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Introduction

This document presents some of my research works that I have been conduct-
ing since my Ph.D. My dissertation was mostly focused on polyhedra stemming
from combinatorial optimization, and I have never stopped studying such beau-
tiful objects. The first part of this document is then naturally dedicated to
this topic. Some years ago, I started considering problems related to natural
language processing. Such problems are usually solved using machine learn-
ing together with combinatorial optimization. I address these problems from a
mathematical programming’s point of view: one the one hand, by using integer
linear programming to model them and on the other hand by using Lagrangian
relaxation based heuristics to solve the associated inference problems. Starting
from these projects, I have been working on the interactions between machine
learning and mixed-integer linear programming. The second part of this docu-
ment is then dedicated to my contributions on these interactions.

These two parts can be read independently. Both start with preliminary
definitions and notions that are necessary to read the corresponding chapters.
These chapters give a concise description of my works without proofs nor exper-
imental results. The interested reader should refer to the corresponding papers,
which can be found in the Appendix, for more details.

Polyhedra and box-TDIness

A polyhedron is the intersection of a finite number of half-spaces. As half-
spaces are defined by linear inequalities, the solutions to a linear problem form
a polyhedron. For integer linear problems, one has to consider the set of in-
teger points lying in the polyhedron defined by the constraints. However, this
solution set may be described as the set of integer points of different polyhe-
dra. Among them, a fundamental one is the minimum inclusionwise polyhedron,
corresponding to the convex hull of the integer solutions. This polyhedron is
crucial because optimizing a linear function over this convex hull with the sim-
plex method returns an integer optimal solution. In other words, if the linear
inequalities describing the convex hull are known, the integer linear problem
may be cast as a linear one that corresponds to optimizing the original objec-
tive function over the convex hull. Otherwise, even a partial description may be
used to add strengthening inequalities in order to reduce the solution space and
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speed up the resolution of the integer linear problem. This leads to cutting-plane
based methods, which are a core component of the performance of mixed-integer
linear solvers.

In Chapter 2] we give the linear description of the convex hull of bonds and
st-bonds in series-parallel graphs, where a bond is a minimal inclusionwise cut.
We also provide the linear description of the lexicographical polyhedron that
corresponds to the convex hull of the points of a hypercube that are lexico-
graphically between two given points. We say that a point p is lexicographically
less than or equal to a point ¢ if p = ¢ or the first different coordinate of p is
less than the one of gq.

Box-total dual integrality of a polyhedron is a strong geometric integrality
property. Indeed, a polyhedron P is boz-Total Dual Integral (box-TDI) if for
every dilation of P corresponding to an integer polyhedron, its intersection with
any integer hypercube remains an integer polyhedron. Box-TDI polyhedra usu-
ally provide min/max relations like the famous max-flow /min-cut theorem (Ford
and Fulkerson, [1956).

In Chapter (3] we first answer two complexity questions related to box-TDI
polyhedra. First, we prove that, even if box-TDI polyhedra have strong inte-
grality properties, solving an integer linear problem when the linear inequalities
define a box-TDI polyhedron is NP-hard. Moreover, we show that determin-
ing whether a rational linear system defines a box-TDI polyhedron is co-NP-
complete, answering a 40 years old question asked in (Schrijver, |1986)). We end
this chapter by characterizing the box-TDIness of several polyhedra.

Interaction between Machine Learning and La-
grangian Relaxation

The second part of this document is related to my works lying at the intersection
of machine learning and mathematical programming, especially dealing with
Lagrangian relaxation.

In structured learning, the machine learning model has to predict a solution
following some combinatorial structure like predicting a tree or a path of an
input graph. This may be done in two steps: first predicting scores using
machine learning and then determining the combinatorial solution having the
best score. This second step is known as the inference problem and is nothing
but a combinatorial optimization one.

In Chapter [5] we consider two inference problems arising in syntactic pars-
ing, a fundamental natural language processing task aiming at determining the
syntactic structure of a sentence. We tackle these two problems using integer
linear programming and Lagrangian relaxation. For the first problem, which
consists in computing a dependency tree with additional requirements, we for-
mulate the set of solutions as the integer points of a polyhedron defined by an
exponential number of inequalities. We also consider a Lagrangian relaxation of
the problem obtained by dualizing an exponential number of inequalities. The
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resulting Lagrangian relaxed problem is then nothing but computing a spanning
arborescence. We construct a heuristic based on this Lagrangian relaxation that
is competitive with the state-of-the-art while ensuring that the returned solu-
tion satisfies all the additional requirements. The second problem consists in
constructing a parse tree based on spinal TAG formalism. We reformulate this
problem as a generalized spanning arborescence problem and we build a heuris-
tic based on a Lagrangian decomposition of our formulation. Our heuristic
compares favorably with the state-of-the-art both in terms of accuracy and of
running time.

