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Abstract
We present a Coq library that allows for readily proving
that a function is computable in polynomial time. It is based
on quasi-interpretations that, in combination with termina-
tion ordering, provide a characterisation of the class FP of
functions computable in polynomial time. At the heart of
this formalisation is a proof of soundness and extensional
completeness. Compared to the original paper proof, we had
to fill a lot of not so trivial details that were left to the reader
and fix a few glitches. To demonstrate the usability of our
library, we apply it to the modular exponentiation.

CCS Concepts • General and reference → Verification;
• Theory of computation→ Complexity classes; Logic and
verification; Program verification; Complexity theory and
logic; Semantics and reasoning;

Keywords Coq formal proof, implicit complexity, polyno-
mial time
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1 Introduction
Most of the Internet protocols used nowadays rely on crypto-
graphic primitives that are used to ensure security properties
for communication such as secrecy, authenticity, or integrity.
The security of most of those primitives rely on a particular
mathematical problem that is believed not to be solvable
by a feasible adversary. Cryptographers follow Cobham’s
thesis that asserts that being feasible is the same as being
computable in polynomial time [10]. More precisely, they
assume that the adversary is computable in probabilistic
polynomial time (PPT), i.e. it is executable on a Turing ma-
chine extended with a read-only tape that has been filled
with random bits, and working in worst-case polynomial
time [17, 23]. It is unfortunately not uncommon for cryp-
tographic primitives to be published with a mathematical
proof of security in a top-level peer-reviewed conference,
followed by an attack a few months or years later [7]. Cryp-
tography is a field that is clearly in dire need of formal proofs
and that has been addressed since the end of the previous
decade [1, 5, 6, 12, 13, 22, 27–29, 33]. However some of those
approaches were not implemented. And in those that were
implemented, the complexity of the adversary was either
not taken into account or was entirely manual such as with
the cost monad used in [6].

A way to take complexity issues into account in a formal
proof of security would be to formalise a precise execution
model (e.g., a Turing machine) and to explicitly count the
number of steps necessary for the execution of the adversary.
Not only would it be tedious, but it would provide results
depending on the particular execution model in use whereas
we are here interested in the complexity class independently
of the execution model. Implicit computational complex-
ity (ICC) is a more convenient approach for our purpose:
it relates programming languages with complexity classes
without relying on a specific execution model nor an explicit
counting of execution steps.
In [10], Cobham gave a characterisation of FP in terms

of bounded recursion: the primitive recursion scheme is fur-
ther restricted by requiring that calls are bounded. This is a
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characterisation of FP in the sense that it defines a set of pro-
grams, BR, which is both sound and extensionally complete
for FP: any program in BR is computable in polynomial time;
and any function in FP can be computed by a program in BR.
This characterisation is, however, somewhat inelegant in the
sense that it requires explicit bounds to be built. Moreover,
it is based on primitive recursion which is known to be of
very limited expressive power [11].

In [8], Bellantoni and Cook got rid of the explicit bounds
by introducing the tiering mechanism: some values (results
of recursion) are tagged as being “safe” and may not be used
to control another recursion. This prevents too many nesting
of recursion and thus prevents exponential time computa-
tion. The class of programs, BC, that they define, still char-
acterises FP in the same sense (soundness and extensional
completeness).

However, BC suffers from the same expressivity problem
as BR or the primitive recursion. It is extremely difficult for
programmers to write a program that respect the syntactical
constraints and thus it makes any practical use of the charac-
terisation clumsy at best, as experienced while formalising
it in [18].

Since the breakthrough of Bellantoni and Cook, ICC has fo-
cused on improving the expressivity of its characterisations
of FP. A first step was to follow the road that was taken for
primitive recursion. It is known in the Term Rewriting com-
munity that the Multiset Path Ordering (MPO) characterises
the Primitive Recursive functions [19]. This characterisation
enjoys the soundness and extensional completeness proper-
ties; and notably extends the expressivity of the language
(e.g. it is possible to compute the maximum of two unary
integers x and y in time min(x ,y)). By introducing the tier-
ing discipline into MPO, Marion defined LMPO [24] which
characterises FP and is more expressive than BC as it allows
more complex forms of recursion.
Unfortunately, LMPO still had huge expressivity limita-

tions. Since it mixes the termination analysis (via MPO) and
the bound analysis (via the tiering mechanism), some pro-
grams require extra arguments to be added just to get the
machinery going. Typically, a binary max function may need
a third argument just to be used as a bound during the proofs.
Even worse, the need for such extra (and counter-intuitive)
arguments only arise when the function is further reused
as part of a larger code, thus breaking any hopes of true
compositionality of the code.
This problem has been partially solved by splitting the

termination and bounds analysis and the introduction of
Quasi-Interpretations (QIs) [9]. The termination (and Primi-
tive Recursive bound) is still guaranteed by MPO, or, rather,
a simpler but equivalent variant called Product Path Ordering
(PPO); the bounds are externalised through QIs. PPO alone
only characterises Primitive Recursion. QIs alone do not en-
sure termination. The composition of both characterises FP.

We formalise here a detailed version of the proof as presented
in [4].

Compared to Cobham’s system, QIs are an external bound
rather than an internal one. They do not need to be written
within the system and can thus use some external additional
proof power for computing bounds (i.e. the full Arithmetic).
The characterisation is thus of relative simple use and expres-
sive enough to allow the certification of program computing,
for example, the modular exponentiation.

Of course, QIs are still lacking in expressivity and writing
certified programs still requires a lot of work. ICC has since
made some progress in that direction. However, having an
intensionally complete characterisation (that is, one that
admits all the programs computing in polynomial time, not
just one program for each function) is impossible [26]. We
believe that QIs offer a good enough compromise between
expressivity and easiness of writing the formal proofs (which
are already quite long). Moreover, the techniques developed
in this article can be reused to write formal proofs of more
advanced ICC systems, should the need for more expressivity
arise.

