xLSTM

Nadi Tomeh Groupe de lecture RCLN

November 4, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation for Exploring xLSTM I

Large-Scale Language Modeling

- Emergence of advanced language skills at scale.
- **Transformers**: large number of parameters trained in parallel.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Open Question

- Does the choice of architecture matter, or will any model scale effectively?
- Candidate Architectures include State Space Models (SSMs) and Recurrent Models.

Motivation for Exploring xLSTM II

Theoretical Results

 Transformers and SSMs are in TC⁰ (Merril et al. TACL'23; ICML'24)

Problems solvable by constant-depth, polynomial-size circuits composed of AND, OR, NOT, and threshold gates.

 Sequential problems like permutation computation (S₅) are outside TC⁰ but can be solved by RNNs (Minksy 54).
 Simulating FSA is in NC¹-complete, graph connectivity (L-complete), solving linear equations (P-complete), etc.

Empirical Results

RNNs and Transformers don't generalize on non-regular tasks; LSTMs can solve regular and counter-language tasks; only networks augmented with structured memory can generalize on context-free and context-sensitive tasks (Delétang et al. ICLR'23).

RNN

LSTM

×LSTM

Experiments

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

RNN Architecture Overview

- RNNs maintain a hidden state that updates over time.
- Hidden state h_t captures information from previous time steps.
- Update equation:

$$\boldsymbol{h}_t = anh(\boldsymbol{W}_{hh}\boldsymbol{h}_{t-1} + \boldsymbol{W}_{xh}\boldsymbol{x}_t + \boldsymbol{b}_h)$$

Output equation:

$$\boldsymbol{y}_t = \boldsymbol{W}_{hy} \boldsymbol{h}_t + \boldsymbol{b}_y$$

Key components:

- lnput vector $\mathbf{x}_t \in \mathbb{R}^n$
- Hidden state $\boldsymbol{h}_t \in \mathbb{R}^d$
- Output vector $\boldsymbol{y}_t \in \mathbb{R}^m$
- Weight matrices:

$$\boldsymbol{W}_{hh} \in \mathbb{R}^{d \times d}, \quad \boldsymbol{W}_{xh} \in \mathbb{R}^{d \times n}, \quad \boldsymbol{W}_{hy} \in \mathbb{R}^{m \times d}$$

▶ Bias terms: $\boldsymbol{b}_h \in \mathbb{R}^d$, $\boldsymbol{b}_y \in \mathbb{R}^m$

RNN Forward Pass Example with Sequence Length 4

- Consider a sequence x_1, x_2, x_3, x_4 , where $x_t \in \mathbb{R}^n$.
- Compute hidden state at time step 4 (h₄):

$$\begin{split} \boldsymbol{h}_{4} &= \tanh\left(\boldsymbol{W}_{hh} \tanh\left(\boldsymbol{W}_{hh} \tanh\left(\boldsymbol{W}_{hh} \tanh\left(\boldsymbol{W}_{hh} \tanh\left(\boldsymbol{W}_{hh} \tanh\left(\boldsymbol{W}_{hh} \tanh\left(\boldsymbol{W}_{hh} \tanh\left(\boldsymbol{W}_{hh} \boldsymbol{h}_{0} + \boldsymbol{W}_{xh} \boldsymbol{x}_{1} + \boldsymbol{b}_{h}\right)\right. \right. \right. \\ & \left. + \boldsymbol{W}_{xh} \boldsymbol{x}_{2} + \boldsymbol{b}_{h} \right) \\ & \left. + \boldsymbol{W}_{xh} \boldsymbol{x}_{3} + \boldsymbol{b}_{h} \right) \\ & \left. + \boldsymbol{W}_{xh} \boldsymbol{x}_{4} + \boldsymbol{b}_{h} \right) \end{split}$$

Output at time step 4:

$$\mathbf{y}_4 = \mathbf{W}_{hy}\mathbf{h}_4 + \mathbf{b}_y$$

h₄ depends on h₀ and all previous inputs x₁ to x₄, with each input influencing the hidden state through multiple applications of tanh.

RNN Training Challenges

Training involves computing gradients through time, known as Backpropagation Through Time (BPTT).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 RNNs often suffer from vanishing or exploding gradients, making training difficult.

Loss Function Over Time Steps

The total loss L is the sum over all time steps:

$$L = \sum_{t=1}^{T} L_t(\mathbf{y}_t, \hat{\mathbf{y}}_t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- **y**_t: True output at time t.
- ŷ_t: Predicted output at time t.
- L_t: Loss at time t (e.g., cross-entropy or MSE).

Gradient w.r.t. Hidden State

• Goal: Compute $\frac{\partial L}{\partial h_t}$.

Using the chain rule:

$$\frac{\partial L}{\partial \boldsymbol{h}_t} = \frac{\partial L_t}{\partial \boldsymbol{h}_t} + \sum_{k=t+1}^T \frac{\partial L_k}{\partial \boldsymbol{h}_t}$$

Simplifies to a recursive formula:

$$\frac{\partial L}{\partial \boldsymbol{h}_t} = \frac{\partial L_t}{\partial \boldsymbol{h}_t} + \frac{\partial L}{\partial \boldsymbol{h}_{t+1}} \frac{\partial \boldsymbol{h}_{t+1}}{\partial \boldsymbol{h}_t}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

This accounts for both direct and indirect dependencies.

Computing the Recursive Gradient I

Recall the hidden state update:

 $h_{t+1} = tanh(a_{t+1})$

where

$$oldsymbol{a}_{t+1} = oldsymbol{W}_{hh}oldsymbol{h}_t + oldsymbol{W}_{ imes h}oldsymbol{x}_{t+1} + oldsymbol{b}_h$$

Compute the derivative of h_{t+1} with respect to h_t:

$$\frac{\partial \boldsymbol{h}_{t+1}}{\partial \boldsymbol{h}_t} = \frac{\partial \boldsymbol{h}_{t+1}}{\partial \boldsymbol{a}_{t+1}} \frac{\partial \boldsymbol{a}_{t+1}}{\partial \boldsymbol{h}_t}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Compute $\frac{\partial \boldsymbol{a}_{t+1}}{\partial \boldsymbol{h}_t}$: $\frac{\partial \boldsymbol{a}_{t+1}}{\partial \boldsymbol{h}_t} = \boldsymbol{W}_{hh}$

 $W_{xh}x_{t+1}$ and b_h are constants with respect to h_t .

Computing the Recursive Gradient II

• Compute
$$\frac{\partial h_{t+1}}{\partial a_{t+1}}$$
:

$$\frac{\partial \boldsymbol{h}_{t+1}}{\partial \boldsymbol{a}_{t+1}} = \mathsf{diag}\left(1 - \mathsf{tanh}^2(\boldsymbol{a}_{t+1})\right)$$

• Each diagonal element corresponds to $1 - \tanh^2(a_{t+1}^{(i)})$.

