
xLSTM

Nadi Tomeh
Groupe de lecture RCLN

November 4, 2024

Motivation for Exploring xLSTM I

Large-Scale Language Modeling

▶ Emergence of advanced language skills at scale.

▶ Transformers: large number of parameters trained in parallel.

Open Question

▶ Does the choice of architecture matter, or will any model
scale effectively?

▶ Candidate Architectures include State Space Models
(SSMs) and Recurrent Models.

Motivation for Exploring xLSTM II

Theoretical Results

▶ Transformers and SSMs are in TC0 (Merril et al. TACL’23;
ICML’24)
Problems solvable by constant-depth, polynomial-size circuits
composed of AND, OR, NOT, and threshold gates.

▶ Sequential problems like permutation computation (S5) are
outside TC0 but can be solved by RNNs (Minksy 54).
Simulating FSA is in NC1-complete, graph connectivity
(L-complete), solving linear equations (P-complete), etc.

Empirical Results

▶ RNNs and Transformers don’t generalize on non-regular
tasks; LSTMs can solve regular and counter-language tasks;
only networks augmented with structured memory can
generalize on context-free and context-sensitive tasks
(Delétang et al. ICLR’23).

Outline

RNN

LSTM

xLSTM

Experiments

RNN Architecture Overview

▶ RNNs maintain a hidden state that updates over time.

▶ Hidden state ht captures information from previous time steps.

▶ Update equation:

ht = tanh(Whhht−1 + Wxhxt + bh)

▶ Output equation:
yt = Whyht + by

▶ Key components:
▶ Input vector xt ∈ Rn

▶ Hidden state ht ∈ Rd

▶ Output vector yt ∈ Rm

▶ Weight matrices:

Whh ∈ Rd×d , Wxh ∈ Rd×n, Why ∈ Rm×d

▶ Bias terms: bh ∈ Rd , by ∈ Rm

RNN Forward Pass Example with Sequence Length 4
▶ Consider a sequence x1, x2, x3, x4, where xt ∈ Rn.
▶ Compute hidden state at time step 4 (h4):

h4 = tanh
(

Whh tanh
(

Whh tanh
(

Whh tanh
(

Whh h0 + Wxhx1 + bh

)
+ Wxhx2 + bh

)
+ Wxhx3 + bh

)
+ Wxhx4 + bh

)
▶ Output at time step 4:

y4 = Whyh4 + by

▶ h4 depends on h0 and all previous inputs x1 to x4, with each
input influencing the hidden state through multiple
applications of tanh.

RNN Training Challenges

▶ Training involves computing gradients through time, known as
Backpropagation Through Time (BPTT).

▶ RNNs often suffer from vanishing or exploding gradients,
making training difficult.

Loss Function Over Time Steps

▶ The total loss L is the sum over all time steps:

L =
T∑
t=1

Lt(yt , ŷt)

▶ yt : True output at time t.

▶ ŷt : Predicted output at time t.

▶ Lt : Loss at time t (e.g., cross-entropy or MSE).

Gradient w.r.t. Hidden State

▶ Goal: Compute ∂L
∂ht

.

▶ Using the chain rule:

∂L

∂ht
=
∂Lt
∂ht

+
T∑

k=t+1

∂Lk
∂ht

▶ Simplifies to a recursive formula:

∂L

∂ht
=
∂Lt
∂ht

+
∂L

∂ht+1

∂ht+1

∂ht

▶ This accounts for both direct and indirect dependencies.

Computing the Recursive Gradient I

▶ Recall the hidden state update:

ht+1 = tanh(at+1)

where

at+1 = Whhht + Wxhxt+1 + bh

▶ Compute the derivative of ht+1 with respect to ht :

∂ht+1

∂ht
=
∂ht+1

∂at+1

∂at+1

∂ht

▶ Compute ∂at+1

∂ht
:

∂at+1

∂ht
= Whh

Wxhxt+1 and bh are constants with respect to ht .

Computing the Recursive Gradient II

▶ Compute ∂ht+1

∂at+1
:

∂ht+1

∂at+1
= diag

(
1− tanh2(at+1)

)
▶ Since tanh is applied element-wise, its derivative is a diagonal

matrix.
▶ Each diagonal element corresponds to 1− tanh2(a

(i)
t+1).