Contributions Our main contribution is a Coq library that
allows for readily proving that a function is computable in
polynomial time. At the heart of this library is the formal-
isation of Quasi-Interpretations along with the associated
soundness and completeness theorems.
Not surprisingly, the formalisation of the soundness the-

orem required us to deal with a lot of details that were left
implicit in the paper proof [4, 9], and to make some slight
modifications in order to make the paper proof amenable to
a formal proof.
On the other hand, the formal proof of the completeness

theorem was done from scratch. We proceed by reduction
from the characterisation of FP by Bellantoni and Cook [8,
18].

Then, by providing an interface together with various de-
cision procedures and tactics to help proving the hypotheses
of the soundness theorem on a given program, we turned this
theoretical results into a verified tool for writing programs
as term-rewriting systems and ensuring that they implement
polynomial-time computable functions. Altogether, this pro-
vides an environment to prove running time bounds as well
as other formal properties (like functional correctness) about
programs, all in the Coq proof environment.

In order to emphasise the usability of this machinery, we
apply it successfully to a small yet non-trivial program. For
this, we chose the modular exponentiation as it is broadly
used in cryptographic primitives — one of our initial moti-
vations — and is a good example of program where the poly-
nomial running-time bound cannot be proved by a straight-
forward argument.

Related work A formal proof that BC is a characterisation
of FPwas given in [18] and integrated in frameworks [6] and
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[27] for formal security proofs in cryptography. However,
because of the limited expressivity of BC, the encoding of
adversaries is difficult. In particular, BC does not allow for
transmitting the carry bit to a recursive call. This thus makes
the encoding of a simple function like binary addition tricky.
A solution for binary addition without using a carry bit can
however be found in pages 127–129 of [30] but it involves
21 intermediate definitions.
Researchers in the field of ICC have proposed more ex-

pressive characterisations of FP suitable for formal proof in
cryptography. There is in particular SLR by Hofmann [21],
that was later extended to OSLR by Mitchell et al. [25], and
then to CSLR by Zhang [33]. The latter was used in [29]
to model security proofs of cryptographic primitives in a
way that takes into account complexity issues. But, since
SLR and its successors rely on quite involved mathematics
that have not yet found their way into proof assistants’ li-
braries, it would be heavy work to formalise them into a
proof assistant.
More recently, a type system has been defined to anal-

yse the complexity of higher-order stateful programs, and
was used to prove that the constructed adversary for the
Goldreich-Levin theorem is polytime [3]. However, it has
not been implemented.

Such tools have been developed to analyse the complexity
of programs [2, 16, 20, 31, 32]. Such a tool however consists
of thousands of lines of code that are not proved correct.

Outline After a brief overview of quasi-interpretations in
Section 2, we present the interface of our library in Section 3.
The next two sections present twomajor and novel aspects of
our formal proof: Section 4 is about the proof of completeness
and Section 5 is about automation. We then demonstrate the
usability of our library in Section 6 with the example of
modular exponentiation. Finally, we conclude in section 7.

2 Quasi-Interpretations
In this section, we briefly present Quasi-Interpretations. Any
reader interested in detailed definitions and proofs should
refer to [4] or to our fully detailed technical report [15].

We consider first-order term rewriting systems (TRS) with
disjoint sets X, F , C resp. of variables, function symbols
and constructor symbols. A program will then be defined
by a finite set of rewriting rules (or equations) of the form
f(p1, . . . ,pn) → t where f ∈ F , pi is a pattern (a term with
no function symbol) and t is a term whose free variables
appear in the (pi ).
We equip such programs with a call-by-value semantics

with memoisation. In other words, the execution of a pro-
gram uses and updates a cache which maps every already
evaluated activations (i.e. terms of the form f v1 . . . vn
where vi is a value) with its value. We will not give the
details of this semantics here.

The first part of the QI technique consists in ensuring that
the program is ordered according to an ordering from the
PPO family. In order to define an order on terms, we first
need to choose one on function symbols and constructors.

Definition 2.1 (Precedence). A precedence ⪯F is a preorder
over F

⋃
C which verifies the following properties:

• (Compatible) Function calls are done toward smaller
functions: for each equation f(p1, . . . ,pn) → r and
each function symbol g appearing in r , g ⪯F f.
• (Separating) Constructors are strictly smaller than any
function symbol: for each c ∈ C, f ∈ F , c ≺F f.
• (Strict) Constructors are mutually incomparable: for
each distinct constructors c , d, c and d are incompa-
rable.

We denote by ≈F the associated equivalence: f ≈F g ⇔
f ⪯F g and g ⪯F f.

The following extension of an order on the elements of a
set S to the tuples of elements of S is the last definition we
need to define a Product Path Ordering on the terms of our
program.

Definition 2.2 (Product Extension). Let ≺ be a binary re-
lation over a set S and ⪯ be its reflexive closure. Its prod-
uct extension is the relation ≺p over tuples of elements of
S such that: (m1, . . . ,mk ) ≺

p (n1, . . . ,nk ) if and only if (i)
∀i,mi ⪯ ni and (ii) ∃j such thatmj ≺ nj .

Definition 2.3 (PPO). The strict Product Path Ordering —
denoted by ≺ppo and called PPO from now on — is the rela-
tion defined in Figure 1. The Product Path Ordering ⪯ppo is
the reflexive closure of ≺ppo .

Definition 2.4 (Ordered by PPO). An equation l → r is
strictly decreasing if we have r ≺ppo l . A program is ordered
by PPO if each equation is strictly decreasing.

Note that a program ordered by PPO always terminates
(see [14]). For this, we have defined the notion of precedence
(Definition 2.1) on function symbols, which is related to the
notion of rank.

Definition 2.5 (Rank). A precedence naturally induces a
notion of rank of function symbols defined as:

rk(f) = max
g≺Ff

rk(g) + 1

Especially, g ≺F f iff rk(g) < rk(f).

We now need a second and last criterion on our program
to guarantee that it computes a polynomial time computable
function, or more precisely that it has a reduction proof of
polynomial size in the memoised call-by-value semantics.