Combine the derivatives:

$$rac{\partial oldsymbol{h}_{t+1}}{\partial oldsymbol{h}_{t}} = ext{diag}\left(1 - ext{tanh}^2(oldsymbol{a}_{t+1})
ight)oldsymbol{W}_{hh}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Computing the Recursive Gradient III

Update the gradient expression:

$$\frac{\partial L}{\partial \boldsymbol{h}_{t}} = \frac{\partial L_{t}}{\partial \boldsymbol{h}_{t}} + \left(\frac{\partial L}{\partial \boldsymbol{h}_{t+1}} \frac{\partial \boldsymbol{h}_{t+1}}{\partial \boldsymbol{h}_{t}}\right)$$

Substitute $\frac{\partial \mathbf{h}_{t+1}}{\partial \mathbf{h}_t}$ into the equation:

$$\frac{\partial L}{\partial \boldsymbol{h}_{t}} = \frac{\partial L_{t}}{\partial \boldsymbol{h}_{t}} + \left(\frac{\partial L}{\partial \boldsymbol{h}_{t+1}} \text{diag}\left(1 - \tanh^{2}(\boldsymbol{a}_{t+1})\right) \boldsymbol{W}_{hh}\right)$$

Adjust for correct dimensions (Transpose):

$$\frac{\partial L}{\partial \boldsymbol{h}_t} = \frac{\partial L_t}{\partial \boldsymbol{h}_t} + \boldsymbol{W}_{hh}^{\top} \left(\text{diag} \left(1 - \tanh^2(\boldsymbol{a}_{t+1}) \right) \frac{\partial L}{\partial \boldsymbol{h}_{t+1}} \right)$$

Unrolling the Recursion

Apply the recursive formula repeatedly:

$$\begin{aligned} \frac{\partial L}{\partial \boldsymbol{h}_{t}} &= \frac{\partial L_{t}}{\partial \boldsymbol{h}_{t}} + \boldsymbol{W}_{hh}^{\top} \boldsymbol{\Phi}_{t+1}^{\prime} \frac{\partial L}{\partial \boldsymbol{h}_{t+1}} \\ &= \frac{\partial L_{t}}{\partial \boldsymbol{h}_{t}} + \boldsymbol{W}_{hh}^{\top} \boldsymbol{\Phi}_{t+1}^{\prime} \left(\frac{\partial L_{t+1}}{\partial \boldsymbol{h}_{t+1}} + \boldsymbol{W}_{hh}^{\top} \boldsymbol{\Phi}_{t+2}^{\prime} \frac{\partial L}{\partial \boldsymbol{h}_{t+2}} \right) \\ &\vdots \\ &= \sum_{k=t}^{T} \left(\left(\prod_{j=t+1}^{k} \boldsymbol{W}_{hh}^{\top} \boldsymbol{\Phi}_{j}^{\prime} \right) \frac{\partial L_{k}}{\partial \boldsymbol{h}_{k}} \right) \end{aligned}$$

- ► The product operator ∏ represents matrix multiplication over time steps.
- It highlights the accumulation of gradients over time.
- The product term influences the magnitude of the gradients.

Vanishing Gradients

• When $\| \boldsymbol{W}_{hh} \|_2 < 1$:

- The product $\prod_{j=t+1}^{k} \boldsymbol{W}_{hh}^{\top} \boldsymbol{\Phi}_{j}^{\prime}$ decreases exponentially.
- Gradients $\frac{\partial L}{\partial h}$ become very small.
- Result: Difficulty in learning long-term dependencies.

Illustration:

$$\left\|\frac{\partial L}{\partial \boldsymbol{h}_t}\right\| \leq \left(\|\boldsymbol{W}_{\boldsymbol{h}\boldsymbol{h}}\|_2 \cdot \gamma\right)^{(k-t)} \left\|\frac{\partial L_k}{\partial \boldsymbol{h}_k}\right\|$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Where $\gamma = \max_{j} \| \mathbf{\Phi}'_{j} \|_{2} \leq 1$.

Exploding Gradients

When || W_{hh} ||₂ > 1:
 The product ∏^k_{j=t+1} W^T_{hh}Φ'_j increases exponentially.
 Gradients ∂L/∂h_t become very large.
 Result: Numerical instability during training.
 Illustration:

$$\left\|\frac{\partial L}{\partial \boldsymbol{h}_t}\right\| \geq \left(\|\boldsymbol{W}_{hh}\|_2 \cdot \gamma\right)^{(k-t)} \left\|\frac{\partial L_k}{\partial \boldsymbol{h}_k}\right\|$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theoretical Understanding

Spectral Radius $\rho(W_{hh})$:

- Largest absolute eigenvalue of W_{hh}.
- $\rho(W_{hh}) < 1$ leads to vanishing gradients.
- $\rho(W_{hh}) > 1$ leads to exploding gradients.
- Lyapunov Exponents:
 - Measure divergence/convergence rates in dynamical systems.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Negative exponents: Vanishing gradients.
- Positive exponents: Exploding gradients.
- Norms of Jacobians:
 - Norms $\left\|\frac{\partial \mathbf{h}_{t+1}}{\partial \mathbf{h}_t}\right\|$ affect gradient magnitude.

Mitigating Gradient Problems

Gradient Clipping:

Restricts the gradient norm to a predefined threshold.

Initialization Techniques:

- Properly initializing weights to maintain stable gradients.
- Use of orthogonal matrices for *W_{hh}*: *W_{hh}W[⊤]_{hh}* = *I*. Preserves the norm of vectors during multiplication: ||*W_{hh}x*|| = ||*x*||

Activation Functions:

Use ReLU variants: ReLU(x) = max(0, x). Derivative is 1 for positive inputs, allowing gradients to flow back without shrinking.

Advanced RNN Architectures :

- Long Short-Term Memory (LSTM) Hochreiter and Schmidhuber (1997) introduce constant error carrousel and gates to control information flow.
- Gated Recurrent Units (GRU) simplify LSTMs while addressing gradient issues.

LSTM Architecture: Scalar and Vector Forms I

LSTM memory cell update rules at time step t: Scalar Form:

$$\begin{aligned} \mathbf{c}_t &= \mathbf{f}_t \cdot \mathbf{c}_{t-1} + \mathbf{i}_t \cdot \mathbf{z}_t & \text{cell state} \\ h_t &= \mathbf{o}_t \cdot \tilde{h}, \quad \tilde{h} = \psi(\mathbf{c}_t) & \text{hidden state} \\ \mathbf{z}_t &= \varphi(\tilde{z}_t), \quad \tilde{z}_t = \mathbf{w}_z^\top \mathbf{x}_t + r_z \mathbf{h}_{t-1} + b_z & \text{cell input} \\ \mathbf{i}_t &= \sigma(\tilde{i}_t), \quad \tilde{i}_t = \mathbf{w}_i^\top \mathbf{x}_t + r_i \mathbf{h}_{t-1} + b_i & \text{input gate} \\ \mathbf{f}_t &= \sigma(\tilde{f}_t), \quad \tilde{f}_t = \mathbf{w}_f^\top \mathbf{x}_t + r_f \mathbf{h}_{t-1} + b_f & \text{forget gate} \\ \mathbf{o}_t &= \sigma(\tilde{o}_t), \quad \tilde{o}_t = \mathbf{w}_o^\top \mathbf{x}_t + r_o \mathbf{h}_{t-1} + b_o & \text{output gate} \end{aligned}$$

Here, x_t ∈ ℝⁿ and w_z, w_i, w_f, w_o ∈ ℝⁿ are input weight vectors, while r_z, r_i, r_f, r_o ∈ ℝ are scalar recurrent weights.

