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Motivation for Exploring xLSTM |

Large-Scale Language Modeling

» Emergence of advanced language skills at scale.

» Transformers: large number of parameters trained in parallel.
Open Question

» Does the choice of architecture matter, or will any model
scale effectively?

» Candidate Architectures include State Space Models
(SSMs) and Recurrent Models.



Motivation for Exploring xLSTM I

Theoretical Results
» Transformers and SSMs are in TC® (Merril et al. TACL'23;
ICML'24)
Problems solvable by constant-depth, polynomial-size circuits
composed of AND, OR, NOT, and threshold gates.

» Sequential problems like permutation computation (Ss) are
outside TC? but can be solved by RNNs (Minksy 54).
Simulating FSA is in NCl-complete, graph connectivity
(L-complete), solving linear equations (P-complete), etc.

Empirical Results

> RNNs and Transformers don't generalize on non-regular
tasks; LSTMs can solve regular and counter-language tasks;
only networks augmented with structured memory can

generalize on context-free and context-sensitive tasks
(Delétang et al. ICLR'23).
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RNN Architecture Overview

» RNNs maintain a hidden state that updates over time.

v

Hidden state h; captures information from previous time steps.

v

Update equation:

h; = tanh(Whhht_l + Winx: + bh)
» Output equation:
Yt = Whyht + by

> Key components:

» Input vector x; € R”
» Hidden state h, € R?
» Output vector y; € R™
> Weight matrices:

Whh c RdXd7 th c Rdxn’ Why c Rmxd

» Bias terms: b, € RY, b, ¢ R™



RNN Forward Pass Example with Sequence Length 4

» Consider a sequence xi, X», X3, X4, where x; € R".
» Compute hidden state at time step 4 (hs):

hs = tanh ( Wy, tanh (
W), tanh (
W, tanh (
Wih ho + Winx1 + by)
+ Winxo + bp)
+ Wipx3 + bp)
+ Winxs + bh)
» Output at time step 4:
ya = Wy hy + b,

» h, depends on hg and all previous inputs x; to x4, with each
input influencing the hidden state through multiple
applications of tanh.



RNN Training Challenges

» Training involves computing gradients through time, known as
Backpropagation Through Time (BPTT).

» RNNs often suffer from vanishing or exploding gradients,
making training difficult.



Loss Function Over Time Steps

> The total loss L is the sum over all time steps:

-
Z Lt _Vt, _Yt
t=1

> y;: True output at time t.
» y:: Predicted output at time t.
» L Loss at time t (e.g., cross-entropy or MSE).



Gradient w.r.t. Hidden State

> Goal: Compute c‘%wa'
» Using the chain rule:

oL 0L oLy
- =4 E

oh,  Oh, Pl

» Simplifies to a recursive formula:

oL _ oL oL ohe
oh, _ oh, ' dhy1 Oh,

» This accounts for both direct and indirect dependencies.



Computing the Recursive Gradient |

» Recall the hidden state update:

ht+1 = tanh(at+1)

where
art1 = Wiphy + Wypxe 1 + by

» Compute the derivative of h;, 1 with respect to h;:

Ohe i1 _ Ohty1 Oag 1
(9ht 8at+1 8ht

» Compute %""—;;;1:
Oapy1

Oh;

W,nx: 11 and by are constants with respect to h;.

= Why,



Computing the Recursive Gradient Il
Oh;
» Compute Baf

Oh:
Oay i1

= diag (1 — tanh?(ae+1))

» Since tanh is applied element-wise, its derivative is a diagonal
matrix. )
» Each diagonal element corresponds to 1 — tanhz(agl).

» Combine the derivatives:

Oh:
oh;

= diag (1 — tanh2(at+1)) Wy,



Computing the Recursive Gradient IlI

» Update the gradient expression:

oL 0L (0L Ohei
8ht o 8ht aht+1 8ht

Substitute 85';::1 into the equation:

oL L,

oL . 5
Sh — ohs + <d|ag (1 — tanh (at+1)) Whh>

Oht 1

» Adjust for correct dimensions (Transpose):

oL _ oL,
oh,  Oh;,

oL
W, ( diag (1 — tanh?
+ hh( |ag( anh*(a;41)) 3ht+1>




Unrolling the Recursion

» Apply the recursive formula repeatedly:

oL oL oL

aiht aht Whh(I.t—‘rl ah
oL, OLe L
Oh + Whh(I)t—l-l (8ht + Whh(I)t+28h 2>

T k =\ oL
:kz::t H Whh‘I’j Bih;(

j=t+1

» The product operator [] represents matrix multiplication over
time steps.