Definition 2.6 (Assignment). An assignment of a construc-
tor c of arity n is a function LcM : Nn → N which has the
(Additivity) property, that is, which is of the form:
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s ⪯ppo ti
(Subterm Cons)

s ≺ppo c(. . . , ti , . . .)

s ⪯ppo ti
(Subterm Fun)

s ≺ppo f(. . . , ti , . . .)

∀i, si ≺ppo f(t1, . . . , tn)
(Cons Strict)

c(s1, . . . , sm) ≺ppo f(t1, . . . , tn)

g ≺F f ∀i, si ≺ppo f(t1, . . . , tn)
(Fun Strict)

g(s1, . . . , sm) ≺ppo f(t1, . . . , tn)

f ≈F g (s1, . . . , sn) ≺
p
ppo (t1, . . . , tn) (Fun Equiv)

g(s1, . . . , sn) ≺ppo f(t1, . . . , tn)

Figure 1. Definition of ≺ppo

LcM(X1, . . . ,Xn) =
∑n

i=1Xi + cc with cc ≥ 1 a constant
depending on c. An assignment of a function symbol fwhose
arity is n is a function LfM : Nn → N with the following
properties:
• (Subterm) Xi ≤ LfM(X1, . . . ,Xn) for all 1 ≤ i ≤ n.
• (Weak Monotonicity) LfM is increasing with respect to
each variable:

∀1 ≤ i ≤ n,Xi ≤ Yi ⇒ LfM(X1, . . . ,Xn) ≤ LfM(Y1, . . . ,Yn)

Once the assignment function has been defined over func-
tions and constructors, it can be extended to all terms by
composition: each program variable is interpreted as a func-
tion variable, and the interpretation of a term is then an
integer function with as many variables as the term has.

Definition 2.7 (Quasi-interpretation). An assignment L.M
is a quasi-interpretation for a program if for each equation
l → r of the program and each substitution σ mapping
variables to values and whose domain contains the variables
of l , we have LrσM ≤ LlσM.

These definitions are now enough to define a criterion for
the FP class.

Definition 2.8 (P-criterion). A program is said to satisfy the
P-criterion if and only if it terminates by PPO and has a quasi-
interpretation that is pointwise bounded by a polynomial.

Theorem 2.9 (Soundness). If a program satisfies the P-crite-
rion, then it computes a polynomial-time function, i.e. the size
of its reduction proofs are bounded by a polynomial in the size
of its inputs.

We also have the corresponding completeness theorem.

Theorem 2.10 (Completeness). Every polynomial-time com-
putable function can be implemented by a program terminat-
ing by PPO and equipped with a quasi-interpretation that is
pointwise bounded by a polynomial.

Then, our tool consists in applying the verified implemen-
tation of the soundness theorem to a user-provided program.
We describe in the following sections how to do so in practice.
In particular in Section 3 we explain the interface one can
use to define some program as a list of rules and in Section 5
we describe the tooling we provide to help with proving the
hypotheses of the P-criterion: proving termination by PPO is
fully automated and we provide tactics to prove interactively
that a program has a quasi-interpretation.

Our main application is the modular exponentiation and
has been chosen for two main reasons: it is widely used in
cryptography and proving that it runs in polynomial time is
not completely straightforward.Wewill provide more details
about it in Section 6.

3 The Interface Module
We provide an Interface module to simplify the definition
of a program (i.e. a set of rewriting rules) without having to
dig into every module. This interface is structured into:
• module types, to describe the various parameters that
should be defined for a given application,
• functors, to instantiate our definitions and theorems
to that application.

In order to define a program, one must first define the
types that will be used for the various kinds of symbols: the
variables, the functions and the constructors. One must also
provide a way to decide the equality for all those symbol
kinds along with defaults for functions and constructors;
we use those default values to handle error cases, just like
the function of the standard library which returns the nth
element of a list.

So, for instance, our implementation of the modular expo-
nentiation begins with:

Inductive variable := x | y | p | ... .

Inductive function := pred_doubleF | ... .

Inductive constructor := TrueC | FalseC | ... .

Then we define the decision procedures for equality over
these types automatically:

Scheme Equality for variable.

Scheme Equality for constructor.

Scheme Equality for function.

They are in turn used to define an instance EMSyntax of
the SYNTAX module type.

Module EMSyntax <: Interface.SYNTAX.

Definition variable := variable.

Definition function := function.

Definition constructor := constructor.

Definition function_default := errF.

Definition constructor_default := errC.
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Definition variable_eq_dec := variable_eq_dec.

Definition function_eq_dec := function_eq_dec.

Definition constructor_eq_dec :=

constructor_eq_dec.

End EMSyntax.

Those basic parameters are enough to build the full syntax
for an application: values, terms, rewriting rules, reduction
proofs (which are called cbv, since they correspond to call-
by-value reductions), etc. This can be performed using the
MkSyn functor.
Module Import Syn := Interface.MkSyn(EMSyntax).

Once the complete syntax is set up, one can define the
program itself, as a list of rewriting rules:
Module Type PROGRAM.

Parameter prog : list rule.

End PROGRAM.

The Interface provides some handy notations to help with
getting readable rewriting rules. To get the best results, they
should be completed with notations specific to the applica-
tion.
Import Syn.ProgramNotations.

Definition em_prog : list rule := [ ...

condF (TRUE, x, y) --> x;

condF (FALSE, x, y) --> y;

... ].

Finally it is possible to instantiate our MkProg functor to
access all the definitions and theorems depending on the
program.
Module EMProg <: Syn.PROGRAM.

Definition prog := em_prog.

End EMProg.

Module Import Prog := Syn.MkProg (EMProg).

Import Prog.QI Prog.Evaluator.

