
Non-Linearity as the
Metric Completion of Linearity

Damiano Mazza

CNRS, UMR 7030, LIPN, Université Paris 13, Sorbonne Paris Cité
Damiano.Mazza@lipn.univ-paris13.fr

Abstract. We summarize some recent results showing how the lambda-
calculus may be obtained by considering the metric completion (with
respect to a suitable notion of distance) of a space of affine lambda-terms,
i.e., lambda-terms in which abstractions bind variables appearing at most
once. This formalizes the intuitive idea that multiplicative additive linear
logic is “dense” in full linear logic (in fact, a proof-theoretic version of the
above-mentioned construction is also possible). We argue that thinking of
non-linearity as the “limit” of linearity gives an interesting point of view
on well-known properties of the lambda-calculus and its relationship to
computational complexity (through lambda-calculi whose normalization
is time-bounded).

1 Linearity and approximations

The concept of linearity in logic and computer science, introduced over two
decades ago [12], has now entered firmly into the “toolbox” of proof theorists
and functional programming language theorists. It is present, in one way or an-
other, in a broad range of contexts, such as: denotational semantics [11], games
semantics [22] and categorical semantics [8]; computational interpretations of
classical logic [18, 9]; optimal implementation of functional programming lan-
guages [3, 19]; the theory of explicit substitutions [2]; higher-order languages for
probabilistic [10] and quantum computation [24]; typing systems for polynomial-
time [4], non-size-increasing [14] and resource-aware computation [17]; and even
concurrency theory [6, 15].

Technically, linearity imposes a severe restriction on the behavior of pro-
grams: data must be accessed exactly once. Its cousin affinity, which is more
relevant for the purposes of this text, slightly relaxes the constraint: although
data may be discarded, it may nevertheless be accessed at most once. In any
case, linearity and affinity forbid re-use, forcing the programmer to explicitly
keep track of how many copies of a given piece of information are needed in
order to perform a computation.

How can general, non-linear computation be performed in an affine setting?
In other words, how can a persistent memory be simulated by a volatile memory?
The intuitive answer is clear: one persistent memory cell, accessible arbitrarily
many times, may be perfectly simulated by infinitely many volatile memory cells,

each accessible only once. Of course, if only a finite memory is available, then
only an imperfect simulation will be possible in general. However, the important
point is that affine computation may approximate non-linear computation to an
arbitrary degree of precision.

2 A polyadic affine lambda-calculus

Let us see how the above intuition may be formalized. Consider the fragment

A,B ::= X | (A1 & 1)⊗ · · · ⊗ (An & 1) (B

of multiplicative additive linear logic (if n = 0, then the premise of the implica-
tion is the logical constant 1). The proofs of this simple logical system correspond
to (simply-typed) terms of the following language:

t, u ::= x | λx1 . . . xn.t | t〈u1, . . . , un〉,

with the requirement that variables appear at most once in terms. In other
words, we have a “multilinear”, or polyadic affine λ-calculus.

The reduction of a simply-typed non-linear λ-term such as M = (λx.Nxx)I
may be “linearized” as

JMK = (λx0x1.JNK〈x0〉〈x1〉)〈JIK, JIK〉,

in which we see how the duplication of the subterm I by the head redex of M
forces us to explicitly introduce two copies of JIK (the linearization of I). This is
of course very naive: if M duplicates I again (for instance, if N = λy.zyy), we
will be forced to include additional copies of JIK in JMK and it would be hard
in general to statically determine exactly how many are necessary (we would
essentially need to normalize M).

We are thus naturally led to consider an infinitary calculus. The rigorous
manipulation of infinity requires some form of topology, which will actually be
the key to a satisfactory formalization of the above intuition: we will be able
to say that affine terms approximate non-linear terms to an arbitrary degree of
precision in a clear technical sense, that of metric spaces.

Our first step is to switch to an untyped framework, so that our analysis will
be valid in the most general terms. To this extent, we introduce a term ⊥ in
the language, which is used to solve possible mismatches between the arity of
abstractions and applications: when reducing (λx0x1.t)〈u〉, the sequence in the
outer application in not “long enough”, so the term ⊥ will be substituted to x1.