LSTM Architecture: Scalar and Vector Forms II

Vector Form:

$$\begin{array}{ll} \boldsymbol{c}_{t} = \boldsymbol{f}_{t} \odot \boldsymbol{c}_{t-1} + \boldsymbol{i}_{t} \odot \boldsymbol{z}_{t} & \text{cell state } (\in \mathbb{R}^{d}) \\ \boldsymbol{h}_{t} = \boldsymbol{o}_{t} \odot \psi(\boldsymbol{c}_{t}) & \text{hidden state } (\in \mathbb{R}^{d}) \\ \boldsymbol{z}_{t} = \varphi(\tilde{\boldsymbol{z}}_{t}), \quad \tilde{\boldsymbol{z}}_{t} = \boldsymbol{W}_{z}\boldsymbol{x}_{t} + \boldsymbol{R}_{z}\boldsymbol{h}_{t-1} + \boldsymbol{b}_{z} & \text{cell input} \\ \boldsymbol{i}_{t} = \sigma(\tilde{\boldsymbol{i}}_{t}), \quad \tilde{\boldsymbol{i}}_{t} = \boldsymbol{W}_{i}\boldsymbol{x}_{t} + \boldsymbol{R}_{i}\boldsymbol{h}_{t-1} + \boldsymbol{b}_{i} & \text{input gate} \\ \boldsymbol{f}_{t} = \sigma(\tilde{\boldsymbol{f}}_{t}), \quad \tilde{\boldsymbol{f}}_{t} = \boldsymbol{W}_{f}\boldsymbol{x}_{t} + \boldsymbol{R}_{f}\boldsymbol{h}_{t-1} + \boldsymbol{b}_{f} & \text{forget gate} \\ \boldsymbol{o}_{t} = \sigma(\tilde{\boldsymbol{o}}_{t}), \quad \tilde{\boldsymbol{o}}_{t} = \boldsymbol{W}_{o}\boldsymbol{x}_{t} + \boldsymbol{R}_{o}\boldsymbol{h}_{t-1} + \boldsymbol{b}_{o} & \text{output gate} \end{array}$$

- Allows the use of recurrent weight matrices (*R_z*, *R_i*, *R_f*, *R_o*) to mix the outputs of memory cells.
- Crucial for capturing complex dependencies across time steps (Greff et al. 2015).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

LSTM Architecture: information flow

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

https://blog.mlreview.com/understanding-lstm-and-its-diagrams-37e2f46f1714

How the Constant Error Carousel Solves Vanishing Gradients I

Constant Error Carousel (CEC) in LSTM:

Introduced by Hochreiter and Schmidhuber (1997); Gers et al. (2000) added the forget gate:

$$\boldsymbol{c}_t = \boldsymbol{f}_t \odot \boldsymbol{c}_{t-1} + \boldsymbol{i}_t \odot \boldsymbol{z}_t$$

Additive Updates:

- Cell state $c_t \in \mathbb{R}^{n_h}$ updated via element-wise operations.
- Avoids multiplication that can shrink gradients.

Gradient Flow through CEC:

Recursive Gradient Equation:

$$\frac{\partial L}{\partial \boldsymbol{c}_t} = \frac{\partial L_t}{\partial \boldsymbol{c}_t} + \left(\frac{\partial L}{\partial \boldsymbol{c}_{t+1}} \odot \boldsymbol{f}_{t+1}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How the Constant Error Carousel Solves Vanishing Gradients II

Unrolling the Recursion:

$$\frac{\partial L}{\partial \boldsymbol{c}_{t}} = \frac{\partial L_{t}}{\partial \boldsymbol{c}_{t}} + \left(\left[\frac{\partial L_{t+1}}{\partial \boldsymbol{c}_{t+1}} + \left(\frac{\partial L}{\partial \boldsymbol{c}_{t+2}} \odot \boldsymbol{f}_{t+2} \right) \right] \odot \boldsymbol{f}_{t+1} \right)$$
$$= \frac{\partial L_{t}}{\partial \boldsymbol{c}_{t}} + \left(\frac{\partial L_{t+1}}{\partial \boldsymbol{c}_{t+1}} \odot \boldsymbol{f}_{t+1} \right) + \left(\frac{\partial L}{\partial \boldsymbol{c}_{t+2}} \odot \boldsymbol{f}_{t+2} \odot \boldsymbol{f}_{t+1} \right)$$
$$\vdots$$

$$=\sum_{k=t}^{T}\left(\left(\frac{\partial L_{k}}{\partial \boldsymbol{c}_{k}}\odot\prod_{j=t+1}^{k}\boldsymbol{f}_{j}\right)\right)$$

- Each term is modulated by the product of forget gates f_j with elements in [0, 1], controlling gradient flow. If f_j elements are close to 1, gradients are preserved.

Do LSTMs Actually Have Long Memory?

- ▶ Bengio et al. (1994): Showed difficulty in learning long-term dependencies with GD in systems like $y_t = M(y_{t-1}) + \varepsilon_t$.
- Cheng et al. (2016): Pointed out that LSTM updates are Markovian and fit Bengio's system.
- Miller & Hardt (2018): Proved that *r*-step LSTM is *stable*, which limits modeling of long-range dependencies.
- Greaves-Tunnell & Harchaoui (2019):
 - Defined long dependency in terms of long memory in stochastic processes. Long memory in RNNs can be re-framed as a comparison between a learned representation and an estimated property of the data.
 - Langauge data has long dependencies, not captured by RNNs.
- Zhao et al. (2020):
 - Represent RNN/LSTM as markovian network processes
 - Show short memory by showing that the process is geometrically ergodic, meaning that the dependency on initial states decays exponentially over time.

Limitations of LSTM Networks addressed by xLSTM

- 1. Inability to Revise Storage Decisions
 - *Example*: Nearest Neighbor Search task.
- 2. Limited Storage Capacities
 - Example: Poor performance on Rare Token Prediction.
- 3. Lack of Parallelizability Due to Memory Mixing
 - Hidden-to-hidden connections enforce sequential processing.
 - Limits efficient computation on modern hardware.