In particular, oncewe have proved that our program fulfills
its hypotheses, we can instantiate the P_criterion theorem
(i.e. Theorem 2.9):
Theorem polytime: ∀ i s p c f lv d v,

let t := fapply f lv in

let pi := cbv_update i s p c t d v in

wf pi → cache_bounded qic qif c →

size pi ≤ global_bound mcs qif f lv c.

where t is the initial term, pi is a reduction proof — i.e.
encodes a tree of reduction rules defined by the call-by-value
memoisation semantics —, wf is a predicate checking that
this reduction proof is well-formed, and size is the size of the
reduction proof which accounts for the number of rules that
the proof uses, but also the size of all the terms it contains.
The function global_bound is then a polynomial depending
on the maximum constant used to interpret constructors

(often 1), the quasi-interpretation qif, the size of the initial
term t , and the size of the initial cache c , which will often be
considered as empty.
The Syn.MkProg functor also gives us access to a simple

Evaluator needed to prove that the rewriting rules of the
program do indeed define the intended functions. To do so,
it defines an inductive relation on terms and values:

Inductive evaluates : term → value → Prop :=

| CAPPLY: ∀ lt lv c, evaluates_list lt lv →

evaluates (capply c lt) (c_capply c lv)

| FAPPLY: ∀ lt lv f v i s t,

evaluates_list lt lv →

first_rule (f, lv) = Some (i, s, t) →

evaluates t v →

evaluates (fapply f lt) v

where evaluates_list is the obvious corresponding mutu-
ally defined function on lists and first_rule (f, lv) =

Some (i,s,t) essentially means that the first rule which
matches the term f lv produces a term t.
Note that evaluates is really simple because its goal is

proving that the rewriting rules compute the intended func-
tion. So it does not have to be a function that evaluates a term
in polynomial time and involving memoisation1. It just has
to be proved correct in the sense that it implies the existence
of a reduction proof tree from t to v:

Lemma evaluates_sound (t : term) (v : value):

evaluates t v →

max_arity_term t ≤ max_arity →

exists p,

wf p ∧ proj_right p = v ∧ proj_left p = t.

For instance, we can prove that the succF function defined
by rewriting rules in our program computes the same result
as the successor function of the standard library of Coq for
all positive numbers:

Lemma succ_correct p: ∀ t,

evaluates t (value_of_pos p) →

evaluates (succF t) (value_of_pos (Pos.succ p)).

where value_of_pos is a function from some of the program
values to the corresponding Coq datatype (here Positive for
positive binary numbers).

1We have actually developed an interpreter, i.e. a Coq function that, given
a program and an initial term, builds its reduction tree. This interpreter is
quite involved since Coq requires function definitions to come with a proof
of termination when they are not structurally recursive. So the interpreter
definition is tweaked so that some intermediate results of Theorem 2.9 can
be used to show it always terminates (or returns an error). Beyond the great
complexity of this interpreter (which would make it difficult to prove that
it is indeed sound), evaluates is better suited to prove in practice that a
program does compute the same result as a reference Coq function because
it is much simpler (no failure to handle, for instance).
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4 Completeness
The soundness theorem proves that the set of programs
validating the P-criterion is not “too big” (programs stay
polynomial). However, it does not says anything about it
being “big enough”. Especially, if we want to certify safety of
cryptographic protocols and replace the “for all adversaries
computing in polynomial time” quantification by “for all
adversaries satisfying the P-criterion”, we need the two sets
to be functionally equivalent (that is, to contain programs
computing the exact same set of functions). So, we need to
prove that any function of FP can be computed by a program
satisfying the P-criterion. This property is called extensional
completeness: the set of program is not complete (some poly-
time programs do not terminate by PPO or admit no QI) but
its extension (the set of functions it computes) is complete.
Since true completeness is undecidable (the set of polytime
programs is Σ2), extensional completeness is the best we can
hope.
In Implicit Complexity, extensional completeness is usu-

ally easy to prove and almost overlooked. Indeed, new char-
acterisations are usually built almost incrementally on old
ones and the completeness proof usually only requires to
show that every program accepted by the old criterion is
also accepted by the new one (that is, the new set of ac-
cepted programs contains an older set already known to be
extensionally complete).
The P-criterion is no exception. Its completeness proof

boils down to showing that any BC program terminates
by PPO and admits a QI. Since the shape of BC programs
is extremely constrained, these properties are somewhat
obvious and quickly stated in paper proofs. Since we do have
an existing formal proof of the extensional completeness of
BC [18], we decided to re-use it for the completeness of the
P-criterion.
A more direct way could have been to directly simulate

clocked Turing Machines by Term Rewriting Systems. States
and Alphabet can be represented by finite types while the
tape is classically represented by two lists (one for each half).
Thus, the main step of the simulation is performed by a rule
like:

eval(c + 1, st , l ,hd, r ) → eval(c, st ′, l ′,hd ′, r ′)

The decrease of the first argument (clock) ensures termina-
tion and, if it is initialised to a large enough value (polyno-
mial), gives enough time to complete the execution.
However, such a simulation does not terminate by PPO.

Indeed, in the case of, for example, a movement to the left,
one gets something like r ′ = hd :: r , i.e. the right half of the
tape increases (becomes longer). This is forbidden by PPO.
In [9], the proof of completeness is done by simulating

Register Machines, for which this problem does not exist.
However, the proof thus relies on the fact that polynomial

Register Machines and polynomial Turing Machines do com-
pute the same functions, another proof that would need
formalisation.
Therefore, the reduction from BC programs looked like

a reasonable idea. It nevertheless lead us into unexpected
difficulties. . .
The formalisation of BC programs in [18] defines them

in a way similar to Primitive Recursion (on notations). That
is, for example, the recursion is defined as “if д, h0 and h1
are BC functions, so is REC(д,h0,h1)” (with some constraints
on arities). In order to apply the P-criterion, we first need
to turn that into a term rewriting system (TRS), which is
the syntax used (the semantic equivalence of this translation
would need to be formally proved for a complete and robust
result). It is quite easy to see that this definition corresponds
to the rules:

f (0, ®n; ®s) → д(®n; ®s)
f (Si (x), ®n; ®s) → hi (x , ®n; ®s, f (x , ®n; ®s))

where ®n and ®s are the two kinds of variables used in BC.
While easy to do and understand on paper, this translation
needs to create a new function symbol (f ) in order to work.