Mathematical programming solvers, even exact ones, rely on quite a lot
of heuristic decisions that may dramatically affect their performance. These
heuristics are usually handcrafted but recently, machine learning has been used
to design or parametrize them.

In Chapter [6}] we use machine learning to fasten the resolution of the La-
grangian dual problem. More specifically, we design a model to predict near-
optimal Lagrangian multipliers. Our model can be used as-is to heuristically
solve the Lagrangian dual problem in replacement to traditional iterative sub-
gradient based algorithms, or the prediction may be used to initialize such algo-
rithms, especially the bundle method whose performance heavily relies on the
initial point used for stabilization. Moreover, since Lagrangian relaxation is
used to provide dual bounds inside algorithms like branch-and-bound ones, our
model may be used inside such algorithms to derive dual bounds. In particular,
we predict Lagrangian multipliers and we solve the associated Lagrangian re-
laxed problem only once. We propose a generic model that can be applied to any
mixed-integer linear problem and any Lagrangian relaxation providing tighter
bounds than the continuous relaxation. Indeed, our model only uses as input
the objective function, the constraint matrix and the right-hand side as well as
the information relative to an optimal solution to the continuous relaxation in
order to make the predictions.

The presented contributions give an overview of the research I have con-
ducted so far but, since research never ends, the last chapter of this document
presents some research perspectives. They correspond to some of my current
and future works.
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Part 1

Mixed-Integer Linear
Programming: Polyhedra
and Box-Total Dual

Integrality



Chapter 1

Preliminaries

In this chapter, we give some notions related to graphs and polyhedra that are
necessary to present the research of this part.

1.1 Preliminaries on Graphs

In these works, we consider undirected graphs. We refer to (Bondy and Murty,
2008) for classic definitions and notation which are not presented in here.

Graphs A graph is a pair (V, E) where V is a finite set and F is a family of
unordered pairs of V. The elements of V' are called nodes whereas those of
are called edges. The two nodes of an edge are its extremities. An edge with
extremities u and v is denoted by uwv. Two nodes u and v are adjacent if uv is
an edge. A node u and an edge e are incident if u is an extremity of e. Similarly,
two edges e and f are incident if they share a same extremity. The degree of a
node is the number of edges that are incident to it. An edge whose extremities
coincide is a loop. A graph with no loop is said loopless. Two edges having
the same extremities are parallel. A loopless graph with no parallel edges is
said simple. A simple graph (V, E) is complete all pairs of distinct nodes are
adjacent.

Given a node subset W C V, E[W] denotes the set of edges having both
extremities in W. Similarly, for F' C E, V[F] corresponds to the set of nodes
that are the extremities of an edge of F'.

Subgraphs A graph G' = (V', E’) is a subgraph of a G = (V,E) it V! C V
and B/ C E. G’ is a spanning subgraph of Gis V! = V. For W C V, (W, E[W])
is the subgraph induced by W.

Bipartite graphs A graph G = (V, E) is bipartite if its node set V can be
partitioned into two sets U and W such that each edge has one extremity in U



and the other in W. If E contains an edge uw for each uw € U and each w € W,
then G is a complete bipartite graph and is denoted Ky jw|-

Minors The contraction of an edge uv € E consists in removing it, and iden-
tifying nodes v and v. A graph H is a minor of G if H may be obtained from
G by contracting edges and removing nodes and edges.

Planarity and dual graphs A graph is planar if it can be drawn on the
plane in such a way that no edges cross each other. Such a drawing is called a
planar embedding of the graph. A planar embedding of a graph G divides the
plane into a set of regions called faces. Among them, there is only one infinite
face. The edges delimiting a face F' and their extremities form the boundary
of F'. The boundary of the infinite face is the outer boundary.

Planar graphs are characterized by minors as stated in the following theorem,
where K, denotes the complete graph on n nodes.

Theorem 1.1 (Wagner, [1937). A graph is planar if and only if it does not
contain K5 or K33 as a minor.

Let G = (V, E) be a planar graph and fix a planar embedding of G. The
dual graph G* of G with respect to this planar embedding is the graph having
a node for each face of G, and an edge e* for each edge e € E such that the
extremities of e* correspond to the faces having e in their boundary.