900

sLSTM Forward Pass and Stabilization I

sLSTM forward pass equations:

$$\begin{aligned} \boldsymbol{c}_t &= \boldsymbol{f}_t \odot \boldsymbol{c}_{t-1} + \boldsymbol{i}_t \odot \boldsymbol{z}_t & \text{cell state} \\ \boldsymbol{n}_t &= \boldsymbol{f}_t \odot \boldsymbol{n}_{t-1} + \boldsymbol{i}_t & \text{normalizer state} \\ \boldsymbol{h}_t &= \boldsymbol{o}_t \odot \boldsymbol{\tilde{h}}, \quad \boldsymbol{\tilde{h}} = \frac{\boldsymbol{c}_t}{\boldsymbol{n}_t} & \text{hidden state} \end{aligned}$$

$$\begin{aligned} \mathbf{z}_{t} &= \varphi(\tilde{\mathbf{z}}_{t}), \quad \tilde{\mathbf{z}}_{t} &= \mathbf{w}_{z}^{\top} \mathbf{x}_{t} + r_{z} \mathbf{h}_{t-1} + b_{z} & \text{cell input} \\ \mathbf{i}_{t} &= \exp(\tilde{\mathbf{i}}_{t}), \quad \tilde{\mathbf{i}}_{t} &= \mathbf{w}_{i}^{\top} \mathbf{x}_{t} + r_{i} \mathbf{h}_{t-1} + b_{i} & \text{input gate} \\ \mathbf{f}_{t} &= \sigma(\tilde{\mathbf{f}}_{t}) \text{ or } \exp(\tilde{\mathbf{f}}_{t}), \quad \tilde{\mathbf{f}}_{t} &= \mathbf{w}_{f}^{\top} \mathbf{x}_{t} + r_{f} \mathbf{h}_{t-1} + b_{f} & \text{forget gate} \\ \mathbf{o}_{t} &= \sigma(\tilde{\mathbf{o}}_{t}), \quad \tilde{\mathbf{o}}_{t} &= \mathbf{w}_{o}^{\top} \mathbf{x}_{t} + r_{o} \mathbf{h}_{t-1} + b_{o} & \text{output gate} \end{aligned}$$

Cell input activation function is tanh (help stabilization).The hidden state activation function is the identity.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

sLSTM Forward Pass and Stabilization II

Exponential activation functions can lead to large values that cause overflow.

Stabilization equations:

$$\begin{split} m_t &= \max\left(\tilde{f}_t + m_{t-1}, \tilde{i}_t\right) & \text{stabilizer state} \\ i'_t &= \exp\left(\tilde{i}_t - m_t\right) & \text{stabilized input gate} \\ f'_t &= \exp\left(\tilde{f}_t + m_{t-1} - m_t\right) & \text{stabilized forget gate} \end{split}$$

Note: The stabilizer state m_t does not change network output nor gradients.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Proof of Equivalence for sLSTM Stabilized Version

$$c_t = c_t^{(s)} \exp(m_t)$$

 $n_t = n_t^{(s)} \exp(m_t)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof of Equivalence for sLSTM Stabilized Version

 $c_t = c_t^{(s)} \exp(m_t)$ $n_t = n_t^{(s)} \exp(m_t)$

$$\begin{split} \tilde{h}_{t}^{(s)} &= \frac{c_{t}^{(s)}}{n_{t}^{(s)}} \\ &= \frac{\exp(\log(f_{t}) + m_{t-1} - m_{t})c_{t-1}^{(s)} + \exp(\log(i_{t}) - m_{t})z_{t}}{\exp(\log(f_{t}) + m_{t-1} - m_{t})n_{t-1}^{(s)} + \exp(\log(i_{t}) - m_{t})} \\ &= \frac{\exp(\log(f_{t}) + m_{t-1})c_{t-1}^{(s)} + \exp(\log(i_{t}))z_{t}}{\exp(\log(f_{t}) + m_{t-1})n_{t-1}^{(s)} + \exp(\log(i_{t}))} \\ &= \frac{\exp(\log(f_{t}))c_{t-1} + \exp(\log(i_{t}))z_{t}}{\exp(\log(f_{t}))n_{t-1} + \exp(\log(i_{t}))} \\ &= \frac{f_{t}c_{t-1} + i_{t}z_{t}}{f_{t}n_{t-1} + i_{t}} = \frac{c_{t}}{n_{t}} = \tilde{h}_{t} \end{split}$$

Memory Mixing in sLSTM vs. LSTM I

Standard LSTM:

- Recurrent weight matrices $(\mathbf{R}_z, \mathbf{R}_i, \mathbf{R}_f, \mathbf{R}_o)$ are full matrices.
- Allows memory mixing across all memory cells.
- **Example of a Full Recurrent Matrix** ($\mathbf{R} \in \mathbb{R}^{d \times d}$):

$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & \dots & r_{1d} \\ r_{21} & r_{22} & \dots & r_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ r_{d1} & r_{d2} & \dots & r_{dd} \end{pmatrix}$$

- sLSTM with Multiple Heads:
 - Recurrent weight matrices (R_z, R_i, R_f, R_o) are block-diagonal.
 - Enables memory mixing within each head but not across heads.

Number of heads: N_h.

• Head size:
$$d_h = \frac{d}{N_h}$$
.

Memory Mixing in sLSTM vs. LSTM II

► Example of a Block-Diagonal Recurrent Matrix (R ∈ ℝ^{d×d}):

$$\mathbf{R} = \begin{pmatrix} \mathbf{R}^{(1)} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{R}^{(2)} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{R}^{(N_h)} \end{pmatrix}$$

where each $\mathbf{R}^{(k)} \in \mathbb{R}^{d_h \times d_h}$ corresponds to head k.

Parameter Reduction:

Standard LSTM:

$$\mathsf{Parameters} = d imes d = d^2$$

sLSTM:

$$\mathsf{Parameters} = \mathsf{N}_h imes d_h^2 = \mathsf{N}_h imes \left(rac{d}{\mathsf{N}_h}
ight)^2 = rac{d^2}{\mathsf{N}_h}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

mLSTM: Enhanced Storage in LSTMs

- ▶ LSTMs use a scalar cell state $c_t \in \mathbb{R}$.
- ► Goal:
 - Increase storage capacity by extending the cell state to a matrix C_t ∈ ℝ^{d×d}.
 - Allow accumulation (storage) of information over time steps.

- Enable retrieval of stored information without access to previous time steps.
- Storing Key-Value Pairs and Retrieval:
 - At each time step t, store:
 - **•** Key vector $\mathbf{k}_t \in \mathbb{R}^d$.
 - **Value vector** $\mathbf{v}_t \in \mathbb{R}^d$.
 - Later retrieve \mathbf{v}_t using a query vector $\mathbf{q}_{t+\tau}$.

Comparison with Attention Mechanisms

- At each time step, compute:
 - Query vector q_t.
 - Key vector k_t.
 - Value vector v_t.
- Attention Scores:

$$\alpha_{t,t'} = \frac{\exp\left(\frac{\mathbf{q}_t^{\top} \mathbf{k}_{t'}}{\sqrt{d}}\right)}{\sum_{t''} \exp\left(\frac{\mathbf{q}_t^{\top} \mathbf{k}_{t''}}{\sqrt{d}}\right)}$$

Retrieval (Context Vector):

$$\mathbf{h}_t = \sum_{t'} \alpha_{t,t'} \mathbf{v}_{t'}$$

- The model attends to relevant parts of the input sequence by computing similarities.
- Allows parallel computation but requires access to all previous steps storage.