▶ Combine the derivatives:

∂ht+1

∂ht
= diag

(
1− tanh2(at+1)

)
Whh

Computing the Recursive Gradient III

▶ Update the gradient expression:

∂L

∂ht
=
∂Lt
∂ht

+

(
∂L

∂ht+1

∂ht+1

∂ht

)
Substitute ∂ht+1

∂ht
into the equation:

∂L

∂ht
=
∂Lt
∂ht

+

(
∂L

∂ht+1
diag

(
1− tanh2(at+1)

)
Whh

)
▶ Adjust for correct dimensions (Transpose):

∂L

∂ht
=
∂Lt
∂ht

+ W⊤
hh

(
diag

(
1− tanh2(at+1)

) ∂L

∂ht+1

)

Unrolling the Recursion

▶ Apply the recursive formula repeatedly:

∂L

∂ht
=
∂Lt
∂ht

+ W⊤
hhΦ

′
t+1

∂L

∂ht+1

=
∂Lt
∂ht

+ W⊤
hhΦ

′
t+1

(
∂Lt+1

∂ht+1
+ W⊤

hhΦ
′
t+2

∂L

∂ht+2

)
...

=
T∑

k=t

 k∏
j=t+1

W⊤
hhΦ

′
j

 ∂Lk
∂hk


▶ The product operator

∏
represents matrix multiplication over

time steps.

▶ It highlights the accumulation of gradients over time.

▶ The product term influences the magnitude of the gradients.

Vanishing Gradients

▶ When ∥Whh∥2 < 1:

▶ The product
∏k

j=t+1 W⊤
hhΦ

′
j decreases exponentially.

▶ Gradients ∂L
∂ht

become very small.

▶ Result: Difficulty in learning long-term dependencies.

▶ Illustration: ∥∥∥∥ ∂L∂ht

∥∥∥∥ ≤ (∥Whh∥2 · γ)(k−t)

∥∥∥∥∂Lk∂hk

∥∥∥∥
▶ Where γ = maxj ∥Φ′

j∥2 ≤ 1.

Exploding Gradients

▶ When ∥Whh∥2 > 1:

▶ The product
∏k

j=t+1 W⊤
hhΦ

′
j increases exponentially.

▶ Gradients ∂L
∂ht

become very large.

▶ Result: Numerical instability during training.

▶ Illustration: ∥∥∥∥ ∂L∂ht

∥∥∥∥ ≥ (∥Whh∥2 · γ)(k−t)

∥∥∥∥∂Lk∂hk

∥∥∥∥

Theoretical Understanding

▶ Spectral Radius ρ(Whh):
▶ Largest absolute eigenvalue of Whh.
▶ ρ(Whh) < 1 leads to vanishing gradients.
▶ ρ(Whh) > 1 leads to exploding gradients.

▶ Lyapunov Exponents:
▶ Measure divergence/convergence rates in dynamical systems.
▶ Negative exponents: Vanishing gradients.
▶ Positive exponents: Exploding gradients.

▶ Norms of Jacobians:
▶ Norms ∥∂ht+1

∂ht
∥ affect gradient magnitude.

Mitigating Gradient Problems

▶ Gradient Clipping:
▶ Restricts the gradient norm to a predefined threshold.

▶ Initialization Techniques:
▶ Properly initializing weights to maintain stable gradients.
▶ Use of orthogonal matrices for Whh: WhhW⊤

hh = I . Preserves
the norm of vectors during multiplication: ∥Whhx∥ = ∥x∥

▶ Activation Functions:
▶ Use ReLU variants: ReLU(x) = max(0, x). Derivative is 1 for

positive inputs, allowing gradients to flow back without
shrinking.

▶ Advanced RNN Architectures :
▶ Long Short-Term Memory (LSTM) Hochreiter and

Schmidhuber (1997) introduce constant error carrousel and
gates to control information flow.

▶ Gated Recurrent Units (GRU) simplify LSTMs while
addressing gradient issues.

LSTM Architecture: Scalar and Vector Forms I

▶ LSTM memory cell update rules at time step t:
Scalar Form:

ct = ft · ct−1 + it · zt cell state

ht = ot · h̃, h̃ = ψ(ct) hidden state

zt = φ(z̃t), z̃t = w⊤
z xt + rz ht−1 + bz cell input

it = σ(ĩt), ĩt = w⊤
i xt + ri ht−1 + bi input gate

ft = σ(f̃t), f̃t = w⊤
f xt + rf ht−1 + bf forget gate

ot = σ(õt), õt = w⊤
o xt + ro ht−1 + bo output gate

▶ Here, xt ∈ Rn and wz ,wi ,wf ,wo ∈ Rn are input weight
vectors, while rz , ri , rf , ro ∈ R are scalar recurrent weights.