We also switch from variables to explicit occurrences, which is to realize
that the affine (or linear) λ-calculus is, in a way, a calculus of occurrences.
This, although not technically necessary (and not done in [20]) will simplify the
exposition.

So, our definition of (untyped) polyadic affine λ-calculus is the following:

t, u ::= ⊥ | xi | λx.t | tu,

where:

– in xi, i ∈ N is a unique identifier of the occurrence of x, i.e., we require that
if xi, xj appear in the same term, then i 6= j;

– abstractions bind variables, i.e., λx.t binds every free occurrence of the form
xi in t (free and bound occurrences are defined as usual);

– u is a finite sequence of terms. Actually, since we have ⊥, it is technically sim-
pler to say that u is a function from N to terms which is almost everywhere
equal to ⊥.

As usual, terms are always considered up to α-equivalence.
The most important point is how we define reduction:

(λx.t)u → t[u/x],

where the notation t[u/x] means that we substitute u(i) to the at most unique
free occurrence xi in t. We call the set of terms defined above Λaff

p . The super-
script reminds us that the calculus is affine, whereas the subscript stands for
“polyadic”.

The calculus Λaff
p is strongly confluent (i.e., reduction in at most one step,

denoted by →=, enjoys the diamond property) and strongly normalizing. Both
properties are immediate consequences of affinity: redexes cannot be duplicated,
the theory of residues is trivial and local confluence is achieved in at most one
step; moreover, the size of terms strictly decreases during reduction.

3 A metric space of terms and its infinitary completion

Let us now define a function Λaff
p × Λaff

p → [0, 1], by induction on the first
argument:

d(⊥, t′) =

{
0 if t′ = ⊥
1 otherwise

d(xi, t
′) =

{
0 if t′ = xi
1 otherwise

d(λx.t1, t
′) =

{
d(t1, t

′
1) if t′ = λx.t′1

1 otherwise

d(t1u, t
′) =

{
max

(
d(t1, t

′
1), supi∈N 2−i−1d(u(i),u′(i))

)
if t′ = t′1u

′

1 otherwise

Note that, in the abstraction case, we implicitly used α-equivalence to force
the variables abstracted in t1 and t′1 to coincide. This small nuisance could be
avoided by resorting to de Bruijn’s notation [5] but, except for the following two
paragraphs, we prefer to stick to the usual notation, for better readability.

One may check that d is a bounded ultrametric on Λaff
p , i.e., it is a bounded

(by 1) metric which further satisfies d(t, t′′) ≤ max(d(t, t′), d(t′, t′′)) for all
t, t′, t′′ ∈ Λaff

p (a stronger version of the triangle inequality). A more in-depth
analysis of d reveals the following. Consider the poset N∗ of finite sequences
of integers, ordered by the prefix relation. A tree is, as usual, a downward-
closed subset of N∗ (note that non-well-founded and infinitely branching trees

are both allowed). Let Σ = {⊥, λ,@} ∪ N2, and let f : N∗ → Σ. We define
supp f = {a ∈ N∗ | f(a) 6= ⊥}. We may see the of terms of Λaff

p (in de Bruijn
notation) as finite labeled trees, i.e., as functions t from N∗ (arbitrary integers
are needed because applications have arbitrarily large width) to Σ (de Bruijn
indices must be pairs of integers: one for identifying the abstraction, one for
identifying the occurrence), such that supp t is a finite tree.

Now, if we endow Σ with the discrete uniformity, the ultrametric d may be
seen to yield the uniformity of uniform convergence on finitely branching (but
possibly infinite) trees. In this uniformity, a sequence of terms (tn)n∈N (which are
particular functions) converges to t if, for every finitely branching tree τ ⊆ N∗,
there exists k ∈ N such that, whenever n ≥ k, we have tn(a) = t(a) for all a ∈ τ .
In other words, tn eventually coincides with t on every finitely branching tree.