» It highlights the accumulation of gradients over time.

» The product term influences the magnitude of the gradients.



Vanishing Gradients

» When ||[Whpll2 < 1:

» The product H 41 W, @/ decreases exponentially.
» Gradients OL become very small.

P> Result: leflculty in learning long-term dependencies.

» lllustration:

oL

w (k—t)
H H (1 Wil ) | 2

> Where v = max; || @[> < 1.



Exploding Gradients

» When ||Whpl|2 > 1:
» The product H 41
» Gradients aL become very Iarge

Wi;',—7 <I>’- increases exponentially.

» Result: Numerical instability during training.
> [llustration:

oL,

(k—t)
|| = Wl -y | 2




Theoretical Understanding

» Spectral Radius p(Wpp):

» Largest absolute eigenvalue of W,.

> p(Whp) < 1 leads to vanishing gradients.

> p(Whpp) > 1 leads to exploding gradients.
» Lyapunov Exponents:

» Measure divergence/convergence rates in dynamical systems.
» Negative exponents: Vanishing gradients.
» Positive exponents: Exploding gradients.

» Norms of Jacobians:

» Norms ||%;;1|| affect gradient magnitude.



Mitigating Gradient Problems

» Gradient Clipping:

» Restricts the gradient norm to a predefined threshold.

> Initialization Techniques:

> Properly initializing weights to maintain stable gradients.

» Use of orthogonal matrices for Wp,: Wh, W,I, = I. Preserves
the norm of vectors during multiplication: ||Wppx|| = || x||

> Activation Functions:

> Use RelLU variants: ReLU(x) = max(0, x). Derivative is 1 for
positive inputs, allowing gradients to flow back without
shrinking.

> Advanced RNN Architectures :

» Long Short-Term Memory (LSTM) Hochreiter and
Schmidhuber (1997) introduce constant error carrousel and
gates to control information flow.

> Gated Recurrent Units (GRU) simplify LSTMs while
addressing gradient issues.



LSTM Architecture: Scalar and Vector Forms |

» LSTM memory cell update rules at time step t:
Scalar Form:

cc = fp - 1 + iy -z cell state
he='ot -h, h=v(c) hidden state
z: = @(2), Zr= wzT Xt +ry hi—1 + b, cell input
P 0(7,:)7 Iy = W,-T X¢ + i hi—1 + b; input gate
A = a(ft), = wa X: +rf he—1 + br forget gate
ot =0(6:), 6= on X¢ +ro he—1 + b, output gate

> Here, x; € R” and w,, w;, wr, w, € R” are input weight
vectors, while r, rj, re, ro € R are scalar recurrent weights.



LSTM Architecture: Scalar and Vector Forms Il

» Vector Form:

ci=FOC_1+10 2z cell state (€ Rd)
h: = o; © Y(ct) hidden state (€ RY)
ze = (%), Z = W,ox¢+ R,h;_1+ b, cell input
i = O'(it), i = Wix; + R:h,_1 + b; input gate
f = a(r‘i)7 f. = Wrx; + Rrh,_1 + by forget gate
o =0(0:), 0= Wjox:+ Rohi—1+ b, output gate

» Multiple memory cells are combined into a vector
representation (c; and h;)

» Allows the use of recurrent weight matrices (R, R;, Rs, R;)
to mix the outputs of memory cells.

» Crucial for capturing complex dependencies across time steps
(Greff et al. 2015).