LSTM Architecture: Scalar and Vector Forms II

▶ Vector Form:

ct = ft ⊙ ct−1 + it ⊙ zt cell state (∈ Rd)

ht = ot ⊙ ψ(ct) hidden state (∈ Rd)

zt = φ(z̃t), z̃t = Wzxt + Rzht−1 + bz cell input

it = σ(ĩt), ĩt = Wixt + Riht−1 + bi input gate

ft = σ(f̃t), f̃t = Wf xt + Rf ht−1 + bf forget gate

ot = σ(õt), õt = Woxt + Roht−1 + bo output gate

▶ Multiple memory cells are combined into a vector
representation (ct and ht)

▶ Allows the use of recurrent weight matrices (Rz ,Ri ,Rf ,Ro)
to mix the outputs of memory cells.

▶ Crucial for capturing complex dependencies across time steps
(Greff et al. 2015).

LSTM Architecture: information flow

https://blog.mlreview.com/understanding-lstm-and-its-diagrams-37e2f46f1714

How the Constant Error Carousel Solves Vanishing
Gradients I

▶ Constant Error Carousel (CEC) in LSTM:
▶ Introduced by Hochreiter and Schmidhuber (1997); Gers et al.

(2000) added the forget gate:

ct = ft ⊙ ct−1 + it ⊙ zt

▶ Additive Updates:
▶ Cell state ct ∈ Rnh updated via element-wise operations.
▶ Avoids multiplication that can shrink gradients.

▶ Gradient Flow through CEC:
▶ Recursive Gradient Equation:

∂L

∂ct
=
∂Lt
∂ct

+

(
∂L

∂ct+1
⊙ ft+1

)

How the Constant Error Carousel Solves Vanishing
Gradients II

▶ Unrolling the Recursion:

∂L

∂ct
=
∂Lt
∂ct

+

([
∂Lt+1

∂ct+1
+

(
∂L

∂ct+2
⊙ ft+2

)]
⊙ ft+1

)
=
∂Lt
∂ct

+

(
∂Lt+1

∂ct+1
⊙ ft+1

)
+

(
∂L

∂ct+2
⊙ ft+2 ⊙ ft+1

)
...

=
T∑

k=t

∂Lk
∂ck

⊙
k∏

j=t+1

fj


▶ The gradient ∂L

∂ct accumulates contributions from future time
steps.

▶ Each term is modulated by the product of forget gates fj with
elements in [0, 1], controlling gradient flow. If fj elements are
close to 1, gradients are preserved.

Do LSTMs Actually Have Long Memory?

▶ Bengio et al. (1994): Showed difficulty in learning long-term
dependencies with GD in systems like yt = M(yt−1) + εt .

▶ Cheng et al. (2016): Pointed out that LSTM updates are
Markovian and fit Bengio’s system.

▶ Miller & Hardt (2018): Proved that r -step LSTM is stable,
which limits modeling of long-range dependencies.

▶ Greaves-Tunnell & Harchaoui (2019):
▶ Defined long dependency in terms of long memory in

stochastic processes. Long memory in RNNs can be re-framed
as a comparison between a learned representation and an
estimated property of the data.

▶ Langauge data has long dependencies, not captured by RNNs.

▶ Zhao et al. (2020):
▶ Represent RNN/LSTM as markovian network processes
▶ Show short memory by showing that the process is

geometrically ergodic, meaning that the dependency on initial
states decays exponentially over time.

Limitations of LSTM Networks addressed by xLSTM
1. Inability to Revise Storage Decisions

▶ Example: Nearest Neighbor Search task.

2. Limited Storage Capacities
▶ Example: Poor performance on Rare Token Prediction.

3. Lack of Parallelizability Due to Memory Mixing
▶ Hidden-to-hidden connections enforce sequential processing.
▶ Limits efficient computation on modern hardware.

sLSTM Forward Pass and Stabilization I

sLSTM forward pass equations:

ct = ft ⊙ ct−1 + it ⊙ zt cell state

nt = ft ⊙ nt−1 + it normalizer state

ht = ot ⊙ h̃, h̃ =
ct
nt

hidden state

zt = φ(z̃t), z̃t = w⊤
z xt + rzht−1 + bz cell input

it = exp (ĩt), ĩt = w⊤
i xt + riht−1 + bi input gate

ft = σ(f̃t) or exp (f̃t), f̃t = w⊤
f xt + rf ht−1 + bf forget gate

ot = σ(õt), õt = w⊤
o xt + roht−1 + bo output gate

▶ Cell input activation function is tanh (help stabilization).