Let us look at an example, using the metric d. Let

∆n = λx.x0〈x1, . . . , xn〉

(when we write a sequence u as 〈u0, . . . , un−1〉 we mean that u(i) = ui for
0 ≤ i < n and u(i) = ⊥ for i ≥ n). We invite the reader to check that, for all
n ∈ N and p > 0, d(∆n, ∆n+p) = 2−n−1, so the sequence is Cauchy.1 And yet,
no term of Λaff

p may be the limit of (∆n)n∈N, because the sequence is obviously
tending to the infinitary term

∆ = λx.x0〈x1, x2, . . .〉

(eventually, ∆n coincides with ∆ on every finitely branching tree).
The above example proves that the metric space (Λaff

p , d) is not complete. We

denote its completion by Λaff
∞ . Its terms may no longer be defined inductively,

because they may have infinite height. However, they are well-founded, i.e., as
trees, they contain no infinite branch from their root. In terms of the above
description of terms, t ∈ Λaff

∞ iff, as a function t : N∗ → Σ, supp t is a well-
founded tree. This means that the strict subterm relation t @ t′ is well-founded,
so we may still reason by induction on Λaff

∞ , in stark contrast with usual infini-
tary λ-calculi [16]. This is a consequence of the notion of (uniform) convergence
induced by d: since a sequence (tn)n∈N tending to t must eventually coincide
with t on every finitely branching tree, it coincides in particular on infinite trees,
which, by König’s lemma, must be non-well-founded. But if (tn)n∈N is a sequence
of Λaff

p , every tn is finite and in particular well-founded, so it cannot coincide
with t on a non-well-founded tree unless t is also well-founded.

On the other hand, finitely high but infinitely wide terms such as ∆ are the
typical inhabitants of Λaff

∞ \Λaff
p . In fact, in [20] we defined the metric so that only

terms of finite height are added to the completion (it is enough to consider the
ultrametric max(d, ρ), where ρ is the discrete pseudometric such that ρ(t, t′) = 0
as soon as t, t′ have the same height, and ρ(t, t′) = 1 otherwise), on the grounds
that these are the most interesting ones and are easier to manipulate (we may
apply induction on the height even in the infinitary case). However, in this

1 Since d is an ultrametric, it is actually enough to check this for p = 1 only.

exposition we prefer to bring forth the more natural and topologically better
behaved metric d.

Reduction in Λaff
∞ is defined just as in Λaff

p :

(λx.t)u → t[u/x],

except that now it may be necessary to perform infinitely many (linear) sub-
stitutions, because we may have that xi is free in t for infinitely many i ∈ N.
We would like to observe that, from a topological point of view, this obvious
definition is actually the only possible one. Indeed, it is possible to show, in
a sense that we do not make precise here, that reduction as defined above is
continuous on Λaff

∞ .2 Since a continuous function is entirely determined by its
behavior on a dense subset like Λaff

p , there is really no other topologically sound
way of extending reduction to infinitary terms.

In spite of the presence of infinitary terms, reduction is strongly confluent,
because the calculus is still affine, i.e., it is a “calculus of occurrences”, in which
no subterm is duplicated during reduction. In spite of this, infinitary terms may
not normalize. This is easily seen by considering the term

Ω = ∆〈∆,∆, . . .〉,

which reduces to itself. Indeed, ∆ takes a possibly infinite list, extracts the head
(which is ⊥ if the list is empty) and applies it to the rest of the list. If the list
we feed to ∆ is made up of infinitely many copies of ∆ itself, we obviously loop.

This example gives us the opportunity to see concretely, in a simple but
already meaningful case, how affine terms approximate non-linear terms. Of
course, technically speaking, the term Ω above is still affine. However, it behaves
exactly like its namesake term in the usual λ-calculus (indeed, we will see that
it corresponds to it in a precise sense), so we may consider it to be an example
of non-linear term. Consider now the finite terms

Ωn = ∆n〈
n times︷ ︸︸ ︷

∆n, . . . ,∆n〉.

