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> Pk (n) : probability that n points i.i.d. drawn uniformly in a
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In the end, we will be imposing a "floor" in K.
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A few important results

Theorem : Blaschke, 1917

For all compact convex domain K C R? of area 1,
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Efron’s formula :

For all compact convex domain K C R? of area 1, and A, B, C

uniformly distributed in K,

Pk(4) =1 — 4E [Areak (A, B, C)].
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A few important results

For all compact convex domain K C R? of area 1,

Theorem : Blaschke, 1917
2
2 —PA(4) <Pk(#) <POM#) =1— —

3 C12n2
Theorem : Marckert, Rahmani, 2021

11 305

—— =PA(B) < Pk(5) <P~(B)=1— —.

% = Pal8) <Px(5) <PO(8) = 1 - 2

Conjecture (in the plane)

Pa(n) < Pk(n) < Po(n),¥n > 6.



The long-standing d-Sylvester's conjecture

Conjecture (in dimension d > 3)

For all compact convex domain K C RY of volume 1,

Ppa(d +2) < Pk(d +2) < Poa(d +2).



The bi-pointed (or 2d flat floor) problem
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Around the bi-pointed problem

1> Let t s G(t) a concave map of integral 1 on [0, 1]
> p points i.i.d. uniforms in the convex domain delineated by G

D Qc(n) : probability that the n points are in convex position
together with (0,0) and (1,0).




The bi-pointed triangle

Theorem : Barany, Rote, Steiger, Zhang, 2000

For all n > 1,
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The bi-pointed triangle

Theorem : Barany, Rote, Steiger, Zhang, 2000
For all n > 1,

2”
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Theorem : Buchta, 2009
Gives a formula for the probability that k points among n are on

the convex hull.



Notation

> Reg,. : a regular convex k-gon of area 1



> Reg,. : a regular convex k-gon of area 1

D Pw(n) := PRreg, (n) the probability that n points i.i.d. drawn

uniformly in Reg,. are in convex position.




Why the bi-pointed problem 7 : M.

Theorem : M., 2023

Let x > 3 an integer. We have

e2n H3nr2n Sin(eﬁ)n

Puln) | oo O Zr gz
where
C B 1 \/EH+1
" gR/2,/d, 45(1 + cos( )~
and
do=3 _“2,{ (2(_1)~—1 F2-V3)r (24 \/§)K) .



Why the bi-pointed problem 7 : M.

Theorem : M., 2023

Let x > 3 an integer. We have

Pn(n) ~ Cn : L%H3nrgn Sin(eﬁ)n7

=eg 4n n2n+r/2
where
C B 1 \/EH+1
" gR/2,/d, 45(1 + cos( )~
and
K r—1 K K
df@:3_2n(2(—1) + (2 - V3) +(2+\/§)>.

& We extended this formula for any convex polygon! (M.,24+)



A few elements of proof
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elements of proof

21> Conditional on the "contact" points, the probability to be in
convex position in K is the product of probabilities to be in

convex position in each bi-pointed triangle !

11



A few elements of proof

21> Conditional on the "contact" points, the probability to be in
convex position in K is the product of probabilities to be in
convex position in each bi-pointed triangle !

> We integrate on all parallel polygons and all bi-pointed

triangles possible inside to get the probability Pk (n). 4



Why the bi-pointed problem : Valtr's results

Theorem : Valtr, 1995

1 (2n-2)\?
Forall n >3, Pa4(n) =Po(n) = <n )




Why the bi-pointed problem : Valtr's results

Theorem : Valtr, 1996

Foralln>3, P3(n)=Pa(n)= (25;((3(77:31))")3
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Why the bi-pointed problem 7 : Barany's result

Theorem : Barany, 1999

For all compact convex domain K with non empty interior,

= 32AP*(K)3
=3 ,

lim n? (P(n))"

n——+00

where AP*(K) is the supremum of affine perimeters of convex
subsets of K.
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Why the bi-pointed problem 7 : Barany's result

Theorem : Barany, 1999

For all compact convex domain K with non empty interior,

= 32AP*(K)3
=3 ,

lim n? (P(n))"

n——+00

where AP*(K) is the supremum of affine perimeters of convex

subsets of K.

k This limit gives a logarithmic equivalent of Px(n) but hides

lower order terms.

13



Why the bi-pointed problem : Marckert's result

Theorem : Marckert, 2016

Gives a recursive formula for P (n);
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Back to the bi-pointed problem

D Let t G(t) a concave map of integral 1 on [0, 1]
D points i.i.d. uniforms in the convex domain delineated by G

D Qc(n) : probability that the n points are in convex position
together with (0,0) and (1,0).
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Back to the bi-pointed problem

Theorem

Recursive formula for the bi-pointed case :

Qq(n) = (" ; 1) /0 G(t)Qu()(K)Qrey(n — 1 — k)L(t)*R(t)" > *dt.
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A few bi-pointed computations

Theorem : Barany, Rote, Steiger, Zhang, 2000

Forall n>1,
2/7

e =it 1y
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A few bi-pointed computations

Theorem : Marckert, M., 24+

For all n > 1,




A few bi-pointed computations

Theorem : Marckert, M., 24+

Forall n>1,

2-12"
QParaboIa(”) = m




Sylvester’s bi-pointed problem

Theorem : Marckert, M., 24+

For all concave map G of area 1,

Qa(2) < Q¢(2) < Qu(2).
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Larger dimensions




Sylvester's flat floor problem in dimension d
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Sylvester's flat floor subprism problem in dimension d

1> Pick a convex domain F C R~ x {0} with Voly_1(F) = 1
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Sylvester's flat floor subprism problem in dimension d

1> Pick a convex domain F C R~ x {0} with Voly_1(F) = 1
1> A prism with base F is a convex domain of the form F x [0, ]

for some h > 0.
£ A mountain with floor F and apex z (with positive last

coordinate z; > 0), is the compact convex set

Mor(z) = CH({z} U F).