▶ The hidden state activation function is the identity.

sLSTM Forward Pass and Stabilization II

Exponential activation functions can lead to large values that
cause overflow.
Stabilization equations:

mt = max
(
f̃t + mt−1 , ĩt

)
stabilizer state

i ′t = exp
(
ĩt − mt

)
stabilized input gate

f ′t = exp
(
f̃t + mt−1 − mt

)
stabilized forget gate

Note: The stabilizer state mt does not change network output nor
gradients.

Proof of Equivalence for sLSTM Stabilized Version

ct = c
(s)
t exp(mt)

nt = n
(s)
t exp(mt)

h̃
(s)
t =

c
(s)
t

n
(s)
t

=
exp(log(ft) +mt−1 −mt)c

(s)
t−1 + exp(log(it)−mt)zt

exp(log(ft) +mt−1 −mt)n
(s)
t−1 + exp(log(it)−mt)

=
exp(log(ft) +mt−1)c

(s)
t−1 + exp(log(it))zt

exp(log(ft) +mt−1)n
(s)
t−1 + exp(log(it))

=
exp(log(ft))ct−1 + exp(log(it))zt
exp(log(ft))nt−1 + exp(log(it))

=
ftct−1 + itzt
ftnt−1 + it

=
ct
nt

= h̃t

Proof of Equivalence for sLSTM Stabilized Version

ct = c
(s)
t exp(mt)

nt = n
(s)
t exp(mt)

h̃
(s)
t =

c
(s)
t

n
(s)
t

=
exp(log(ft) +mt−1 −mt)c

(s)
t−1 + exp(log(it)−mt)zt

exp(log(ft) +mt−1 −mt)n
(s)
t−1 + exp(log(it)−mt)

=
exp(log(ft) +mt−1)c

(s)
t−1 + exp(log(it))zt

exp(log(ft) +mt−1)n
(s)
t−1 + exp(log(it))

=
exp(log(ft))ct−1 + exp(log(it))zt
exp(log(ft))nt−1 + exp(log(it))

=
ftct−1 + itzt
ftnt−1 + it

=
ct
nt

= h̃t

Memory Mixing in sLSTM vs. LSTM I

▶ Standard LSTM:
▶ Recurrent weight matrices (Rz ,Ri ,Rf ,Ro) are full matrices.
▶ Allows memory mixing across all memory cells.
▶ Example of a Full Recurrent Matrix (R ∈ Rd×d):

R =


r11 r12 . . . r1d
r21 r22 . . . r2d
...

...
. . .

...
rd1 rd2 . . . rdd


▶ sLSTM with Multiple Heads:

▶ Recurrent weight matrices (Rz ,Ri ,Rf ,Ro) are
block-diagonal.

▶ Enables memory mixing within each head but not across heads.
▶ Number of heads: Nh.
▶ Head size: dh = d

Nh
.

Memory Mixing in sLSTM vs. LSTM II
▶ Example of a Block-Diagonal Recurrent Matrix

(R ∈ Rd×d):

R =


R(1) 0 . . . 0
0 R(2) . . . 0
...

...
. . .

...
0 0 . . . R(Nh)


where each R(k) ∈ Rdh×dh corresponds to head k.

▶ Parameter Reduction:
▶ Standard LSTM:

Parameters = d × d = d2

▶ sLSTM:

Parameters = Nh × d2
h = Nh ×

(
d

Nh

)2

=
d2

Nh

mLSTM: Enhanced Storage in LSTMs

▶ LSTMs use a scalar cell state ct ∈ R.
▶ Goal:

▶ Increase storage capacity by extending the cell state to a
matrix Ct ∈ Rd×d .

▶ Allow accumulation (storage) of information over time steps.
▶ Enable retrieval of stored information without access to

previous time steps.

▶ Storing Key-Value Pairs and Retrieval:
▶ At each time step t, store:

▶ Key vector kt ∈ Rd .
▶ Value vector vt ∈ Rd .

▶ Later retrieve vt using a query vector qt+τ .

Comparison with Attention Mechanisms
▶ At each time step, compute:

▶ Query vector qt .
▶ Key vector kt .
▶ Value vector vt .