Creating fresh names is a standard issue in, typically, com-
pilation. It is normally solved by using numbers (that is,
the functions will be called f1, f2, . . . ) and keeping a global
counter of “first available number” that is incremented every
time a new name is required.

Unfortunately, a global counter modified by side effects is
not something that is easy to handle in Coq proofs. So we
had to find another way. This result in quite complicated
completeness proofs where most of the difficulty is located
in the somewhat bureaucratic handling of function names.

The naive way to do it is to have the translation function,
BC_to_TRS, being of type nat → bc → nat × trs where
the nat are the first available number before and after the
translation. Then, recursive calls can carry this information
over and handle the issue. This is, however, not very conve-
nient when the function needs to be mapped over a list of BC
terms (as is the case for the composition rule, since primitive
recursion allows composition of an arbitrarily large number
of functions).
The solution to this is of course to abstract the side ef-

fect into a state monad where the state is here only a sin-
gle nat, (the first available number). So, we have a type
monad A = nat → nat × A and the translation can easily
be written with type bc → monad trs. This function can
now be mapped over a list, resulting in a list of monads that
can then be turned into a monad of a list.

Another way to create fresh names could be to use the po-
sition in the syntactical tree of the BC term. That is, f[] would
represent the main function symbol, f[0] the function cor-
responding to the first subterm, f[0,2,1] the second subterm
of the third subterm of the first subterm, . . .However, we
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would still have needed to carry over the initial part of posi-
tion (hence, keep a state), and the non-bounded composition
rule implies that the syntactical tree can have arbitrary arity,
thus the list of positions also has to contain arbitrary natu-
ral numbers (and not just booleans). Using position lists for
names would definitely have simplified some intermediate
Lemmas (like BC_to_TRS_func_bounds below) but without
removing the main difficulty, and it might have create new
difficulties just because lists of naturals are more complex
than naturals.
In addition to building the rules, the translation also re-

turns a lot of global parameters for the programs (embedded
into the record type trs_prog). The rank (precedence) and
QI are obvious extra info that needs to be built at transla-
tion time. We also carry over the range of function numbers
used (first and last) as it makes the proofs somewhat less
complicated afterwards.

Once the translation is done, we need to prove that every
TRS obtained from a BC program satisfies the P-criterion
(with the QI built during the translation).

The BC programs already have some sort of well-formed-
ness check which looks at the arities of functions involved
in recursion and composition. For this reason, most of the
lemmas here have a arities bc = ok_arities n s hy-
pothesis which states that only well-formed BC programs
are considered. Note also that the complicated case in the
proofs is usually the composition because of the unbounded
number of recursive calls on ®дN and ®дS .

The first steps are purely bureaucratic and need to check
that the result is indeed a well-formed TRS (e.g. variables in
the RHS are present in the LHS), and that some of the global
parameters built during the translation (e.g. the maximal
arity) are indeed correct. We have, for example, the following
lemma:

Proposition BC_to_TRS_rules_vars_defined bc n s st:

let trs := snd (BC_to_TRS bc st) in

arities bc = ok_arities n s →

Forall rule_vars_defined trs.(rules).

stating that the variables appearing in RHS are all defined
in the corresponding LHS. Most of the lemmas have this
structure: first we build the TRS from the BC program (using
the translation, evaluating the resulting monad and taking
the part of the result which is interesting); next we have some
pre-conditions (mostly that the BC program is meaningful,
i.e. has correct arities); and then we state the property (here
that all variables appearing in the rules are defined).

Proposition BC_to_TRS_arity bc n s st:

let trs := snd (BC_to_TRS bc st) in

arities bc = ok_arities n s →

max_arity_prog trs.(rules) ≤ trs.(maxar).

states that the maximum arity computed by the translation is
indeed a bound on the arities of symbols used in the program.

Theorem BC_to_TRS_wf bc n s st:

let trs := snd (BC_to_TRS bc st) in

arities bc = ok_arities n s →

wf_prog trs.(maxar) trs.(rules).

finally states that the TRS we build are well-formed.
The next step is quite complicated but one of the most

important to ease the actual proofs.We prove that the bounds
on the numbers (names of function symbols) used are correct.
We have:
Proposition BC_to_TRS_func_bounds bc st f:

let trs := snd (BC_to_TRS bc st) in

f ∈ all_lhs_funcs trs →

trs.(first) ≤ f ≤ trs.(last).

saying that every function appearing in the (LHS of) the TRS
has a number within the bounds;
Proposition BC_to_TRS_infos_iff bc st f:

let trs := snd (BC_to_TRS bc st) in

f ∈ map fst trs.(infos) ←→

f ∈ all_lhs_funcs trs.

saying that functions have an info (i.e. a QI) if and only if
they appear in LHS (i.e. are defined somewhere);
Lemma BC_to_TRS_rhs_funcs_defined bc st:

let trs := snd (BC_to_TRS bc st) in

incl (all_rhs_funcs trs.(rules))

(all_lhs_funcs trs).

sayings that functions that appear in RHS are defined some-
where (appear in some LHS).

Knowing that the bounds on function numbers (first and
last) are correct is crucial for the following proofs. Indeed,
when we need to handle the recursive cases (recursion and
composition), this allows us to separate cleanly in which sub-
call the function under consideration was defined and thus
direct the proof toward this sub-call where we also know
that we will find the correct info for the function.
To prove that the result of the translation terminates by

PPO, we need to split the TRS following the recursive calls.
In order to do so, we also need to split the rank function ac-
cordingly (the translation builds it incrementally by merging
the rank functions of each sub-call). This is done by a series
of lemmas such as:
Lemma same_rank_same_ppo_iff s t rk rk':

(∀ f, f ∈ functions_of_term t → rk f = rk' f) →

(∀ f, f ∈ functions_of_term s → rk f = rk' f) →

PPO rk t s ←→ PPO rk' t s.

which states that if two rank functions (rk and rk’) agree
on the symbols actually appearing in the terms, then the
ordering is the same.
Together with the precise bounds on the functions num-

bers established in the previous step, this allows us to split
the rank function in the correct way tomake use of induction,
and we end up with:
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Theorem BC_to_TRS_PPO bc st n s:

let trs := snd (BC_to_TRS bc st) in

arities bc = ok_arities n s →

PPO_prog trs.(rules) (get_rank trs).

stating that the program obtained by translation is indeed
ordered by PPO, using the rank function that was computed
during the translation.