Note that G* is planar. Moreover, (G*)* is isomorphic to G if and only if G
is connected.

Outerplanar and series-parallel graphs A well-known subclass of planar
graphs is the class of series-parallel graphs which can be defined as follows. A
2-connected graph is series-parallel if it can be built from the circuit of length
two, that is the graph corresponding to two nodes linked by two parallel edges,
by repeatedly applying the following operations:

e parallelization: add a parallel edge to an existing one,
e subdivision: replace an edge by a path of length two.

A graph is series-parallel if all its 2-connected components are. These graphs
have been characterized by forbidden minors, as stated in the following theorem.

Theorem 1.2 (Duffin, [1965). A graph is series-parallel if and only if it does
not contain K, as a minor.

Consider a planar embedding of a planar graph G. By definition of minors
and dual graphs, the dual of a minor of G is a minor of G*. The graph K, being
its own dual, we get the following result.

Observation 1.1. A planar graph G is series-parallel if and only if, given a
planar embedding of G, the dual graph is series-parallel.



A subclass of series-parallel graphs is the class of outerplanar graphs. A
graph is outerplanar if it can be drawn in such a way that all nodes belong to
the outer boundary. Theorem gives a characterization of these graphs in
terms of forbidden minors.

Theorem 1.3 (Chartrand and Harary, [1967). A graph is outerplanar if and
only if it contains neither Ky nor Ko 3 as a minor.

Circuits, cuts, and bonds A set of edges C C F is a cycle of G if it induces
a graph in which each node has an even degree. A cycle is a circuit if it is empty
or induces a connected graph in which every node has degree two. The graph
(VIE], E) where E is a circuit and |E| = k is denoted by Cj.

A multicut is the set of all the edges between different classes of some par-
tition {V1,...,Vi} of the node set V', and it is denoted by §(V1,..., V). For
every multicut M, there exists a unique partition {Vi,...,V;} of V such that
M =6(Vy,..., V) and G[V;] is connected for all ¢ = 1,...,¢. The number of
classes £ in this partition is called the order of M and is denoted by da;. A set
F of edges is a cut if FF'=6(X,V \ X) for some X C V, that is, there exists a
node set X C V such that F is the set of edges having exactly one extremity
in X. The cut F is denoted by §(X). The node set X and its complement V'\ X
are the shores of F. A cut is a bond if it is empty or it does not strictly con-
tain any nonempty cut. By definition, each shore of a nonempty bond induces
a connected graph. A bond and a circuit intersect an even number of times.
Moreover, for series-parallel graphs, it has been shown that a bond and a circuit
cannot intersect more than twice. These are stated in the following observation
and theorem.

Observation 1.2. A bond and a circuit intersect an even number of times.

Theorem 1.4 (Chakrabarti, Fleischer, and Weibel, [2012)). In a series-parallel
graph, a bond and circuit intersect zero or twice.

Note that a bond (resp. circuit) in a planar graph corresponds to a circuit
(resp. bond) in the dual graph, as stated in the following.

Observation 1.3. The bonds of a planar graph are in bijection with the circuits
of the dual graph.

1.2 Preliminaries on Polyhedra

A polyhedron is the intersection of a finite set of halfspaces. Each halfspace
being defined by a linear inequality, a polyhedron P is the set of points satisfying
a given set of inequalities, that is, P = {z € R™ | Az < b}. When A and b
are rational, the polyhedron is rational. In this document, we will only consider
rational polyhedra. When b = 0, the polyhedron is a (polyhedral) cone.

The convex hull of a set of points S = {p',...,pF} of R", denoted by
conv(S), is the set of points that are convex combination of p!,..., p*, that



is:
k k
conv(S)={z eR" |z = Z/\ipi,)\ > O’Z/\i =1}
i=1 i=1

The conic hull of a nonempty set of points S = {p',...,p*} of R", denoted
by cone(S), is the set of points that are conic combination of p!, ..., p*, that is:

k
cone(S)={z eR" |z = Z)\ipi,)\ > 0}.

i=1
By convention, cone(()) = {0}.