We invite again the reader to check that d(Ωn, Ω) = 2−n−1, so that limΩn =
Ω. Hence, Ωn is supposed to approximate Ω better and better, as n grows.
In the case of Ω, there is not much to approximate except divergence; and in
fact, Ωn →∗ ⊥〈〉 in n + 1 steps, i.e., the reduction of Ωn is longer and longer,
approximating the diverging behavior of Ω.

2 We are alluding to Proposition 8 of [20]. Unfortunately, we made a mistake in that
paper and Proposition 8 is actually false for the metric used therein. The result
does hold for the metric d considered here, which is why we said above that it is
“topologically better behaved”. The mistake luckily does not affect the main results
of [20], in which Proposition 8 plays no role.

4 Uniformity and the isomorphism with the usual
lambda-calculus

There are far too many terms (a continuum of them) in Λaff
∞ for it be directly

in correspondence with the usual λ-calculus. We might say that Λaff
∞ is a non-

uniform λ-calculus, in the same sense as non-uniform families of circuits: if
we accept Λaff

∞ as a computational model, every function on N becomes com-
putable, with respect to any standard encoding of natural numbers. To retrieve
the λ-calculus, we need to introduce some notion of uniformity.

Definition 1 (Uniformity). We define ≈ to be the smallest partial equivalence
relation on Λaff

∞ such that:

– xi ≈ xj for every variable x and i, j ∈ N;
– if t ≈ t′, then λx.t ≈ λx.t′ for every variable x;
– if t ≈ t′ and u,u′ are such that, for all i, i′ ∈ N, u(i) ≈ u′(i′), then tu ≈ t′u′.

A term t is uniform if t ≈ t. We denote by Λu
∞ the set of uniform terms.

Intuitively, ≈ equates terms that “look alike” under any possible permutation
of the terms appearing in its application sequences. In particular, it equates all
occurrences of the same variable: while it is important that we distinguish two
occurrences of x by naming one of them xi and the other xj (with i 6= j), it does
not matter which is assigned i and which j.

A term u is uniform if u 6= ⊥ and if u “looks like itself” even if we permute
some of its subterms in application sequences. For instance, any term containing
a finite application, such as z0〈x0〉, cannot be uniform, because 〈x0〉 = 〈x0,⊥〉
and z0〈x0,⊥〉 and z0〈⊥, x0〉 do not “look alike” (indeed, x0 6≈ ⊥). On the other
hand, terms like ∆ and Ω are uniform (but not ∆n or Ωn: by the above remark,
a finite approximation of a uniform term containing an application can never be
uniform). Note that, if tu is uniform, then every u(i) has the same height, that
of u(0). Hence, uniform terms all have finite height. This is why we said above
that the terms of finite height are “the most interesting ones”.

The set Λu
∞ is not closed under reduction: in t = x0〈u, u, . . .〉, with u closed,

uniform and such that u → u′, the reduct t → x0〈u′, u, . . .〉 is in general not
uniform, because u′ has no reason to “look like” u. The solution is obvious: we
must reduce all of the copies of u at the same time:

Definition 2 (Infinitary reduction). We define the relations ⇒k on Λu
∞,

with k ∈ N, as the smallest relations satisfying:

– (λx.t)u⇒0 t[u/x];
– if t⇒k t

′, then λx.t⇒k λx.t
′;

– if t⇒k t
′, then tu⇒k t

′u;
– if tu ∈ Λu

∞ and u(0) ⇒k u
′
0, by uniformity the “same” reduction may be

performed in all u(i), i ∈ N, obtaining the term u′i. If we define u′(i) = u′i
for all i ∈ N, then tu⇒k+1 tu

′.

We denote by ⇒ the union of all ⇒k, for k ∈ N.

Note that ⇒k is infinitary iff k > 0. Indeed, ⇒0 is head reduction,3 which
corresponds to a single reduction step (which may of course perform infinitely
many substitutions, but this is not what we mean by “infinitary”. Rather, we
mean that infinitely many reductions steps are performed together).

Proposition 1. Let t ∈ Λu
∞. Then:

– t⇒ t′ implies t′ ∈ Λu
∞;

– furthermore, for all u ≈ t, u⇒ u′ ≈ t′.