20
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A We will be looking at convex domains K having floor F,
contained in a prism with floor F.
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The class SubPrism(F)

A We will be looking at convex domains K having floor F,
contained in a prism with floor F.
21> Each element K € SubPrism(F) is characterized by its top
function Gk defined by
Gk(z) :=sup{y € R,(z1, - ,z4-1,y) € K}
-

€F

21




The class SubPrism(F)

A We will be looking at convex domains K having floor F,
contained in a prism with floor F.

21> Each element K € SubPrism(F) is characterized by its top
function Gk defined by
Gk(z) :=sup{ly €R, (21, ,Zd-1,¥) € K}

€F

> Qk(n) : probability that n points uniform under Gk are in

convex position together with F.

21




Sylvester's flat floor subprism problem

Theorem : Marckert, M., 24+

For all K € SubPrism(F), we have

QMoF(z) < QK(2) < QPrism(F)(2)'
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Sylvester's flat floor subprism problem

Theorem : Marckert, M., 24+

For all K € SubPrism(F), we have

QMoF(2) < QK(2) < QPrism(F)(2)'

Proof.
A uniform point in K has coordinates U = (Z, Hk) where Z € F,
and Hg is its height "above" F.
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Sylvester's flat floor subprism problem

Theorem : Marckert, M., 24+

For all K € SubPrism(F), we have

QMoF(2) < QK(2) < QPrism(F)(2)'

Proof.
A uniform point in K has coordinates U = (Z, Hk) where Z € F,
and Hg is its height "above" F.

Qk(2) =1 —2E(Hk/d)
=1 —/FGE(d(Z) dz

]
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The lower bound

Let us write E(Hk) = [g P(Hk > t)dt.
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The lower bound

Let us write E(Hk) = [3 P(Hk > t)dt.

Proof.

Now we write

P(Hk > t) = /too Lk (s)ds

=1- /Ot Lk(s)ds

so that it suffices to prove

/t(LK(S) — Lmo(s))ds >0 Vit > 0.
0
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The lower bound

21> We look for the sign of t s Lx(t) — Lyo(t) to obtain the
variations of ¢ [;(Lk(s) — Lmo(s))ds.
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The lower bound

21> We look for the sign of t s Lx(t) — Lyo(t) to obtain the
variations of ¢ [;(Lk(s) — Lmo(s))ds.
A1 The idea is to prove that t — L ()Y (@1 — [y (£)Y/@=1) is

concave.

24



We can see that

— {2
1 Layerk (t2),
t1

tr —

s s
Layerk(s) D Layery(t1) +
th—t t

= i
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We can see that

th —s s—t
Layerk(s) D & Layery(t1) + L Layerk (t2),
th — t1 th —t1
so that by the Brunn-Minkowski inequality,
1 th —s 1 s—t 1
LK(S)d*1 > 2 LK(tl)dil + ! LK(tg)dfl.
th — t1 bh—t

25
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eorem : Marckert, M., 24+
For all domain K with floor F, we have

QK(2) < 1,

<

)

2
and for all o > 0 small enough

QMOF(

there exists a domain K with

floor F such that Qx(2) > 1 — a.
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Bounds in dimension 3




Theorem : Marckert, M., 24+

Take any floor F (compact convex subset of R? x {0} with area
1), any unit mountain Mog with floor F. For all n > 0,

QMo,:(n n:i= H 3] 1

The first terms of the sequence (Y},), for n > 0, are the following :

J 1 1 1 1
77757607 13207 46200 2356200 164934000 15173928000
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Lemma

For some valid floor F, consider a sequence of points such z,--- , z, in

F x [0, 3] such that that 0 < 73(z1) < --- < w3(z,) (their third coordinates
are non decreasing). If the points (1,0), (a(z1), 73(z1)), - , (a(zn), 73(2n))
are in convex position in the 2D-rectangle [0,1] x [0, 3], then the z together

with the floor F, are in convex position in R3.
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For some valid floor F, consider a sequence of points such z, -, z, in

F x [0, 3] such that that 0 < m3(z1) < --- < w3(z,) (their third coordinates
are non decreasing). If the points (1,0), (a(z1), 73(z1)), - , (a(zn), 73(2n))
are in convex position in the 2D-rectangle [0,1] x [0, 3], then the z together

with the floor F, are in convex position in R3.
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The tri-pointed tetrahedron

Theorem : Marckert, M., 24+

Consider a tetrahedron A® with vertices A = (0,0,0), B = (1,0,0),
C =(0,1,0), D = (0,0,6), and floor F = CH(A, B, C). We have

Ly < Qaz(n) < un, with the sequences

n—1 n—1

(n—=1)!n! 6
R e Y T = e > Ulip1—k-
( n—|—1)! — k 1—k u (n+2)(n—|—1)n 2 UklUn—1—k

29
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Thanks for
your attentio
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