Outer Products and Bidirectional Associative Memories I

Outer Product and Rank-1 Matrices:

• The **outer product** of two vectors $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^n$ is:

$$\mathbf{A} = \mathbf{u}\mathbf{v}^\top \in \mathbb{R}^{m \times n}$$

- A is a rank-1 matrix:
 - All columns are scalar multiples of u.
 - All rows are scalar multiples of \mathbf{v}^{\top} .
- Represents all pairwise combinations between elements of u and v.
- Outer Product in Singular Value Decomposition (SVD):

$$\mathbf{A} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top}$$

where:

- r is the rank of A.
- σ_i are singular values ($\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$).
- ▶ $\mathbf{u}_i \in \mathbb{R}^m$ and $\mathbf{v}_i \in \mathbb{R}^n$ are left and right singular vectors.

Outer Products and Bidirectional Associative Memories II

Outer Product in Associative Memories (BAM):

BAM stores associations between pairs $\{(\mathbf{x}_p, \mathbf{y}_p)\}$

$$\mathbf{W} = \sum_{p=1}^{P} \mathbf{y}_p \mathbf{x}_p^ op$$

- Each outer product y_px_p[⊤] is a rank-1 matrix capturing the association between x_p and y_p.
- Retrieval Mechanism:

$$\mathbf{y}_{\mathsf{retrieved}} = \mathbf{W}\mathbf{x}_q = \sum_{
ho=1}^{P} \mathbf{y}_{
ho}(\mathbf{x}_{
ho}^{ op}\mathbf{x}_q)$$

- Inner product x⁺_px_q measures similarity. Retrieval amplifies matching patterns due to higher similarity.
- Capacity depends on orthogonality of stored patterns.
- Highly correlated vectors may cause interference and retrieval errors.

Outer Products and Bidirectional Associative Memories III

Example:

Stored Patterns:

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{y}_1 = \begin{bmatrix} a \\ b \end{bmatrix}$$

 $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{y}_2 = \begin{bmatrix} c \\ d \end{bmatrix}$

Weight Matrix:

$$\mathbf{W} = \mathbf{y}_1 \mathbf{x}_1^\top + \mathbf{y}_2 \mathbf{x}_2^\top = \begin{bmatrix} \mathbf{a} & \mathbf{c} \\ \mathbf{b} & \mathbf{d} \end{bmatrix}$$

Retrieval:

$$\mathbf{y}_{\text{retrieved}} = \mathbf{W}\mathbf{x}_1 = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \mathbf{y}_1$$
$$\mathbf{y}_{\text{retrieved}} = \mathbf{W}\mathbf{x}_2 = \begin{bmatrix} \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \mathbf{y}_2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Optimality of the Covariance Update Rule

Covariance Update Rule:

$$\mathbf{C}_t = \mathbf{C}_{t-1} + (\mathbf{v}_t - ar{\mathbf{v}})(\mathbf{k}_t - ar{\mathbf{k}})^ op$$

Separability:

- This rule is optimal for maximal separability of retrieved binary vectors.
- Higher separability is achievable when limiting retrieval to pairwise interactions.

Requires quadratic complexity, as in attention mechanisms.

Relation to Fast Weight Programmers:

- Covariance update rule is equivalent to Fast Weight Programmers (Schmidhuber, 1992; Schlag et al., 2021).
- Incorporates dynamic weight updates for fast memory access.

Matrix LSTM (mLSTM) Equations

$$\begin{aligned} \mathbf{C}_{t} &= \mathbf{f}_{t} \quad \mathbf{C}_{t-1} + \mathbf{i}_{t} \quad \mathbf{v}_{t} \mathbf{k}_{t}^{\top} & \text{cell state} \\ \mathbf{n}_{t} &= \mathbf{f}_{t} \quad \mathbf{n}_{t-1} + \mathbf{i}_{t} \quad \mathbf{k}_{t} & \text{normalizer state} \\ \mathbf{h}_{t} &= \mathbf{o}_{t} \quad \odot \quad \tilde{\mathbf{h}}_{t} , & \tilde{\mathbf{h}}_{t} &= \mathbf{C}_{t} \quad \mathbf{q}_{t} \ / \max\left\{ \begin{vmatrix} \mathbf{n}_{t}^{\top} \quad \mathbf{q}_{t} \end{vmatrix}, 1 \right\} & \text{hidden state} \\ \mathbf{q}_{t} &= \mathbf{W}_{q} \quad \mathbf{x}_{t} + \mathbf{b}_{q} & \text{query input} \\ \mathbf{k}_{t} &= \frac{1}{\sqrt{d}} \mathbf{W}_{k} \quad \mathbf{x}_{t} + \mathbf{b}_{k} & \text{key input} \\ \mathbf{v}_{t} &= \mathbf{W}_{v} \quad \mathbf{x}_{t} + \mathbf{b}_{v} & \text{value input} \\ \mathbf{i}_{t} &= \exp\left(\tilde{\mathbf{i}}_{t}\right) , & \tilde{\mathbf{i}}_{t} &= \mathbf{w}_{1}^{\top} \quad \mathbf{x}_{t} + \mathbf{b}_{i} & \text{input gate} \\ \mathbf{f}_{t} &= \sigma\left(\tilde{\mathbf{f}}_{t}\right) \text{ OR } \exp\left(\tilde{\mathbf{f}}_{t}\right), \quad \tilde{\mathbf{f}}_{t} &= \mathbf{w}_{t}^{\top} \quad \mathbf{x}_{t} + \mathbf{b}_{f} & \text{forget gate} \\ \mathbf{o}_{t} &= \sigma\left(\tilde{\mathbf{o}}_{t}\right), & \tilde{\mathbf{o}}_{t} &= \mathbf{W}_{o} \quad \mathbf{x}_{t} + \mathbf{b}_{o} & \text{output gate} \\ \end{aligned}$$

$$\mathsf{LayerNorm}(\mathbf{x}) = \frac{\mathbf{x} - \mu}{\sigma} \odot \gamma + \beta$$

Applied before projecting input to key and value (covariance updates)

Normalizer State and Numerical Stability

Normalizer State:

$$\mathbf{n}_t = f_t \cdot \mathbf{n}_{t-1} + i_t \cdot \mathbf{k}_t$$

Purpose:

- Keeps a weighted sum of key vectors.
- Each key vector is weighted by the input gate and all future forget gates.
- Records the strength of the gates over time.

Numerical Stability:

- The dot product $\mathbf{n}_t^\top \mathbf{q}_t$ can be close to zero.
- To prevent division by small numbers, use:

$$\tilde{h}_t = \frac{\mathbf{C}_t \mathbf{q}_t}{\max\left(\left|\mathbf{n}_t^\top \mathbf{q}_t\right|, 1\right)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Multiple Memory Cells and Stabilization

Multiple Memory Cells:

- mLSTM can have multiple memory cells like the original LSTM.
- For mLSTM, multiple heads and multiple cells are equivalent due to lack of memory mixing.

Parallelization Appendix A.3 :

Since mLSTM has no memory mixing, the recurrence can be reformulated in a parallel version.