Lastly, we can turn to the QI. We also start by a QI substi-
tution lemma, similar to the rank substitution lemma, and
needed for the same reasons.

Lemma qif_swap t qic s:

∀ qif1 qif2,

(∀ f, f ∈ (functions_of_term t) →

qif1 f = qif2 f) →

term_assignment qic qif1 (subst s t) =

term_assignment qic qif2 (subst s t).

If qif1 and qif2 agree on the functions appearing in the
term t, then LtM stays the same whether we use one or the
other. Again, this allows to split the incrementally built QI
into the correct components to use the induction.
Next, we can prove each property of the QI one by one,

e.g.:

Lemma BC_to_TRS_subterm bc st n s:

let trs := snd (BC_to_TRS bc st) in

arities bc = ok_arities n s →

subterm_QI_prog trs.

until we finally group all the results into saying that the
computed QI are correct (Theorem 2.9):

Theorem BC_to_TRS_QI st (n s:nat) bc:

let trs := snd (BC_to_TRS bc st) in

arities bc = ok_arities n s →

valid_QI_prog trs.

Having both termination by PPO and existence of a QI,
we just need a final Theorem (Theorem 2.10):

Theorem BC_to_TRS_P_criterion bc st no sa:

∀ i s p c f lv d v,

let trs := snd (BC_to_TRS bc st) in

let t := fapply f lv in

let pi := cbv_update i s p c t d v in

arities bc = ok_arities no sa →

f ∈ all_lhs_funcs trs →

wf Nat.eq_dec Nat.eq_dec constructor_eq_dec

rule_default

trs.(rules) trs.(maxar) pi →

cache_bounded variable function

constructor qic (qif trs) c →

size pi ≤ global_bound variable function

constructor trs.(rules) trs.(maxar)

trs.(maxrank) mcs (qif trs) f lv c.

Here, we first build trs by translating the argument (bc);
then we build a semantic proof tree (pi) to evaluate a term
inside this TRS; then come some sanity checks on the arities
of the BC program, the fact that the term we evaluate calls a
function existing in the TRS, that pi is well formed, and that
the initial cache is polynomially bounded (we can’t hide an
exponential value in it); lastly, we can conclude that the size
of pi is bounded by the (polynomial) global_bound.

5 Automation
We here describe the various steps one has to follow to apply
the soundness theorem to a given program.Wewill underline
which of them are automated and how, and which remain
the user’s responsibility.
Once the program has been written, we need to provide

decidable equality lemmas for the function, variable and
constructor datatypes for the SYNTAX module defined in Sec-
tion 3. This is often easily achieved as they can be chosen
to be simple sum types, whose equality properties can be
automatically derived by Coq using Scheme Equality.

Then we have to ensure that the program is well formed,
i.e. that for every rule f(p1, . . . ,pn) → t , every variable
occurring in t occurs in one of the pi . This is achieved by a
simple tactic which could easily be turned into a decision
function using the decidable equality function on variables.

5.1 Proving the PPO Criterion
Recall that the first of the two criteria for our technique is
to prove that our program terminates by PPO. For this, we
need to find a precedence relation (see Definition 2.1) and
the notion of rank (see Definition 2.5).
Functions of rank 0, or of lowest precedence, are those

that do not call other function (except mutual recurrence)
and thus can be defined “alone”. Functions of rank 1 only
require the functions of rank 0 to be defined, that is only call
functions of rank 0 (plus possible mutual recurrence between
functions of rank 1). Functions of rank 2 call functions of
rank 0 or 1, and so on. The rank/precedence intuitively cor-
responds to the order in which functions need to be defined
in an actual programming language.
Conversely, finding such a rank function which is com-

patible with the program is enough to define a precedence
relation. In other words, the rank function assigns an inte-
ger to each function symbol such that for every rule of the
program f(p1, . . . ,pn) → t , rk(f ) ≥ rk(д) for all functions д
that occur in t .

This amounts to finding a topological sorting of a directed
graph (the function dependency graph). We thus define such
a sorting Coq function and wrap it into a tactic to compute
the rank function once and for all, avoiding unnecessary
simplifications or computation steps in later proofs. Note
that we do not need to formally prove the correctness of
this function, as we will need to prove the compatibility of
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the program with the PPO order where any invalid ordering
would be detected.

Then, we proved a decidability proposition for PPO, which
we simply have to apply to each rule of the program:

Lemma PPO_dec t1 t2: {PPO t1 t2}+{¬PPO t1 t2}.

To summarize, the proof of the first criterion — i.e. finding
a precedence relation and proving that the program termi-
nates by PPO — is entirely automated, which means that
some manual work has to be provided for finding a valid
quasi-interpretation as belonging to FP would be decidable
otherwise.

