

[Chan)]

CONFLICT-FREE COLORINGS

Grid case :

00l

— coloring with O (n) =0 (n0'375) colors

General case with O(n'~¢) Steiner points :
° °
: : 8(1+e) °
— coloring with O (n 8) colors e
o | ©
General case : o
— coloring with O (n"3%2) colors o ®
[Ajwani, Elbassioni, Govindarajan, Ray]
— coloring with O (n"3%®) colors o, ¢

[Chan)]

OPEN PROBLEM 1

INDEPENDENT SETS

LINE SEGMENTS

Goal: linear separation

A

LINE SEGMENTS

Goal: linear separation

LINE SEGMENTS

Goal: linear separation

LINE SEGMENTS

Goal: linear separation

A
/

Question: how many can be separated ?

LINE SEGMENTS

Goal: linear separation

\

-

A
/

Question: how many can be separated ?
— approximation for independent set

LINE SEGMENTS

Claim : possible to get € (1/n) segments separated

LINE SEGMENTS

Claim : possible to get € (1/n) segments separated

— sort segments by intersection with line

LINE SEGMENTS

Claim : possible to get € (1/n) segments separated

— sort segments by intersection with line

— monotonic subsequence by slopes

LINE SEGMENTS

Claim : possible to get € (1/n) segments separated
— sort segments by intersection with line

— monotonic subsequence by slopes

/

™~

/

~
1

>

LINE SEGMENTS

Claim : possible to get € (1/n) segments separated

— sort segments by intersection with line

— monotonic subsequence by slopes

[T —

~
™~

/ |/

~
_~

>
|

[Pach, Tardos]

LINE SEGMENTS

Claim : can separate a monotonic subsequence

LINE SEGMENTS

Claim : can separate a monotonic subsequence

\
T~
7

LINE SEGMENTS

Claim : can separate a monotonic subsequence

\\
~—

~ >~
////

LINE SEGMENTS

Claim : can separate a monotonic subsequence

\\

~—
N~

///

/

\\
T~
\\

LINE SEGMENTS

Claim : can separate a monotonic subsequence

\\
I \\

\\
\\\ —
4

LINE SEGMENTS

Claim : can separate a monotonic subsequence

>

/

\\
)

\\

~—
N~

///

Q(\/ﬁ) — 7?7 = O(n0'63'“

LINE SEGMENTS

Claim : can separate a monotonic subsequence

\\ \\
=
— / | /

Q(v/n) = 77 = O (n063-

OPEN PROBLEM 2

LINE SEGMENTS

Claim : can separate a monotonic subsequence

\\
_— \\\

/ (v/n)-approximation

Q(\/ﬁ) — 7?7 = O(n0'63'“

OPEN PROBLEM 2

\\

~—
~~

////

LINE SEGMENTS

Claim : can separate a monotonic subsequence

\\
_— \\\

O (y/n)-approximation
O (n¢)-approximation
0 63..

\\

~—
~~

////

[Fox, Pach]

Q(yn) = 77 =

OPEN PROBLEM 2

CONTACT-MAP
MATCHING

CONTACT-MAP SIMILARITY

Measuring protein similarity

CONTACT-MAP SIMILARITY

Measuring protein similarity

— contact-maps

CONTACT-MAP SIMILARITY

Measuring protein similarity

— contact-maps

a40

CONTACT-MAP SIMILARITY

Measuring protein similarity

— contact-maps

ay a40

a40

CONTACT-MAP SIMILARITY

— order-preserving mapping f (+)

CONTACT-MAP SIMILARITY

— order-preserving mapping f (+)

5] - as g as g L4 g asg

CONTACT-MAP SIMILARITY

— order-preserving mapping f (+)

al az as aq as ag a7 as

B PN

flaz) f(as) f(as) f(a7) f(as)

CONTACT-MAP SIMILARITY

— order-preserving mapping f (+)

al az as aq as ag a7 as

B PN

flaz) f(as) f(as) f(a7) f(as)

— NP-hard

CONTACT-MAP SIMILARITY

— In R?, a nice decomposition is possible

CONTACT-MAP SIMILARITY

— In R?, a nice decomposition is possible

Claim: Contact-map in R? decomposed into 2 stacks and 1 queue

CONTACT-MAP SIMILARITY

— In R?, a nice decomposition is possible

Claim: Contact-map in R? decomposed into 2 stacks and 1 queue

R

EL N\

CONTACT-MAP SIMILARITY

— In R?, a nice decomposition is possible

Claim: Contact-map in R? decomposed into 2 stacks and 1 queue

ﬁ\ [%&y ‘Q\\\

CONTACT-MAP SIMILARITY

— In R?, a nice decomposition is possible

Claim: Contact-map in R? decomposed into 2 stacks and 1 queue

S e\
‘T?/ N o~ Ty
m / /T~ \)
|'I. -'Ir ‘\\ ‘l
v—

Claim: Optimal matching of a stack and a contact-map

Approximate matching of a queue and a contact-map

CONTACT-MAP SIMILARITY

— In R?, a nice decomposition is possible

Claim: Contact-map in R? decomposed into 2 stacks and 1 queue

[Goldman, Istrail, Papadimitriou]

- —-.- — —,..f s I _‘--H\\
wf/ ;&. -~ T
|'I. -'Ir ‘\\ ‘l
v—o

Claim: Optimal matching of a stack and a contact-map

Approximate matching of a queue and a contact-map

— 3-approximation in R?

CONTACT-MAP SIMILARITY

—~ In R3 ?

CONTACT-MAP SIMILARITY

—~ In R3 ?

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

CONTACT-MAP SIMILARITY

— In Ri’) ? [Agarwal, M., Wang]

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

ay a40

CONTACT-MAP SIMILARITY

— In Ri’) ? [Agarwal, M., Wang]

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

ay a40

— increasing subsequence is a

CONTACT-MAP SIMILARITY

— In RS ‘? [Agarwal, M., Wang]

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

al @40

— increasing subsequence is a queue

CONTACT-MAP SIMILARITY

— In RS ‘? [Agarwal, M., Wang]

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

] @40

— increasing subsequence is a queue

— decreasing subsequence is a

CONTACT-MAP SIMILARITY

— In RS ‘? [Agarwal, M., Wang]

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

al @40

— increasing subsequence is a queue

— decreasing subsequence is a stack

CONTACT-MAP SIMILARITY

— In RS ‘? [Aga.l‘\x-'al? M., \-‘"\-""ang]

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

al @40

— increasing subsequence is a queue
— decreasing subsequence is a stack

in practice, small number of stacks and queues

CONTACT-MAP SIMILARITY

— In Ri’) ? [Agarwal, M., Wang]

Claim: Contact-map in R? decomposed into O (y/n) stacks and queues

] @40

— increasing subsequence is a queue
— decreasing subsequence is a stack

in practice, small number of stacks and queues

OPEN PROBLEM 3

Thank you