LSTM Architecture: information flow

@

https://blog.mlreview.com/understanding-lstm-and-its-diagrams-37e2f46f1714




How the Constant Error Carousel Solves Vanishing
Gradients |

» Constant Error Carousel (CEC) in LSTM:

» Introduced by Hochreiter and Schmidhuber (1997); Gers et al.
(2000) added the forget gate:

a¢=L(O0c 1+i0Oz

» Additive Updates:

» Cell state ¢; € R™ updated via element-wise operations.
> Avoids multiplication that can shrink gradients.

» Gradient Flow through CEC:
» Recursive Gradient Equation:

oL oL (o
oc;  Oc



How the Constant Error Carousel Solves Vanishing
Gradients |l

» Unrolling the Recursion:

oL 0L, OLiyq oL

e, ~ de, + (L}Ctﬂ + <8ct+2 © ft+z>} ® ft+1)
8Lt 3Lt+1 3L

= — f; — O Ff f;
ac, + (act+1 O fey1 | + Dceis OF /X, XON /3%

T k
oLy
> ( (e I
k=t :
» The grad|ent accumulates contributions from future time

steps.

» Each term is modulated by the product of forget gates f; with
elements in [0, 1], controlling gradient flow. If £ eIements are
close to 1, gradients are preserved.



Do LSTMs Actually Have Long Memory?

> Bengio et al. (1994): Showed difficulty in learning long-term
dependencies with GD in systems like y; = M(y;—1) + €¢.

» Cheng et al. (2016): Pointed out that LSTM updates are
Markovian and fit Bengio's system.

» Miller & Hardt (2018): Proved that r-step LSTM is stable,
which limits modeling of long-range dependencies.
» Greaves-Tunnell & Harchaoui (2019):

» Defined long dependency in terms of long memory in
stochastic processes. Long memory in RNNs can be re-framed
as a comparison between a learned representation and an
estimated property of the data.

» |angauge data has long dependencies, not captured by RNNs.

» Zhao et al. (2020):

» Represent RNN/LSTM as markovian network processes

» Show short memory by showing that the process is
geometrically ergodic, meaning that the dependency on initial
states decays exponentially over time.



Limitations of LSTM Networks addressed by xLSTM

1. Inability to Revise Storage Decisions
» FExample: Nearest Neighbor Search task.

2. Limited Storage Capacities
» Example: Poor performance on Rare Token Prediction.
3. Lack of Parallelizability Due to Memory Mixing

» Hidden-to-hidden connections enforce sequential processing.
» Limits efficient computation on modern hardware.

MSE

LST™M
M xLSTM
I Transformer

600

2001

601
201

LSTM
M xLSTM
I Transformer

PPL <10° 10°-10* >10* all



sLSTM Forward Pass and Stabilization |

sLSTM forward pass equations:

G=F0Oc_1+i:0z cell state
ng =f,on_q+i; normalizer state
T T Ct .
hi=0:0h, h= — hidden state
n;

ze =p(Z), Z;= Wszt + rzhi—1+ b,

i = exp (i), = WiTXt + rihe—1 + bi

fi = U(it) or exp (ft)a f, = W;—Xt + rehe—1 + br

cell input
input gate

forget gate

o; =0(0:), O;= onxt + rohs—1 + by output gate

» Cell input activation function is tanh (help stabilization).

» The hidden state activation function is the identity.



sLSTM Forward Pass and Stabilization I

Exponential activation functions can lead to large values that
cause overflow.
Stabilization equations:

m; = max (Ft + mi_q ,/Nt) stabilizer state
il = exp (/Nt — my ) stabilized input gate
fl = exp (ft + mi_1 — my ) stabilized forget gate

Note: The stabilizer state m; does not change network output nor
gradients.