- ロ ト - 4 回 ト - 4 □

Improves computational efficiency on GPUs.

mLSTM Computations: Iterative and Matrix Forms I

At each time step t:

Forget Gate: $f_t = \sigma(\tilde{f}_t)$ Input Gate: $i_t = \sigma(\tilde{i}_t)$ Output Gate: $o_t = \sigma(\tilde{o}_t)$ Cell State Update: $\mathbf{C}_t = f_t \mathbf{C}_{t-1} + i_t (\mathbf{v}_t \mathbf{k}_t^\top)$ Hidden State: $\mathbf{h}_t = o_t \tilde{\mathbf{h}}_t$

Unrolling the Cell State:

$$\mathbf{C}_{t} = f_{t}f_{t-1}\mathbf{C}_{t-2} + f_{t}i_{t-1}(\mathbf{v}_{t-1}\mathbf{k}_{t-1}^{\top}) + i_{t}(\mathbf{v}_{t}\mathbf{k}_{t}^{\top})$$
$$= \left(\prod_{k=1}^{t} f_{k}\right)\mathbf{C}_{0} + \sum_{j=1}^{t} \left(\left(\prod_{k=j+1}^{t} f_{k}\right)i_{j}(\mathbf{v}_{j}\mathbf{k}_{j}^{\top})\right)$$

• Assuming $C_0 = 0$ for simplicity.

・ロト・1回ト・1回ト・1回ト・1回・1000

mLSTM Computations: Iterative and Matrix Forms II

Constructing the Forget Gate Activation Matrix F:

$$\tilde{\mathbf{f}} = [\tilde{f}_1, \tilde{f}_2, \dots, \tilde{f}_T]^\top \in \mathbb{R}^T$$
$$\mathbf{F}_{ij} = \begin{cases} 0 & \text{for } j > i \\ 1 & \text{for } j = i \\ \prod_{k=j+1}^i \sigma(\tilde{f}_k) & \text{for } j < i \end{cases}$$

Visualization of F:

$$\mathbf{F} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ \sigma(\tilde{f}_2) & 1 & \dots & 0 \\ \sigma(\tilde{f}_2)\sigma(\tilde{f}_3) & \sigma(\tilde{f}_3) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \prod_{k=2}^{T} \sigma(\tilde{f}_k) & \prod_{k=3}^{T} \sigma(\tilde{f}_k) & \dots & 1 \end{bmatrix}$$

mLSTM Computations: Iterative and Matrix Forms III

Constructing the Input Gate Pre-Activation Matrix Î:

$$\tilde{\mathbf{i}} = [\tilde{i}_1, \tilde{i}_2, \dots, \tilde{i}_T]^\top \in \mathbb{R}^T \\ \tilde{\mathbf{I}}_{ij} = \begin{cases} 0 & \text{for } j > i \\ \tilde{i}_j & \text{for } i \ge j \end{cases}$$

Computing the Unstabilized Gate Activation Matrix D:

$$\mathbf{D}=\mathbf{F}\odot\exp\Bigl(\mathbf{\tilde{I}}\Bigr)$$

Computing Hidden Pre-Activation States H:

$$\widetilde{\mathbf{C}} = \frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d}} \odot \mathbf{D}$$

$$\mathbf{C}_{i} = \frac{\widetilde{\mathbf{C}}_{i}}{\max\left(\left|\sum_{j=1}^{T}\widetilde{\mathbf{C}}_{ij}\right|, 1\right)}$$

$$\widetilde{\mathbf{H}} = \mathbf{C}\mathbf{V}$$

mLSTM Computations: Iterative and Matrix Forms IV

Computing the Final Hidden States H:

$$ilde{\mathbf{O}} \in \mathbb{R}^{T imes d}, \quad \mathbf{O} = \sigma(ilde{\mathbf{O}})$$

$$\textbf{H}=\textbf{O}\odot\widetilde{\textbf{H}}$$

Equivalence Between Iterative and Matrix Forms:

Iterative Computation:

$$\mathbf{C}_t = f_t \mathbf{C}_{t-1} + i_t (\mathbf{v}_t \mathbf{k}_t^\top)$$

Matrix Formulation:

$$\mathbf{C} = \mathbf{F} \odot \exp \Bigl(\tilde{\mathbf{I}} \Bigr) \odot (\text{Outer Products of } \mathbf{v}_t \mathbf{k}_t^\top)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Explanation:

- Matrix operations aggregate iterative updates.
- Enables parallel computation over the entire sequence.

xLSTM Architecture

- xLSTM Blocks: Designed to non-linearly summarize the past in a high-dimensional space, enhancing the separation of different histories or contexts (Cover's Theorem (1965)).
- Residual Block Architectures:
 - Post Up-Projection (like Transformers):
 - Input is fed into an sLSTM, optionally followed by a convolution.
 - A gated MLP follows the sLSTM block.
 - Pre Up-Projection (like State Space Models):
 - Input is mapped into a high-dimensional space and linearly maps back after non-linear summarization.
 - mLSTM is wrapped inside two MLPs, with a convolution, skip connection, and an output gate.
- Construction: Residual stacking with pre-LayerNorm, as used in large language models.

Post Up-projection Residual Block Mainly for sLSTM

Pre Up-projection Residual Block Mainly for xLSTM

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Memory and Speed Considerations

- Linear Computation and Constant Memory Complexity:
 - xLSTM offers linear computational complexity and constant memory complexity with respect to sequence length.
 - This makes xLSTM suitable for industrial applications and on-edge implementations.
- mLSTM Memory and Computational Trade-Off:
 - Memory is a d × d matrix, which is parameter-free but computationally intensive.
 - Trade-off between memory capacity and computational complexity, manageable with parallel GPU computations.
- Parallelization:
 - mLSTM is parallelizable (similar to FlashAttention).
 - sLSTM is not parallelizable due to memory mixing but is optimized with fast CUDA implementation.

Test of xLSTM's Exponential Gating with Memory Mixing

```
Bucket Sort
 Sequence: 1 4 8 6 1 1 1 4 6 8
Cycle Nav
 Sequence: STAY +1 -1 +1 STAY +1 +1 +1 -1 P3
Even Pairs
 Sequence: a b b a a b a b a a
Majority
 Sequence: 1 7 6 4 3 8 1 7 2 1
Majority Count
 Sequence: 1 7 6 4 4 8 1 7 2 2
Missing Duplicate
 Sequence: 4 8 6 2 5 4 8 6 2 [MIS] 5
Mod Arithmetic (w/o Braces)
 Sequence: 0 - 4 + 0 - 2 = 4 [PAD]
Mod Arithmetic (w Braces)
 Sequence: (((2) * - 2) - (-4 - 2)) = 2
Odds First
 Sequence: 2 7 3 2 6 9 [ACT] 2 3 6 7 2 9
Parity:
 Sequence: a b b a a b a b
Repetition
 Sequence: 2 4 8 6 2 [ACT] 2 4 8 6 2
Reverse String
 Sequence: 2 4 8 6 2 [ACT] 2 6 8 4 2
Stack Manipulation
 Sequence: ST1 ST1 ST3 POP POP PS3 PS3 [ACT] ST1 ST3 ST3
Set
 Sequence: 8 6 6 3 5 4 5 3 [ACT] 8 6 3 5 4
Solve Equation:
 Sequence: (((2+0)+-x)-(1))=2 [ACT] 2
```