▶ Attention Scores:

αt,t′ =
exp

(
q⊤t kt′√

d

)
∑

t′′ exp
(
q⊤t kt′′√

d

)
▶ Retrieval (Context Vector):

ht =
∑
t′

αt,t′vt′

▶ The model attends to relevant parts of the input sequence by
computing similarities.

▶ Allows parallel computation but requires access to all previous
steps storage.

Outer Products and Bidirectional Associative Memories I

▶ Outer Product and Rank-1 Matrices:
▶ The outer product of two vectors u ∈ Rm and v ∈ Rn is:

A = uv⊤ ∈ Rm×n

▶ A is a rank-1 matrix:
▶ All columns are scalar multiples of u.
▶ All rows are scalar multiples of v⊤.

▶ Represents all pairwise combinations between elements of u
and v.

▶ Outer Product in Singular Value Decomposition (SVD):

A =
r∑

i=1

σiuiv
⊤
i

where:
▶ r is the rank of A.
▶ σi are singular values (σ1 ≥ σ2 ≥ · · · ≥ σr > 0).
▶ ui ∈ Rm and vi ∈ Rn are left and right singular vectors.

Outer Products and Bidirectional Associative Memories II

▶ Outer Product in Associative Memories (BAM):
▶ BAM stores associations between pairs {(xp, yp)}

W =
P∑

p=1

ypx
⊤
p

▶ Each outer product ypx⊤p is a rank-1 matrix capturing the
association between xp and yp.

▶ Retrieval Mechanism:

yretrieved = Wxq =
P∑

p=1

yp(x
⊤
p xq)

▶ Inner product x⊤p xq measures similarity. Retrieval amplifies
matching patterns due to higher similarity.

▶ Capacity depends on orthogonality of stored patterns.
▶ Highly correlated vectors may cause interference and retrieval

errors.

Outer Products and Bidirectional Associative Memories III

▶ Example:
▶ Stored Patterns:

x1 =

[
1
0

]
, y1 =

[
a
b

]
x2 =

[
0
1

]
, y2 =

[
c
d

]
▶ Weight Matrix:

W = y1x
⊤
1 + y2x

⊤
2 =

[
a c
b d

]
▶ Retrieval:

yretrieved = Wx1 =

[
a
b

]
= y1

yretrieved = Wx2 =

[
c
d

]
= y2

Optimality of the Covariance Update Rule

▶ Covariance Update Rule:

Ct = Ct−1 + (vt − v̄)(kt − k̄)⊤

▶ Separability:
▶ This rule is optimal for maximal separability of retrieved binary

vectors.
▶ Higher separability is achievable when limiting retrieval to

pairwise interactions.
▶ Requires quadratic complexity, as in attention mechanisms.

▶ Relation to Fast Weight Programmers:
▶ Covariance update rule is equivalent to Fast Weight

Programmers (Schmidhuber, 1992; Schlag et al., 2021).
▶ Incorporates dynamic weight updates for fast memory access.

Matrix LSTM (mLSTM) Equations

LayerNorm(x) =
x− µ

σ
⊙ γ + β

Applied before projecting input to key and value (covariance updates)

Normalizer State and Numerical Stability

▶ Normalizer State:

nt = ft · nt−1 + it · kt

▶ Purpose:
▶ Keeps a weighted sum of key vectors.
▶ Each key vector is weighted by the input gate and all future

forget gates.
▶ Records the strength of the gates over time.

▶ Numerical Stability:
▶ The dot product n⊤t qt can be close to zero.
▶ To prevent division by small numbers, use:

h̃t =
Ctqt

max
(∣∣n⊤t qt∣∣, 1)

Multiple Memory Cells and Stabilization

▶ Multiple Memory Cells:
▶ mLSTM can have multiple memory cells like the original

LSTM.
▶ For mLSTM, multiple heads and multiple cells are equivalent

due to lack of memory mixing.

▶ Parallelization Appendix A.3 :
▶ Since mLSTM has no memory mixing, the recurrence can be

reformulated in a parallel version.
▶ Improves computational efficiency on GPUs.

mLSTM Computations: Iterative and Matrix Forms I

▶ At each time step t:

Forget Gate: ft = σ(f̃t)

Input Gate: it = σ(ĩt)

Output Gate: ot = σ(õt)

Cell State Update: Ct = ftCt−1 + it(vtk
⊤
t)

Hidden State: ht = ot h̃t

▶ Unrolling the Cell State:

Ct = ft ft−1Ct−2 + ft it−1(vt−1k
⊤
t−1) + it(vtk

⊤
t)