Proof of Equivalence for sLSTM Stabilized Version
c = cgs) exp(m;)

(s)

ng = ng’ exp(my)



Proof of Equivalence for sLSTM Stabilized Version

(s)

Ct = ¢ exp(mt)
ny = ngs) exp(m;)

E(s) _ C§S)
t (s)

ng

exp(log(f) + me—1 — mt)cgs)l + exp(log(it) — m¢)z:
exp(log(f) + me—1 — me)ni”) + exp(log(ir) — my)
exp(log(f;) + me_1) 5”1 + exp(log(ic))ze
exp(log(f;) + m:— 1)n 1 + exp(log(it))

_ exp(log(f;))ce—1 + exp(log(it))z:
exp(log(f))ni—1 + exp(log(it))
frce—1 + itzt ¢t =

== — = ht
fene—1 + it ne




Memory Mixing in sSLSTM vs. LSTM |

» Standard LSTM:
» Recurrent weight matrices (R, R;, R¢, R,) are full matrices.
» Allows memory mixing across all memory cells.
> Example of a Full Recurrent Matrix (R € R7¥9):

ni o . nd

1 o e d
R =

rq1 g2 . rdd

» sLSTM with Multiple Heads:

> Recurrent weight matrices (R, R;,Rf,R,) are
block-diagonal.

» Enables memory mixing within each head but not across heads.

» Number of heads: N,.

» Head size: d, = N%'



Memory Mixing in sSLSTM vs. LSTM I

»> Example of a Block-Diagonal Recurrent Matrix

(R € RI*9):
RD 0 0
0 R® 0
R =
0 0 .. RW

where each R(K) € R9%*% corresponds to head k.

» Parameter Reduction:
» Standard LSTM:

Parameters = d x d = d?

> sLSTM:

) d\°> d?
Parameters = Ny x d2 = Njy x [ ~— | = —
arameters h X dj h X (Nh) m



mLSTM: Enhanced Storage in LSTMs

» LSTMs use a scalar cell state ¢; € R.

> Goal:
P Increase storage capacity by extending the cell state to a
matrix C, € R9%9.
» Allow accumulation (storage) of information over time steps.
» Enable retrieval of stored information without access to
previous time steps.
> Storing Key-Value Pairs and Retrieval:
» At each time step t, store:
> Key vector k; € RY.
> Value vector v; € R
> Later retrieve v; using a query vector ;.



Comparison with Attention Mechanisms

P> At each time step, compute:

» Query vector q;.
> Key vector k;.
» Value vector v;.

» Attention Scores:

N

.
exp (qf kf’)
d ko

e exp (1)

> Retrieval (Context Vector):
h: = Zat,t/vt/
t/

> The model attends to relevant parts of the input sequence by
computing similarities.

At =

» Allows parallel computation but requires access to all previous
steps storage.



Outer Products and Bidirectional Associative Memories |

» Quter Product and Rank-1 Matrices:
» The outer product of two vectors u € R™ and v € R” is:

A=uv' e R™"

> A is a rank-1 matrix:

» All columns are scalar multiples of u.
> All rows are scalar multiples of v'.

» Represents all pairwise combinations between elements of u
and v.

» Outer Product in Singular Value Decomposition (SVD):

r
A= E CT,'U,'V,T
i=1

where:
» ris the rank of A.
» o; are singular values (o1 > 02 > --- > o, > 0).
> u; € R™ and v; € R" are left and right singular vectors.



Outer Products and Bidirectional Associative Memories |l

» Outer Product in Associative Memories (BAM):
»> BAM stores associations between pairs {(xp,¥,)}

P
W=D ¥oxp
p=1

» Each outer product ypx;,r is a rank-1 matrix capturing the
association between x, and y,.
» Retrieval Mechanism:

P
Yretrieved = qu = Z Yp(x;rxq)

p=1

» Inner product x;xq measures similarity. Retrieval amplifies
matching patterns due to higher similarity.

» Capacity depends on orthogonality of stored patterns.

» Highly correlated vectors may cause interference and retrieval
errors.



Outer Products and Bidirectional Associative Memories ||

» Example:
» Stored Patterns:

> Weight Matrix:

W =yix{ +yox; = {a C}
> Retrieval:

Yretrieved = Wx1 = {Z} =y

C
retrieved — W - ==
Yretrieved X2 |: d y2



Optimality of the Covariance Update Rule

» Covariance Update Rule:

Ce=Cio1+ (ve — V) (ke — R)T

> Separability:
» This rule is optimal for maximal separability of retrieved binary
vectors.
» Higher separability is achievable when limiting retrieval to
pairwise interactions.
Requires quadratic complexity, as in attention mechanisms.
> Relation to Fast Weight Programmers:
» Covariance update rule is equivalent to Fast Weight
Programmers (Schmidhuber, 1992; Schlag et al., 2021).
» Incorporates dynamic weight updates for fast memory access.