▲ロト▲圖ト▲画ト▲画ト 画 のへで

Test of xLSTM's Exponential Gating with Memory Mixing

	Context S	entsitive	Detern Contex	ninistic <t free<="" th=""><th></th><th>Reg</th><th></th><th></th></t>		Reg				
	Bucket Sort	Missing Duplicate	Mod Arithmetic (w Brackets)	Solve Equation	Cycle Nav	Even Pairs	Mod Arithmetic (w/o Brackets)	Parity	Majority	Majority Count
Llama	0.92 ± 0.02	0.08 ± 0.0	0.02 ± 0.0	0.02 ± 0.0	0.04 ± 0.01	1.0 ± 0.0	0.03 ± 0.0	$\begin{array}{c} 0.03 \\ \pm 0.01 \end{array}$	0.37 ± 0.01	$\underset{\pm 0.0}{0.13}$
Mamba	0.69 ± 0.0	$\underset{\pm 0.0}{0.15}$	0.04 ± 0.01	0.05 ± 0.02	0.86 ± 0.04	1.0 ± 0.0	0.05 ± 0.02	$\underset{\pm 0.02}{0.13}$	0.69 ± 0.01	0.45 ± 0.03
Retention	0.13 ± 0.01	0.03 ± 0.0	$\underset{\pm 0.03}{0.03}$	$\underset{\pm 0.03}{0.03}$	0.05 ± 0.01	0.51 ± 0.07	0.04 ± 0.0	$\underset{\pm 0.01}{0.05}$	0.36 ± 0.0	0.12 ± 0.01
Hyena	0.3	0.06	0.05	0.02	0.06	0.93	0.04	0.04	0.36	0.18
	± 0.02	± 0.02	± 0.0	± 0.0	± 0.01	± 0.07	± 0.0	± 0.0	± 0.01	± 0.02
RWKV-4	0.54	0.21	0.06	0.07	0.13	1.0	0.07	0.06	0.63	0.13
	± 0.0	± 0.01	± 0.0	± 0.0	± 0.0	± 0.0	± 0.0	± 0.0	± 0.0	± 0.0
RWKV-5	0.49	0.15	0.08	0.08	0.26	1.0	0.15	0.06	0.73	0.34
	± 0.04	± 0.01	± 0.0	± 0.0	± 0.05	± 0.0	± 0.02	± 0.03	± 0.01	± 0.03
RWKV-6	0.96	0.23	0.09	0.09	0.31	1.0	0.16	0.22	0.76	0.24
	± 0.0	± 0.06	± 0.01	± 0.02	± 0.14	± 0.0	± 0.0	± 0.12	± 0.01	± 0.01
LSTM	0.99	0.15	0.76	0.5	0.97	1.0	$\underset{\pm 0.09}{0.91}$	1.0	0.58	0.27
(Block)	± 0.0	± 0.0	± 0.0	± 0.05	± 0.03	± 0.0		± 0.0	± 0.02	± 0.0
LSTM	0.94	0.2	0.72	0.38	0.93	1.0	1.0	1.0	0.82	0.33
	± 0.01	± 0.0	± 0.04	± 0.05	± 0.07	± 0.0	± 0.0	± 0.0	± 0.02	± 0.0
xLSTM[0:1]	0.84 ± 0.08	0.23 ± 0.01		0.55 ± 0.09	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	1.0 ± 0.0	0.75 ± 0.02	0.22 ± 0.0
xLSTM[1:0]	0.97	0.33	0.03	0.03	0.86	1.0	0.04	0.04	0.74	0.46
	± 0.0	± 0.22	± 0.0	± 0.01	± 0.01	± 0.0	± 0.0	± 0.01	± 0.01	± 0.0
xLSTM[1:1]	0.7	0.2	0.15	0.24	0.8	1.0	0.6	1.0	0.64	0.5
	± 0.21	± 0.01	± 0.06	± 0.04	± 0.03	± 0.0	± 0.4	± 0.0	± 0.04	± 0.0

Test of xLSTM's Memory Capacities on Associative Recall Tasks

Test memory capacity on the Multi-Query Associative Recall task: memorizing randomly chosen key-value pairs for later retrieval, 256 pairs, context length is 2048.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Test of xLSTM's Long Context Capabilities on Long Range Arena

	Retrieval acc ↑	ListOps acc↑	Pathfinder acc ↑	G-Image acc ↑	RGB-Image acc ↑	Ranking acc ↑
Random Baseline	0.500	0.100	0.500	0.100	0.100	
Llama	0.845	0.379	0.887	0.541	0.629	5.2
Mamba	0.902	0.325	0.992	0.689	0.765	2.2
RWKV-4	0.898	0.389	0.914	0.691	0.757	3.0
LSTM	Х	0.275	Х	0.675	0.718	5.4
LSTM (Block)	0.880	0.495	Х	0.690	0.756	3.4
xLSTM	0.906	<u>0.411</u>	<u>0.919</u>	0.695	<u>0.761</u>	1.6

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Perplexity

Train an auto-regressive language model on 15B tokens from SlimPajama

Model	#Params M	SlimPajama (15B) ppl↓	
GPT-3	356	14.26	
Llama	407	14.25	
H3	420	18.23	
Mamba	423	<u>13.70</u>	19
Hyena	435	17.59	
RWKV-4	430	15.62	16 X 16
RWKV-5	456	16.53	
RWKV-6	442	17.40	
RetNet	431	16.23	
HGRN	411	21.83	
GLA	412	19.56	
HGRN2	411	16.77	11 - 15B Tokens
xLSTM[1:0]	409	13.43	10
xLSTM[7:1]	408	13.48	0.2 0.4 Number of

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Ablation

	Ablation studies on the ne	ew xLSTM co	mponents.		
Model	Modification	Exponential Gating	Matrix Memory	#Params M	SlimPajama (15B) ppl↓
LSTM	Vanilla Multi-Layer LSTM	×	×	607.8	2417.86
	Adding Resnet Backbone	×	×	506.1	35.46
	Adding Up-Projection Backbone	×	×	505.9	26.01
xLSTM[0:1]	Adding Exponential Gating	\$	×	427.3	17.70
xLSTM[7:1]	Adding Matrix Memory	\$	✓	408.4	13.48

Ablation studies on different gating techniques.

	Fo	orget Gate			Input Gate		SlimPaiama
Learnable Gates	Input Dependent	Learnable Bias	Bias Init	Input Dependent	Learnable Bias	Bias Init	(15B) ppl↓
No Gates	X	X	$+\infty$	×	X	0	NaN
No Gates	×	×	[3, 6]	×	×	0	13.95
Forget Gate	1	1	[3, 6]	×	×	0	13.58
Input Gate	×	×	[3, 6]	1	1	$\mathcal{N}(0, 0.1)$	13.69
Forget Gate Bias	×	1	[3, 6]	×	×	0	13.76
Forget + Input Gate Bias	×	1	[3, 6]	×	1	$\mathcal{N}(0, 0.1)$	13.73
Forget Gate + Input Gate Bias	1	1	[3, 6]	×	1	$\mathcal{N}(0, 0.1)$	13.55
Forget Gate + Input Gate	1	1	[3,6]	1	1	$\mathcal{N}(0, 0.1)$	13.43

Sequence Length Extrapolation

Training on 300B tokens, model size 1.3B

A D > A P > A B > A B >

э

Validation Perplexity and Downstream Tasks.