5.2 Finding a Compatible Quasi-Interpretation
This final and most difficult part is to define an interpretation
function QI over terms by providing the framework with an
interpretation for each constructor and each function symbol,
i.e. some functions

qic : constructor → list nat → nat

qif : function → list nat → nat

together with some proofs of properties about them. The
earlier function is the simplest as it simply requires to be ad-
ditive with a strictly positive additive constant. The function
fun c ⇒ 1 + suml args (where suml args is the sum of the
elements of the list args) turns out to be always sufficient.
Let’s recall from Definition 2.7 that we need qif f to be

a function from lists of integers (as many as the arity of f)
which is bounded by a polynomial and is compatible with
each rule f lp → t in the program, i.e. which satisfies for
each substitution subst s from variables to values:

qif f (map (term_assignment qic qif) (map (subst s) lp)
≥ term_assignment qic qif (subst s t)

where term_assignmentmaps a term to an integer, given two
functions qic and qif.
The subterm and monotonicity properties (see Defini-

tion 2.6) also have to be proved, but they can be handled
quite easily with some generic tactics.
The difficult part is then to define this function. Already

for an example as small as our modular exponentiation, we
need to find about thirty polynomials satisfying a few hun-
dred inequalities. Defining them all at once turns out to be
non-scalable, especially as each inequality depends on the
previous ones (in the program’s precedence order). This is
why we designed an approach allowing us to define each one
separately as well as to prove the corresponding inequalities
in an incremental manner.

For this we define partial quasi-interpretations, whichmay
not be defined on each function symbol:

Definition p_assignment_function :=

function → option(list nat → nat).

as well as the corresponding partial compatibility property:

Definition p_compatible_QI qic qif:= ∀ f lp t s,

let ru := rule_intro f lp t in (ru ∈ prog) →

p_term_assignment qic qif (subst s t) ≤p

p_term_assignment qic qif

(subst s (lhs_of_rule ru)).

where p_term_assignment and ≤p and the respective liftings
of term_assignment and ≤ in the option monad. We finally
define the property p_smc qic F which states that given an
interpretation qic for constructors, the partial interpretation
F satisfies the partial equivalents of subterm, weak mono-
tonicity and compatibility.

We will denote by F;;G the composition of the two partial
QIs F and G: (F;;G) f is equal to F f if it is defined, otherwise
to G f if it is defined.

Then, we use the following lemma every time we want to
extend the definition of our partial interpretation to more
function symbols.

Lemma p_smc_split F H qic:

{G' | p_smc qic (F;;H;;G')} →

{G | p_smc qic (F;;G)}.

Here, F represents the current state of our partial QI, and
H what remains to be defined to obtain a compatible QI. H
is then another partial function that we are willing to add
to F, and G' is the new part that remains to be defined. The
partial interpretation H will most of the time only define one
additional function (or a few, in the case of mutual recursion).
Starting from the nowhere-defined partial QI, we will

iterate this lemma until it is fully defined and interleave each
application of the latter with the following one:

Lemma p_smc_QI_app F prog1 prog2 qic:

p_compatible_QI prog1 qic F →

{G | p_smc prog2 qic (F;;G)} →

{G | p_smc (prog1 ++ prog2) qic (F;;G)}.

This way, we can prove the inequalities for a few rules of
the program (usually the rules defining the function whose
QI has just been defined by the latest H), i.e. prog1, and then
get rid of them. F still has to remain, as it might appear in
later equations, i.e. in prog2.
Altogether, these two lemmas are used to define some

tactics machinery to help the library’s user defining their QI.
If the program is of the form prog1 ++ prog2 ++ prog3 then
using these two lemmas leads to a proof of this form:
• The initial goal is to find an interpretation for the
whole program:

{qif | subterm qif ∧ monotonic qif ∧

compatible_QI qic qif (prog1 ++ prog2 ++ prog3)}

• Which amounts to finding a partial interpretation ex-
tending the nowhere-defined partial interpretation E:

{G | p_smc (prog1 ++ prog2 ++ prog3) qic (E;;G)}
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• After some steps, we have defined a partial interpreta-
tion F1 which is compatible with prog1 and the current
goal is now:

{G | p_smc (prog2 ++ prog3) qic (E;;F1;;G)}

• If prog2 is the set of rules defining a set S of functions
by mutual induction, then we apply the first “split”
lemma to extend the interpretation to theses symbols
with some partial interpretation F2 defined on S :

{G | p_smc (prog2 ++ prog3) qic (E;;F1;;F2;;G)}

• If F2 has been chosen correctly, we can prove that
our current interpretation is compatible with prog2

(otherwise, go back to the previous step) and apply the
second lemma:

{G | p_smc prog3 qic (E;;F1;;F2;;G)}

• After prog3 has been handled in a similar way using a
partial interpretation F3, we have:

{G | p_smc [] qic (E;;F1;;F2;;F3;;G)}

which is true with G = E as long as the whole inter-
pretation is indeed subterm and monotonic, which is
easily provable.

Note that an important aspect of this incremental feature
is that it allows for errors: if one realises that an equation
cannot be satisfied because of a previous erroneous assign-
ment (most likely a “too big” polynomial), the error can be
corrected without requiring to execute the proof script from
the beginning of the program: multiplied by a large number
of lines, the resolution time for each inequality could be a
no-go. Also, this approach allows to deal with modular defi-
nitions of programs: a program’s QI only needs to be defined
from the QI of its dependencies.

6 Example: Modular Exponentiation
We have applied the various features of our library to an
implementation of the modular exponentiation. It is com-
posed of about 110 rules and 30 function symbols and has
been mostly written by using Coq’s code extraction feature
to Haskell code on Coq’s Standard Library binary arithmetic
functions:

Extraction Language Haskell.

Recursive Extraction N.modulo.