>



Matrix LSTM (mLSTM) Equations

Ct = ft Ct—l + it ’Utk;r

ng = f; miq + i kg
hy = o, © hy, hy = C; q /max{‘";r q; ‘,1}
q = Wyz, + by
1

ki = —W,x; + b

+ Nz k Tt k

vy = vat + bv

it = exp Gt) , -i't = 'LU:r x; + bi

f; = a(ft) OR exp (ft), ft = 'w;r x; + b

0O =0'(6t), 6t_W0$t+bo

LayerNorm(x) = X?f/ﬁ Ov+3

cell state
normalizer state
hidden state
query input

key input

value input
input gate
forget gate

output gate

Applied before projecting input to key and value (covariance updates)



Normalizer State and Numerical Stability

» Normalizer State:
ng="fr-ne_1+ i - ke

» Purpose:
> Keeps a weighted sum of key vectors.
» Each key vector is weighted by the input gate and all future
forget gates.
» Records the strength of the gates over time.
» Numerical Stability:

» The dot product n/ q; can be close to zero.
» To prevent division by small numbers, use:

C:q;

P Ga
! max (|n] q¢|, 1)



Multiple Memory Cells and Stabilization

» Multiple Memory Cells:
» mLSTM can have multiple memory cells like the original
LSTM.
» For mLSTM, multiple heads and multiple cells are equivalent
due to lack of memory mixing.

> Parallelization Appendix A.3 :

» Since mLSTM has no memory mixing, the recurrence can be
reformulated in a parallel version.
» Improves computational efficiency on GPUs.



mLSTM Computations: lterative and Matrix Forms |
> At each time step t:

Forget Gate: £, = o(f;)
Input Gate: iy = o(i)
Output Gate: oy = o(6¢)
Cell State Update: C; = £;C;_1 + ir(vk, )
Hidden State: h, = o;h,

» Unrolling the Cell State:

Ci=fifi1Cin + ﬂit—l(vt—lkg—_l) + it(vtk;r)

t

= (H fk> Co + Z H fx I'J'(ijjT)
k=1 j=1

k=j+1

» Assuming Cy = 0 for simplicity.



mLSTM Computations: lterative and Matrix Forms ||

» Constructing the Forget Gate Activation Matrix F:

F[f B .. ] cRT

0 forj>i
1 for j =i
Fij= ; /
H o(f) forj<i
k=j+1
» Visualization of F:
[ 1 0 0]
a(h) 1 0
F= | o(R)o(f) o(f3) 0




mLSTM Computations: lterative and Matrix Forms Ill
» Constructing the Input Gate Pre-Activation Matrix I:

i:[ll,lé,...,fT]TeRT

~_Jo forj > i
v /; fori>j

—

» Computing the Unstabilized Gate Activation Matrix D:

D= F@exp(i)

» Computing Hidden Pre-Activation States H:
QK'
Vd

Ci
-

H=CV

C-= ©D

Ci =

1)



mLSTM Computations: lterative and Matrix Forms IV

» Computing the Final Hidden States H:
OcR™4 0=0(0)

H=00H

> Equivalence Between lterative and Matrix Forms:
» Iterative Computation:

C:=1fCi1 + "t(vtktT)
» Matrix Formulation:

C=FOoexp (i) © (Outer Products of v;k, )

» Explanation:

> Matrix operations aggregate iterative updates.
» Enables parallel computation over the entire sequence.



xLSTM Architecture

» xLSTM Blocks: Designed to non-linearly summarize the past
in a high-dimensional space, enhancing the separation of
different histories or contexts (Cover’'s Theorem (1965)).

» Residual Block Architectures:

» Post Up-Projection (like Transformers):

> Input is fed into an sLSTM, optionally followed by a
convolution.

> A gated MLP follows the sLSTM block.

» Pre Up-Projection (like State Space Models):

» Input is mapped into a high-dimensional space and linearly
maps back after non-linear summarization.