Training on 300B tokens, model sizes (125M, 350M, 760M, 1.3B)

	Model	#Params M	SlimPajama (300B) ppl↓	LAMBADA ppl↓	LAMBADA acc↑	HellaSwag acc ↑	PIQA acc ↑	ARC-E acc↑	ARC-C acc↑	WinoGrande acc ↑	Average acc ↑
	RWKV-4	169.4	16.66	54.72	23.77	34.03	66.00	47.94	24.06	50.91	41.12
Y	Llama	162.2	15.89	39.21	31.54	34.09	65.45	45.33	23.63	50.67	41.78
22	Mamba	167.8	15.08	27.76	34.14	36.47	66.76	48.86	24.40	51.14	43.63
1	xLSTM[1:0]	163.8	14.63	25.98	36.52	36.74	65.61	47.81	24.83	51.85	43.89
	xLSTM[7:1]	163.7	14.60	26.59	36.08	36.75	66.87	48.32	25.26	<u>51.70</u>	44.16
	RWKV-4	430.5	12.62	21.57	36.62	42.47	69.42	54.46	25.43	51.22	46.60
7	Llama	406.6	12.19	15.73	44.19	44.45	69.15	52.23	26.28	53.59	48.32
0	Mamba	423.1	11.64	12.83	46.24	47.55	<u>69.70</u>	55.47	27.56	54.30	50.14
35	xLSTM[1:0]	409.3	11.31	11.49	49.33	48.06	69.59	<u>55.72</u>	26.62	54.38	<u>50.62</u>
	xLSTM[7:1]	408.4	<u>11.37</u>	<u>12.11</u>	<u>47.74</u>	<u>47.89</u>	71.16	56.61	27.82	53.28	50.75
	RWKV-4	891.0	10.55	10.98	47.43	52.29	72.69	58.84	28.84	55.41	52.58
7	Llama	834.1	10.60	9.90	51.41	52.16	70.95	56.48	28.75	56.67	52.74
6	Mamba	870.5	10.24	9.24	50.84	53.97	71.16	60.44	29.78	56.99	53.86
2	xLSTM[1:0]	840.4	9.86	8.09	54.78	55.72	72.69	62.75	32.59	58.17	56.12
	xLSTM[7:1]	839.7	<u>9.91</u>	8.07	55.27	56.12	72.74	61.36	29.61	56.43	55.26
	RWKV-4	1515.2	9.83	9.84	49.78	56.20	<u>74.70</u>	61.83	30.63	55.56	54.78
~	Llama	1420.4	9.44	7.23	<u>57.44</u>	57.81	73.12	62.79	31.74	59.04	56.99
3F	Mamba	1475.3	9.14	7.41	55.64	<u>60.45</u>	74.43	66.12	33.70	<u>60.14</u>	<u>58.41</u>
1	xLSTM[1:0]	1422.6	8.89	6.86	57.83	60.91	74.59	64.31	32.59	60.62	58.48
	xLSTM[7:1]	1420.1	<u>9.00</u>	7.04	56.69	60.26	74.92	<u>65.11</u>	32.34	59.27	58.10

Performance on PALOMA Language Tasks

	Model	#Params M	C4	MC4 EN	Wikitext 103	Penn Treebank	Red Pajama	Refined Web	Dolma	M2D2 S2ORC	M2D2 Wikipedia	C4 Domains	Dolma Subreddits	Dolma Coding	Average
	RWKV-4	169.4	26.25	22.33	29.18	38.45	8.99	32.47	17.04	23.86	21.42	22.68	37.08	5.12	23.74
5M	Llama	162.2	24.64	17.23	23.16	31.56	8.26	29.15	15.10	19.71	20.41	21.45	36.73	3.61	20.92
	Mamba	167.8	23.12	17.04	22.49	30.63	7.96	27.73	14.60	19.38	19.36	20.14	34.32	3.77	20.05
8	xLSTM[1:0]	163.8	22.54	16.32	21.98	30.47	7.80	27.21	<u>14.35</u>	<u>19.02</u>	<u>19.04</u>	19.65	34.15	3.64	<u>19.68</u>
	xLSTM[7:1]	163.7	22.39	16.13	21.47	30.01	7.75	26.91	14.13	18.6	18.84	19.52	33.9	3.59	19.44
	RWKV-4	430.5	19.55	15.82	19.64	27.58	6.97	24.28	12.94	17.59	15.96	16.98	29.40	3.90	17.55
Y.	Llama	406.6	18.38	13.28	16.41	21.82	6.56	22.09	11.76	15.05	15.25	15.99	28.30	3.12	15.67
6	Mamba	423.1	17.33	13.05	16.11	22.24	6.34	21.04	11.42	14.83	14.53	15.16	27.02	3.20	15.19
33	xLSTM[1:0]	409.3	17.01	12.55	15.17	22.51	6.20	20.66	11.16	14.44	14.27	14.85	26.70	3.08	14.88
	xLSTM[7:1]	408.4	16.98	<u>12.68</u>	<u>15.43</u>	21.86	<u>6.23</u>	<u>20.70</u>	<u>11.22</u>	<u>14.62</u>	<u>14.30</u>	14.85	26.61	<u>3.11</u>	14.88
	RWKV-4	891.0	15.51	12.76	14.84	21.39	5.91	19.28	10.70	14.27	13.04	13.68	24.22	3.32	14.08
v	Llama	834.1	15.75	11.59	13.47	18.33	5.82	19.04	10.33	13.00	13.05	13.76	24.80	2.90	13.49
0	Mamba	870.5	15.08	11.54	13.47	19.34	5.69	18.43	10.15	13.05	12.62	13.25	23.94	2.99	13.30
ž	xLSTM[1:0]	840.4	14.60	11.03	12.61	<u>17.74</u>	5.52	17.87	9.85	12.50	12.20	12.81	23.46	2.87	12.76
	xLSTM[7:1]	839.7	14.72	<u>11.11</u>	12.68	17.61	5.55	18.01	9.87	12.59	12.25	12.89	23.43	2.88	12.80
	RWKV-4	1515.2	14.51	12.04	13.73	19.37	5.62	18.25	10.11	13.46	12.10	12.87	22.85	3.25	13.18
~	Llama	1420.4	13.93	10.44	11.74	15.92	5.29	17.03	9.35	11.61	11.53	12.24	22.63	2.74	12.04
3	Mamba	1475.3	13.35	10.40	11.76	16.65	5.21	16.50	9.17	11.73	11.18	11.83	21.43	2.83	11.84
-	xLSTM[1:0]	1422.6	13.13	10.09	<u>11.41</u>	15.92	5.10	16.25	9.01	11.43	10.95	11.60	21.29	2.73	11.58
	xLSTM[7:1]	1420.1	<u>13.31</u>	<u>10.21</u>	11.32	<u>16.00</u>	5.16	<u>16.48</u>	<u>9.11</u>	<u>11.61</u>	<u>11.10</u>	<u>11.76</u>	21.50	2.75	<u>11.69</u>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Scaling Laws

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Thanks!