Proposition 1 asserts that uniform terms are stable under ⇒ and that such
a rewriting relation is compatible with the equivalence classes of ≈. Therefore,
the set Λaff

∞ / ≈ may be endowed with the (one-step) reduction relation ⇒. It
turns out that this is exactly the usual, non-linear λ-calculus. In the following,
we write Λ for the set of usual λ-terms and →β for usual β-reduction.

Theorem 1 (Isomorphism). We have

(Λaff
∞ /≈,⇒) ∼= (Λ,→β),

in the Curry-Howard sense, i.e., there exist two maps

L·M : Λu
∞ → Λ J·K : Λ→ Λu

∞

such that, for all M ∈ Λ and t ∈ Λu
∞:

1. LJMKM = M ;
2. JLtMK ≈ t;
3. M →β M

′ implies JMK⇒ t′ ≈ JM ′K;
4. t⇒ t′ implies LtM→β Lt′M.

The two maps of the isomorphism are both defined by induction. For what
concerns L·M, we have:

LxiM = x (for all i ∈ N),

Lλx.tM = λx.LtM,
LtuM = LtMLu(0)M.

For what concerns the other direction, we first fix a bijective function p·q : N∗ →
N to encode finite sequences of integers as integers. Then, we define a family of
parametric maps J·Ka, with a ∈ N∗, as follows:

JxKa = xpaq

Jλx.MKa = λx.JMKa
JMNKa = JMKa0〈JNKa1, JNKa2, JNKa3, . . .〉

One can prove that, for any a, a′ ∈ N∗ and any t ∈ Λu
∞, we actually have

JtKa ∈ Λu
∞ and JtKa ≈ JtKa′ . Of course, Theorem 1 holds for any choice of

a ∈ N∗, that is why we simply write J·K. We let the reader check that the
uniform infinitary terms ∆ and Ω introduced above are (modulo ≈) the images
through J·K of their well-known namesake λ-terms.

3 It is actually spinal reduction, but the distinction is inessential.

5 The proof-theoretic perspective

As already mentioned, our idea of obtaining the λ-calculus through a metric com-
pletion process has proof-theoretic roots, in particular in linear logic. In fact, the
above constructions may be reformulated using proofs instead of λ-terms. In [21],
we show how a fully-complete model of polarized multiplicative exponential lin-
ear logic may be built as a metric completion of a model of the sole multiplicative
fragment. Roughly speaking, we take objects which are very much related to the
designs of Girard’s ludics [13], introduce a metric completely analogous to the
one given here, and construct the model in the completed space. What we obtain
closely resembles Abramsky, Jagadeesan and Malacaria’s formulation of games
semantics [1].

Recently, Melliès and Tabareau [23] used a similar idea to provide an explicit
formula for constructing the free commutative comonoid in certain symmetric
monoidal categories. This offers a categorical viewpoint on our work, and yields
some potentially interesting remarks.

Melliès and Tabareau’s construction starts with a symmetric monoidal cat-
egory (C,⊗, 1) with finite products, which we denote by A & B. We define
†A = A & 1, the free co-pointed object on A, with its canonical projection
πA : †A −→ 1. We also inductively define A⊗0 = 1, A⊗n+1 = A⊗n ⊗A.

Using the symmetry of C, for every n ∈ N we may build n! parallel isomor-
phisms σA,ni : (†A)⊗n −→ (†A)⊗n. We define A≤n to be the equalizer, if it exists,

of σA,n1 , . . . , σA,nn! .
Now, by the universal property of equalizers on the morphism πA, we know

that there is a canonical projection πAn : A≤n+1 −→ A≤n, for all n ∈ N. Then,
we define !A to be the limit, if it exists, of the diagram

A≤0 πA
0←− A≤1 πA

1←− A≤2 πA
2←− · · ·

Melliès and Tabareau’s result is the following:

Proposition 2 ([23]). If the equalizers and the projective limit considered above
exist in C and if these limits commute with the tensor product of C, then, for
every object A of C, !A is the free commutative comonoid on A.