» mLSTM is wrapped inside two MLPs, with a convolution, skip
connection, and an output gate.

» Construction: Residual stacking with pre-LayerNorm, as used
in large language models.



Post Up-projection Residual Block
Mainly for sLSTM

W.LS1S
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Pre Up-projection Residual Block
Mainly for xLSTM

H
W)

=] 5 = = E DA



Memory and Speed Considerations

» Linear Computation and Constant Memory Complexity:
» xLSTM offers linear computational complexity and constant
memory complexity with respect to sequence length.
» This makes xLSTM suitable for industrial applications and
on-edge implementations.

» mLSTM Memory and Computational Trade-Off:

> Memory is a d X d matrix, which is parameter-free but
computationally intensive.

» Trade-off between memory capacity and computational
complexity, manageable with parallel GPU computations.

» Parallelization:

> mLSTM is parallelizable (similar to FlashAttention).
» sLSTM is not parallelizable due to memory mixing but is
optimized with fast CUDA implementation.



Test of xLSTM's Exponential Gating with Memory Mixing

Bucket Sort
Sequence: 1486111468
Cycle Nav
Sequence: STAY +1 -1 +1 STAY +1 +1 +1 -1 P3
Even Pairs
Sequence: abbaababaa
Majority
Sequence: 1764381721
Majority Count
Sequence: 1 764481722
Missing Duplicate
Sequence: 4 86 254 8 6 2 [MIS] &
Mod Arithmetic (w/o Braces)
Sequence: 0 - 4 + 0 - 2 = 4 [PAD]
Mod Arithmetic (w Braces)
Sequence: ( ((2) *-2)-(-4-2)) =2
Odds First
Sequence: 273269 [ACT] 2367 29
Parity:
Sequence: a bbaabab
Repetition
Sequence: 2 4 8 6 2 [ACT] 2486 2
Reverse String
Sequence: 2 4 8 6 2 [ACT] 26 8 4 2
Stack Manipulation
Sequence: ST1 ST1 ST3 POP POP PS3 PS3 [ACT] ST1 ST3 ST3
Set
Sequence: 8 6 6 3 5453 [ACT] 86 354
Solve Equation:
Sequence: ( ((2+0)+-x) - (1)) =2I[ACT] 2




Test of xXLSTM's Exponential Gating with Memory Mixing

Deterministic

Context Sentsitive Context Free Regular
Mod Mod
Missing - . Solve y N Majority
Bucket Sort Duplicate AJEE:E‘S; © Equation | Cycle Nav Even Pairs ﬁﬂf?,’.?fﬁ;c Parity Majority Count
Liama B2 0.08 0.02 0.02 0.04 0.03 0.03 037 ‘ 013
2 £00 £00 =00 £001 =00 £001 £00
0.15 0.04 0.05 0.05 0.13
Mamba +00 +0.01 =002 =002 +0.02
9 LIk 0.03 0.03 0.03 .04 0.05 .12
Retention-  0;13 o o o 0 +o01 e
0.3 0.06 0.05 0.02 0.04 0.18
Hyena -+ 5, +002 +00 =00 +00 +002
0.21 0.06 0.07 0.07 0.06 0.13
rwcvs (ORERY 921 0% op
0.15 0.08 0.08 0.15 0.06 0.34
rwvs SO o op R =
RWKV-6 2.302 0.09 0.22
LSTM 0.15
(Block) £00
LSTM o
xLSTM[0:1] e
xLSTM[1:0] 08
xLSTM[L:1] %




Test of xLSTM's Memory Capacities on Associative Recall
Tasks

Test memory capacity on the Multi-Query Associative Recall task:

memorizing randomly chosen key-value pairs for later retrieval, 256
pairs, context length is 2048.