The extracted code was then easily translated to our syn-
tax for term rewriting systems, as it is quite close to Haskell’s.
Only a few functions using pattern matching needed to be
split onto several functions, but this whole translation pro-
cess could be easily automated.
This approach presents three major advantages: it was

quick to write; it prevented us from writing too much ad hoc
code which illustrates that this technique requires a limited
amount of modification on a traditional program; proving

its correctness was quite easy as the translated functions are
directly specified by the corresponding Coq function.
After this, two functions had to be modified to make the

program terminate by PPO. Namely, Coq’s Pos.compare_cont
function, which compares two positive binary numbers ac-
cording to one of the three relations <, > and =, represented
in a third argument as a constructor Lt, Gt or Eq.
The issue is that its definition would lead to rules of the

form:

compare_contF (XI p, XO q, r) -->

compare_contF (p, q, Gt)

where XI and XO are constructors for binary words. Only the
rule (Fun Equiv) of Figure 1 could be applied in this case,
which would require that Gt ⪯ppo r, which is false as only
the subterms of a value can be smaller than the value itself.
In other words, we cannot prove that the third argument is
decreasing by PPO (in the non-strict sense). To circumvent
this, we instead defined three functions: one function for each
comparison relation, thus getting rid of the third argument.
One of them is not recursive, and the other two are mutually
recursive and all their arguments decrease on a recursive call
(one of them strictly). Once again, this kind of situation could
be automatically detected (an argument is from a finite type
and doesn’t decrease by PPO) and a program transformation
applied automatically as well.
The second problematic function was modulo (more pre-

cisely one of the auxiliary function defining it) as one of its
recursive call argument on some inputs x andy is of the form
x − y, which is not comparable to x with respect to ≺ppo .
The solution was to use a simpler, more direct implemen-
tation of modulo defined by recursion on notation, i.e. the
only recursion call in modulo (C x) m is modulo x m, where
C ∈ {XO,XI}. Note that this leads to a longer, yet reasonable,
correctness proof for this function, as its definition pattern
is quite different from its specification (i.e. Coq’s standard
library’s N.modulo).
The only remaining functions are the modular multipli-

cation and modular exponentiation, as they are not defined
in Coq’s standard library. We first implemented them in a
straightforward way by recursion on notation, which allows
it to terminate by PPO. It is worth noting that this imple-
mentation runs in polynomial time using the call-by-value
semantics with memoisation but not without memoisation,
as it does two identical recursive calls. This could be fixed
using a slightly less naive implementation but this is not our
concern here but rather finding a polynomial interpretation.

As expected, we found polynomially-bounded interpreta-
tions for all functions but the modular exponentiation. The
issue is in fact related to the modular multiplication.

Indeed, the following rule

mul_mod_auxF (XI x, y, m) -->

modF (addF (y, doubleF (mul_mod_auxF (x, y, m))), m)



Formal Proof of Polynomial-Time Complexity withQuasi-Interpretations CPP’18, January 8–9, 2018, Los Angeles, CA, USA

for the modular multiplication implies (according to defi-
nition 2.7) finding a polynomial P = Lmul_mod_auxM satis-
fying at least the following inequality: P(X + 1,Y ,M) ≥
P(X +1,Y ,M)+M +3. Although this can be achieved, for ex-
amplewith P(X ,Y ,M) = (X+1)×(M+3)+Y (recall that it also
has to satisfy the monotonicity and subterm properties), the
monomial X has to be multiplied by a factorC(Y ,M) greater
than 1. Then, as x is also the decreasing argument in the
definition of the modular exponentiation, its interpretation
would need to satisfyQ(X +1,Y ,M) ≥ C(Y ,M)×Q(X ,Y ,M),
whose solutions are all exponential.

This example shows that despite our efforts in the previ-
ous section to make the definition of quasi-interpretations
incremental, there may not always be a modular way to de-
fine it. Indeed, there may be a program prog1 (here all the
program but modular exponentiation) with a QI interpre-
tation, but which can’t be extended with a program prog2

defined on top of it (here, the modular exponentiation) such
that a QI can be found, in which case prog1, or at least its QI
has to be modified.
Our solution to this issue is to add a “clock” argument c

to the modular multiplication function.

mul_mod_auxF (XI x, y, m, XO c) -->

modF(addF (y, doubleF(mul_mod_auxF(x, y, m, c))), m)

Since the interpretation of this last argument decreases in
the same way as LxM, then we can find a “smaller” interpre-
tation:

Lmul_mod_auxFM(X ,Y ,M,C) = (M + 1) × (C + 1)+max(X ,Y )

This extra argument is also propagated to the modular
exponentiation function, but is now constant:

exp_mod_auxF(x, XO y, m, c) -->

mul_modF(exp_mod_auxF(x, y, m, c),

exp_mod_auxF (x, y, m, p), m, p)

This now admits a polynomial interpretation:

Lexp_mod_auxM(X ,Y ,M,C) = X +2×(Y +1)×(M+3)×(C+1)

Finally, we only need to call this function with a large
enough clock argument. For this, we need it to be larger (in
terms of word length) than any first argument of the modular
multiplication. However, all occurrences of mul_modF have a
call to exp_mod_auxF as first argument, whose return values
are always bounded by the modulus m. It is thus sufficient
to build a term of size M + 1 if the modulus is of size M ,
which leads to a modular exponentiation function with the
following QI:

Lexp_modM(X ,Y ,M) = X + 2 × (Y + 1) × (M + 3) × (M + 2)

which is indeed a polynomial.
Note that the correctness proofs for the intermediate func-

tionswith an extra clock argument are slightlymore complex,
as they have to ensure that it is large enough on each call.

7 Conclusions and Future Work
We have shown how a powerful theoretical result such as a
characterisation of the complexity class FP can be turned into
a powerful tool to prove that a function is in this class. We
were led not only to deal with numerous details left implicit
in the original proof, but to complete it with a new and fully
detailed proof of the completeness theorem. We have then
added a thick layer of proof engineering because the raw
theorems by themselves were not usable in practice. In this
process we were led to introduce the notion of partial QI
that allows for incrementally defining a QI instead of having
to define a whole QI in one go.
Our Coq library consists of about 3600 lines of specifi-

cation and 12300 lines of proof, excluding the examples.
The modular exponentiation example consists of about 500
lines of specification and 360 of proof. The whole formal
development as well as the technical report with detailed
paper proofs are available at http://www.cristal.univ-lille.fr/
~nowakd/cecoa/.

One direction for future work is to improve automation
by adding heuristics that help finding a QI. Another is to
combine our library with an external tool that, starting from
a program, would generate a TRS in our formalism with
proof obligations in Coq for those of the properties that
could not be proved automatically.
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