=

(
t∏

k=1

fk

)
C0 +

t∑
j=1

 t∏
k=j+1

fk

 ij(vjk
⊤
j)


▶ Assuming C0 = 0 for simplicity.

mLSTM Computations: Iterative and Matrix Forms II

▶ Constructing the Forget Gate Activation Matrix F:

f̃ = [f̃1, f̃2, . . . , f̃T]
⊤ ∈ RT

Fij =


0 for j > i

1 for j = i
i∏

k=j+1

σ(f̃k) for j < i

▶ Visualization of F:

F =


1 0 . . . 0

σ(f̃2) 1 . . . 0

σ(f̃2)σ(f̃3) σ(f̃3) . . . 0
...

...
. . .

...∏T
k=2 σ(f̃k)

∏T
k=3 σ(f̃k) . . . 1



mLSTM Computations: Iterative and Matrix Forms III
▶ Constructing the Input Gate Pre-Activation Matrix Ĩ:

ĩ = [ĩ1, ĩ2, . . . , ĩT]
⊤ ∈ RT

Ĩij =

{
0 for j > i

ĩj for i ≥ j

▶ Computing the Unstabilized Gate Activation Matrix D:

D = F⊙ exp
(
Ĩ
)

▶ Computing Hidden Pre-Activation States H̃:

C̃ =
QK⊤
√
d

⊙D

Ci =
C̃i

max
(∣∣∣∑T

j=1 C̃ij

∣∣∣ , 1)
H̃ = CV

mLSTM Computations: Iterative and Matrix Forms IV

▶ Computing the Final Hidden States H:

Õ ∈ RT×d , O = σ(Õ)

H = O⊙ H̃

▶ Equivalence Between Iterative and Matrix Forms:
▶ Iterative Computation:

Ct = ftCt−1 + it(vtk
⊤
t)

▶ Matrix Formulation:

C = F⊙ exp
(
Ĩ
)
⊙ (Outer Products of vtk

⊤
t)

▶ Explanation:
▶ Matrix operations aggregate iterative updates.
▶ Enables parallel computation over the entire sequence.

xLSTM Architecture

▶ xLSTM Blocks: Designed to non-linearly summarize the past
in a high-dimensional space, enhancing the separation of
different histories or contexts (Cover’s Theorem (1965)).

▶ Residual Block Architectures:
▶ Post Up-Projection (like Transformers):

▶ Input is fed into an sLSTM, optionally followed by a
convolution.

▶ A gated MLP follows the sLSTM block.

▶ Pre Up-Projection (like State Space Models):
▶ Input is mapped into a high-dimensional space and linearly

maps back after non-linear summarization.
▶ mLSTM is wrapped inside two MLPs, with a convolution, skip

connection, and an output gate.

▶ Construction: Residual stacking with pre-LayerNorm, as used
in large language models.

Post Up-projection Residual Block
Mainly for sLSTM

Pre Up-projection Residual Block
Mainly for xLSTM

Memory and Speed Considerations

▶ Linear Computation and Constant Memory Complexity:
▶ xLSTM offers linear computational complexity and constant

memory complexity with respect to sequence length.
▶ This makes xLSTM suitable for industrial applications and

on-edge implementations.

▶ mLSTM Memory and Computational Trade-Off:
▶ Memory is a d × d matrix, which is parameter-free but

computationally intensive.
▶ Trade-off between memory capacity and computational

complexity, manageable with parallel GPU computations.

▶ Parallelization:
▶ mLSTM is parallelizable (similar to FlashAttention).
▶ sLSTM is not parallelizable due to memory mixing but is

optimized with fast CUDA implementation.

Test of xLSTM’s Exponential Gating with Memory Mixing

Test of xLSTM’s Exponential Gating with Memory Mixing

Test of xLSTM’s Memory Capacities on Associative Recall
Tasks

Test memory capacity on the Multi-Query Associative Recall task:
memorizing randomly chosen key-value pairs for later retrieval, 256
pairs, context length is 2048.

Test of xLSTM’s Long Context Capabilities on Long Range
Arena

Perplexity

Train an auto-regressive language model on 15B tokens from
SlimPajama

Ablation

Sequence Length Extrapolation

Training on 300B tokens, model size 1.3B

Validation Perplexity and Downstream Tasks.

Training on 300B tokens, model sizes (125M, 350M, 760M, 1.3B)

Performance on PALOMA Language Tasks

Scaling Laws

Thanks!

	RNN
	LSTM
	xLSTM
	Experiments