—@— Llama ~—®— Mamba —8— RWKV-5 —®— RWKV-6

—@— xLSTM[1:0] —@— xLSTM[1:1]
KV Pairs = 48 KV Pairs = 96

KV Pairs = 256
1.00
0.75
>
]
S 050
8
<
0.25
0.00
32 64 128 256 512 32 64 128 256 512 32 64 128 256 512
Model Dim Model Dim

Model Dim



Test of xLSTM'’s Long Context Capabilities on Long Range
Arena

Retrieval ListOps Pathfinder G-Image RGB-Image Ranking

acc T acc T acc T acc T acc T acc T
Random Baseline 0.500 0.100 0.500 0.100 0.100
Llama 0.845 0.379 0.887 0.541 0.629 5.2
Mamba 0.902 0.325 0.992 0.689 0.765 2.2
RWKV-4 0.898 0.389 0.914 0.691 0.757 3.0
LST™M X 0.275 X 0.675 0.718 54
LSTM (Block) 0.880 0.495 0.690 0.756 34

X
xLSTM 0.906 0411 0.919 0.695 0.761 1.6




Perplexity

Train an auto-regressive language model on 15B tokens from

SlimPajama

#Params  SlimPajama
Model M (15B) ppl |
GPT-3 356 14.26
Llama 407 14.25
H3 420 18.23
Mamba 423 13.70
Hyena 435 17.59
RWKV-4 430 15.62
RWKV-5 456 16.53
RWKV-6 442 17.40
RetNet 431 16.23
HGRN 411 21.83
GLA 412 19.56
HGRN2 411 16.77
xLSTM[1:0] 409 1343
xLSTM[7:1] 408 13.48

17
16
154
144
13
124

Validation Perplexit

114

=

10

—o— Llama
—eo— Mamba
—o— RWKV-4
—o— xLSTM[7:1]
xLSTMI1:0]

15B Tokens

0.2 0.4 1.0 14 2.7
Number of Parameters x10°



Ablation

Ablation studies on the new XLSTM components.

. . Exponential ~ Matrix ~ #Params  SlimPajama

Model Modification Gating Memory M (15B) ppl |

Vanilla Multi-Layer LSTM X X 607.8 2417.86

LSTM Adding Resnet Backbone X X 506.1 35.46

Adding Up-Projection Backbone X X 505.9 26.01

xLSTM[0:1] Adding Exponential Gating v X 427.3 17.70

xLSTM[7:1] Adding Matrix Memory v v 408.4 13.48

Ablation studies on different gating techniques.

Forget Gate Input Gate SlimPaiama

Learnable Gates Input Learnable  Bias Input Learnable Bias (15B) }J7P1 4
Dependent Bias Init Dependent Bias Init

No Gates X X +00 X X 0 NaN

No Gates X X 3,6] X X 0 13.95

Forget Gate 4 4 3,6] X X 0 13.58

Input Gate X X 3,6] v 4 N(0,0.1) 13.69

Forget Gate Bias X v 3,6] X X 0 13.76

Forget + Input Gate Bias X v [3,6] X v N(0,0.1) 13.73

Forget Gate + Input Gate Bias v v [3,6] X v N(0,0.1) 13.55

Forget Gate + Input Gate v v [3,6] 4 v N(0,0.1) 13.43




Sequence Length Extrapolation

Training on 300B tokens, model size 1.3B

Validation Perplexity
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Llama
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xLSTM[7:1]
xLSTMI1:0]

SlimPajama

Model (300B) ppl |
at 16k

Llama 337.83
Mamba 14.00
RWKV-4 13.75
xLSTM[7:1] 8.92
xLSTM[1:0] 9.01
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Validation Perplexity and Downstream Tasks.

Training on 300B tokens, model sizes (125M,

350M, 760M, 1.3B)