It is known that, in a ∗-autonomous category with finite products, the ex-
istence of the free commutative comonoid on every object yields a denotational
model of full linear logic (a result due to Lafont, see Melliès’s survey in [8]).
Therefore, Proposition 2 provides a way of building, under certain conditions,
models of full linear logic starting from models of its multiplicative additive
fragment.

The conditions required by Proposition 2 are however not anodyne. In fact,
Tasson showed [23] how the construction fails in a well known model of linear
logic, Ehrhard’s finiteness spaces [11]. In this model, although all the required
limits exist, the projective limit does not commute with the tensor product.

Our approach seems to offer an alternative construction to that of Melliès
and Tabareau’s, in which the two main steps for building the free comonoid are

reversed: first one computes a projective limit, then one equalizes. This follows
our procedure for recovering the λ-calculus: we first complete the space Λaff

p

to obtain Λaff
∞ , then we introduce uniformity and obtain the λ-calculus as the

quotient Λaff
∞ /≈.

More in detail, we start by defining pAn : (†A)⊗n+1 −→ (†A)⊗n as the mor-
phism obtained by composing id(†A)⊗n ⊗ πA with the iso (†A)⊗n ⊗ 1 ∼= (†A)⊗n.
Then, we define ∇A as the limit (if it exists) of the diagram

(†A)⊗0 pA0←− (†A)⊗1 pA1←− (†A)⊗2 pA2←− · · ·

At this point, if we suppose that the above limit commutes with the tensor, i.e.,
that ∇A⊗∇A is the limit of the diagram

(†A)⊗0 ⊗ (†A)⊗0 pA0 ⊗p
A
0←− (†A)⊗1 ⊗ (†A)⊗1 pA1 ⊗p

A
1←− (†A)⊗2 ⊗ (†A)⊗2 pA2 ⊗p

A
2←− · · · ,

then it is not hard to see that ∇A is also a cone for the second diagram, and that
∇A ⊗ ∇A is a cone for the first. Therefore, we have two canonical morphisms
ϕ : ∇A −→ ∇A⊗∇A and ψ : ∇A⊗∇A −→ ∇A. Using these and the symmetry
of C, we build infinitely many endomorphisms of ∇A, of the form ∇A −→
(∇A)⊗n −→ (∇A)⊗n −→ ∇A. We define !A to be the equalizer (if it exists) of
all these endomorphisms.

If we apply this construction to the category of finiteness spaces, !A actually
turns out to be the free commutative comonoid on A. Whether this is this just a
coincidence or whether a suitable rephrasing of Proposition 2 holds is currently
unknown and is doubtlessly an interesting topic of further research.

6 Complexity-bounded calculi

We add purely linear terms to our syntax, i.e., we consider a denumerably infinite
set of linear variables, disjoint from the set of usual variables and ranged over
by a, b, c, . . ., and we modify the grammar defining Λaff

p as follows:

t, u ::= ⊥ | xi | λx.t | tu | a | `a.t | tu.

Furthermore, we require that:

– occurrences of variables (xi) and linear variables (a) both appear at most
once in terms;

– in `a.t, which is a linear abstraction, the variable a must appear free in t;
– in tu, no u(i) contains free linear variables, for i ∈ N.

We denote by `Λaff
p the set of terms thus obtained.

Proof-theoretically, this calculus corresponds to allowing simple linear impli-
cation in the fragment of multiplicative additive linear logic we consider:

A,B ::= X | A(B | (A1 & 1)⊗ · · · ⊗ (An & 1) (B.

Reduction in `Λaff
p is defined by adding a purely linear β-reduction rule be-

sides the one already present in Λaff
p :

(`a.t)u→ t[u/a],

(λx.t)u→ t[u/x].

Note that the absence of types produces “clashes”, i.e., terms of the form (`a.t)u
or (λx.t)u, which look like redexes (especially the latter. . .) but are not reduced.
This is unproblematic for our purposes.