Model #Params  SlimPajama LAMBADA LAMBADA HellaSwag PIQA ARC-E ARC-C  WinoGrande Average
M (300B) ppl | ppll acc t acct acc T acc 1 acc T acc T acc T
RWKV-4 169.4 16.66 54.72 23.77 3403 66.00 47.94 24.06 50.91 41.12
= Llama 162.2 15.89 39.21 31.54 34.09 6545 4533 23.63 50.67 41.78
5 Mamba 167.8 15.08 27.76 34.14 3647 66.76 48.86 24.40 51.14 43.63
— xLSTM[1:0]  163.8 14.63 25.98 36.52 36.74 65.61 47.81  24.83 51.85 43.89
xLSTM[7:1]  163.7 14.60 26.59 36.08 36.75 66.87 4832 25.26 51.70 44.16
RWKV-4 430.5 12.62 21.57 36.62 4247 6942 5446 2543 51.22 46.60
s Llama 406.6 12.19 15.73 44.19 4445 69.15 5223 2628 53.59 48.32
2 Mamba 423.1 11.64 12.83 46.24 4155 69.70 5547  27.56 5430  50.14
« xLSTM[1:0]  409.3 11.31 11.49 49.33 48.06 69.59 5572  26.62 54.38 50.62
xLSTM[7:1]  408.4 11.37 12.11 47.74 4789 7116 56.61 27.82 53.28 50.75
RWKV-4 891.0 10.55 10.98 4743 5229 72.69 58.84 28.84 5541 52.58
= Llama 834.1 10.60 9.90 51.41 5216 7095 5648  28.75 56.67 52.74
g Mamba 870.5 10.24 9.24 50.84 5397 7116 6044  29.78 56.99 53.86
© xLSTM[1:0]  840.4 9.86 8.09 54.78 5572 72.69 6275 3259 58.17 56.12
xLSTM[7:1]  839.7 9.91 8.07 55.27 56.12 7274 61.36 29.61 56.43 55.26
RWKV-4 15152 9.83 9.84 49.78 56.20 7470 6183  30.63 55.56 54.78
a Llama 14204 9.44 723 57.44 5781 7312 6279 3174 59.04 56.99
e« Mamba 1475.3 9.14 7.41 55.64 6045 7443 6612 33.70 60.14 58.41
— xLSTM[1:0] 1422.6 8.89 6.86 57.83 6091 7459 6431  32.59 60.62 58.48
xLSTM[7:1]  1420.1 9.00 7.04 56.69 6026 7492 6511 3234 59.27 58.10




Performance on

PALOMA Language Tasks

Model #Params o, MC4 Wikiext P Red  Refined o M2D2  M2D2 c4 Dolma  Dolma
M EN 103  Treebank Pajama  Web S20RC  Wikipedia Domains ~Subreddits ~Coding &

RWKV-4 2918 3845 899 3247 17.04 2386 2142 22.68 3708 512 2374

s Llama 2316 3156 826 2915 1510 19.71 2041 2145 3673 361 2092
% Mamba 2249 3063 796 2773 1460 19.38 1936 2014 3432 377 2005
= xLSTM[L0] 2198 3047 780 2721 1435 19.02 1904 19.65 3415 364 1968
xLSTM[7:1] 2147 3001 775 2691 1413 186 1884 1952 339 359 1944
RWKV-4 1964 2758 697 2428 1294 17.59 1596 1698 2940 390 1755

s Lhma 1641 2182 656 2209 1176 15.05 1525 1599 2830 312 1567
S Mamba 16.11 634 2104 1142 1483 1453 15.16 2702 320 1519
@ xLSTMI1:0] 15.17 620 2066 1116 1444 1427 1485 2670 308 1488
xLSTM[7:1] 15.43 623 2070 1122 14.62 1430 14.85 2661 311 1488
RWKV-4 14.84 591 1928 1070 14.27 1304 13.68 2422 332 1408
s Llama 13.47 582 1904 1033  13.00 1305 1376 2480 290 1349
S Mamba 13.47 569 1843 1015  13.05 1262 1325 23.94 299 1330
= XLSTM[I:0] 12.61 552 1787 985 1250 1220 1281 2346 287 1276
xLSTM[7:1] 12.68 555 1801 987 1259 1225 1289 2343 288  12.80
RWKV-4 13.73 562 1825 1011  13.46 1210 1287 2285 325 1318

o Llama 1174 529 1703 935 1L6L 1153 1224 2263 274 1204
& Mamba 1176 521 1650 917 1173 1118 1183 2143 283 1184
—  xLSTM[1:0] 11.41 510 1625 901 1143 1095 1160 2129 273 1158
XLSTM[7:1] 11.32 516 1648 911 116l 1110 1176 2150 275 1169




Scaling Laws
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Thanks!
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