The ultrametric d on `Λaff
p is defined just as in Sect. 3 for the inductive cases

already present in Λaff
p , and is trivially extended to the other cases:

d(a, t′) =

{
0 if t′ = a
1 otherwise

d(`a.t1, t
′) =

{
d(t1, t

′
1) if t′ = `a.t′1

1 otherwise

d(t1u, t
′) =

{
max (d(t1, t

′
1), d(u, u′)) if t′ = t′1u

′

1 otherwise

We denote by `Λaff
∞ the completion of `Λaff

p with respect to d.

The partial equivalence relation ≈ is extended to `Λaff
∞ in the obvious way:

a ≈ a for every linear variable a; if t ≈ t′, then `a.t ≈ `a.t′; if t ≈ t′ and u ≈ u′,
then tu ≈ t′u′. Hence, a term t ∈ `Λaff

∞ is uniform if t ≈ t. Infinitary reduction is
also extended to the uniform terms of `Λaff

∞ in the obvious way (the index of⇒k

does not increase when reducing inside the argument of a linear application).
Of course, `Λaff

∞ brings nothing really new with respect to Λaff
∞ . In particu-

lar, if we are only interested in the λ-calculus, purely linear terms are useless.
They become interesting when we restrict the space of finite terms, i.e., the
approximations we are allowed to use.

Definition 3 (Depth, stratified term). The depth of a free occurrence of
variable xi in a term t ∈ `Λaff

p , denoted by δxi
(t), is defined by induction on t:

– δxi
(xi) = 0;

– δxi(λy.t1) = δxi(`a.t1) = δxi(t1);
– if t = t1u, then xi is free in u(p) for some p ∈ N, and we set δxi(t) =
δxi

(u(p)) + 1;
– similarly, if t = t1t2, then xi must be free in tp for p ∈ {1, 2}, and we set
δxi

(t) = δxi
(tp).

A term t ∈ `Λaff
p is stratified if:

– whenever xi is free in t, δxi(t) = 1;
– for every subterm of t of the form λx.u and for every i ∈ N such that xi is

free in u, δxi
(u) = 1.

We denote by `Λs
p the set of all stratified terms.

The definition of stratified term clarifies why we need to consider purely
linear terms: in their absence, the only stratified applications would be of the
form ⊥u, i.e., head variables are excluded, because their depth is always 0.

As a subset of `Λaff
p , `Λs

p is also a metric space, with the same ultrametric d.

However, `Λs
p is not dense in `Λaff

∞ . In fact, its completion, which is equal to its

topological closure as a subset of `Λaff
∞ and which we denote by `Λs

∞, is strictly
smaller. We may see this by considering the term ∆ introduced in Sect. 3. In
order for any t ∈ `Λaff

p to be such that d(t,∆) < 1, we must have t = λx.x0u,
which is not stratified. Hence, no sequence in `Λs

p ever tends to ∆, and this term
is not present in `Λs

∞. Similarly, Ω 6∈ `Λs
∞.

The above example is interesting because it excludes the most obvious source
of divergence in `Λaff

∞ . In fact, `Λs
∞/≈ is actually an elementary λ-calculus, in the

same sense as that of [7]. When suitably typed in a system/logic containing a type
N corresponding to natural numbers, the terms of type N→ N represent exactly
the elementary functions, which are those computable by a Turing machine in
time bounded by a tower of exponentials of fixed height.

We believe that a polytime λ-calculus may be obtained by considering an-
other metric on `Λs

p. That is, the approximations are the same, but they do
not have the same meaning. To give an analogy (which is purely suggestive, not
technical), we may consider the standard sequence spaces used in analysis. The
set c00 of infinite sequences of real numbers which are almost everywhere null
(hence virtually finite) may be endowed with many different metrics, according
to which the completion only contains sequences which tend to 0. However, the
rate at which they are allowed to vanish is different: any rate (c0), strictly more

than the linear inverse (`1), strictly more than the inverse square (`
1
2). . .

At the moment, we have a metric such that, when we complete `Λs
p with

respect to it and consider uniform terms, we seem to obtain a space of terms
roughly corresponding to a poly-time λ-calculus such as the one of [25]. Although
we have no precise results yet, this research direction looks promising and is def-
initely worth further investigation. In particular, thanks to non-uniform terms,
this might lead to a λ-calculus characterization of the class P/poly.

Acknowledgments. This summary is mostly based on [20] and the journal version [21]

(under review), which benefited from the partial support of ANR projects Complice

(08-BLAN-0211-01), Panda (09-BLAN-0169-02) and Logoi (10-BLAN-0213-02).

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inform.
Comput 163(2), 409–470 (2000)

2. Accattoli, B., Kesner, D.: Preservation of strong normalisation modulo permuta-
tions for the structural lambda-calculus. Logical Methods in Computer Science
8(1) (2012)

3. Asperti, A., Guerrini, S.: The Optimal Implementation of Functional Programming
Languages. Cambridge University Press (1998)

4. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda
calculus. Inf. Comput. 207(1), 41–62 (2009)

5. de Bruijn, N.G.: Lambda calculus notation with nameless dummies. Indagat. Math.
34, 381–392 (1972)

6. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) Proceedings of CONCUR. Lecture Notes in Com-
puter Science, vol. 6269, pp. 222–236. Springer (2010)

7. Coppola, P., Martini, S.: Typing lambda terms in elementary logic with linear
constraints. In: Proceedings of TLCA. pp. 76–90 (2001)

8. Curien, P.L., Herbelin, H., Krivine, J.L., Melliès, P.A.: Interactive Models of Com-
putation and Program Behavior. AMS (2010)

9. Curien, P.L., Munch-Maccagnoni, G.: The duality of computation under focus. In:
Calude, C.S., Sassone, V. (eds.) Proceedings of IFIP TCS. IFIP AICT, vol. 323,
pp. 165–181. Springer (2010)

10. Danos, V., Ehrhard, T.: Probabilistic coherence spaces as a model of higher-order
probabilistic computation. Inf. Comput. 209(6), 966–991 (2011)

11. Ehrhard, T.: Finiteness spaces. Mathematical Structures in Computer Science
15(4), 615–646 (2005)

12. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (1987)
13. Girard, J.Y.: Locus solum. Math. Struct. Comput. Sci. 11(3), 301–506 (2001)
14. Hofmann, M.: Linear Types and Non-Size-Increasing Polynomial Time Computa-

tion. Inform. Comput. 183(1), 57–85 (2003)
15. Honda, K., Laurent, O.: An exact correspondence between a typed pi-calculus and

polarised proof-nets. Theor. Comput. Sci. 411(22-24), 2223–2238 (2010)
16. Kennaway, R., Klop, J.W., Sleep, R., de Vries, F.J.: Infinitary lambda calculus.

Theor. Comput. Sci. 175(1), 93–125 (1997)
17. Lago, U.D., Gaboardi, M.: Linear dependent types and relative completeness. Log-

ical Methods in Computer Science 8(4) (2011)
18. Laurent, O., Regnier, L.: About translations of classical logic into polarized linear

logic. In: Proceedings of LICS. pp. 11–20. IEEE Computer Society (2003)
19. Mackie, I.: Efficient lambda-evaluation with interaction nets. In: van Oostrom, V.

(ed.) Proceedings of RTA. LNCS, vol. 3091, pp. 155–169. Springer (2004)
20. Mazza, D.: An infinitary affine lambda-calculus isomorphic to the full lambda-

calculus. In: Dershowitz, N. (ed.) Proceedings of LICS. pp. 471–480. IEEE Com-
puter Society (2012)

21. Mazza, D.: Non-linearity as the metric completion of linearity. Submitted (2013),
available online at http://lipn.univ-paris13.fr/∼mazza/?page=pub

22. Melliès, P.A., Tabareau, N.: Resource modalities in tensor logic. Ann. Pure Appl.
Logic 161(5), 632–653 (2010)

23. Melliès, P.A., Tabareau, N., Tasson, C.: An explicit formula for the free exponential
modality of linear logic. In: Proc. ICALP 2009. pp. 247–260 (2009)

24. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical
control. Mathematical Structures in Computer Science 16(3), 527–552 (2006)

25. Terui, K.: Light affine calculus and polytime strong normalization. In: Proceedings
of LICS. pp. 209–220. IEEE Computer Society (2001)