A polyhedron can be described either by linear inequalities or as the
Minkowski sum of a convex hull and a cone, where the Minkowski sum of two
sets X and Yis X +Y ={z+y |2 € X,y € Y}. This result is known as the
Minkowski-Weyl’s Theorem (see Theorem 11.10 of (Conforti, Cornuéjols, and
Zambelli, [2010)) for a proof):

Theorem 1.5. Let P be a subset of R™. P is a polyhedron, that is, P = {x €
R™ | Az < b} if and only if there exist points p*,....p~F and r',... r* of R®
such that P = conv({p",...,p"}) + cone({rt,... ,r'}).

A bounded polyhedron P, that is, a polyhedron that can be described as P =
conv(S) for some (finite) set S C R™, is called a polytope. A conic polyhedron is
a rational translation of a cone, that is, a set of the form w+ {z € R" | Az < 0}
for some w € Q™.

Rays, faces and facets Let C be a cone and r € C'\ {0}. The set cone(r) =
{A\r : A > 0} is a ray of C. With a slight abuse of notation, r is sometimes
called a ray and refers in this case to cone(r). Two rays r! and r? of C'\ {0} are
distinct if there does not exist p € Ry such that r* = ur?. A ray r of C'\ {0}
is extreme if there does not exist distinct rays r' and r2 such that r = ! + 2.

A face F of P ={z | Az < b} is the polyhedron obtained from P by setting
some inequalities of Az < b to equality. A proper face of P is a nonempty face
different from P. The dimension of a face is the dimension of its affine hull,
that is, the number of affinely independent points of F' minus one. A facet is a
face that is not contained in any other proper face and a minimal face is a face
containing no other proper face. A minimal face of dimension zero is a vertez.

An inequality o'z < b is tight for a face F if every point of F satisfies this
inequality with equality. Given a face of a polyhedron P = {z | Az < b}, the
tangent cone of a face F' is the conic polyhedron described by the inequalities of
Az < b that are tight for F. The tangent cone associated with a minimal face
of P is a minimal tangent cone of P.

A polyhedron P is integer if all its faces contain an integer point.



Polar cones Let C be a polyhedral cone of R™. The polar cone of C, denoted
C*, is the cone defined by:

C*={yeR"|y'z<0foralzecC}

The polar of the polar cone of C is C itself, that is, C** = C'. Moreover, if
C = {z | Az <0}, then C* is the cone generated by the transposes of the rows
of A.

1.2.1 Extended Formulations
Let P ={z € R™ | Az < b} be a polyhedron. A polyhedron

Q={<§>eR”xRP|Bz+0y<d}

is an extended formulation of P if its projection onto the z-variables

proj.(Q) = {m eR" | Jy € R? s.t. (;) € Q}

is equal to P.
Extended formulations are useful for optimizing over P since the two linear
problems provide the same optimum:

max {¢'z | z € P} = max {CTI +0Ty | <”Z> € Q}.

Sometimes, a polyhedron may be easier to be described in a higher dimen-
sion, that is, it needs fewer inequalities to be described when adding variables.
The minimum number of inequalities in an extended formulation of a polytope
is called its extension complexity.

In the example of Figure the hexagon needs six inequalities to be de-
scribed in two dimensions but only five in three dimensions.

The difference between the minimum number of inequalities to describe a
polytope and its complexity extension may be dramatic. Indeed, several poly-
topes needs an exponential number of inequalities in their original space but have
a polynomial complexity extension. This means that they can be described by a
polynomial number of variables and constraints. For instance, the cut polytope
for graphs with no Ks-minor contains an exponential number of inequalities
(Barahona and Mahjoub, [1986) when considering a variable per edge but has a
polynomial compact extension (Barahona, [1993)). We prove that this also holds
for the circuit and bond polytopes in series-parallel graphs (Borne et al.,|[2015)).

IThis figure is to be credited to Roland Grappe.



Figure 1.1: The hexagon as the projection of a prism.

Projection cone Let Q = {(i) ER" xRP | Az + By < b} be a polyhe-

dron with A € Q™*", B € Q™*P and b € Q™. To obtain the linear description
of the projection of @ onto the x variables, one may consider the projection
cone C' = {u € R™ | u" B = 0,u > 0}. Indeed, for any u € C, the inequality
u' Az < u'b is valid for proj,(Q). Moreover, the set of such inequalities gives
the description of the projection of @, as stated in the following theorem (a
proof can be found in (Conforti, Cornuéjols, and Zambelli, [2013))).

Theorem 1.6. For a polyhedron @ = {(;) ER®" xRP | Az + By < b}, we

have
proj.(Q) = {x € R" | u' Az < u'b for all extreme rays u € C},

where C = {u € R™ | u'" B = 0,u > 0}.

Fourier’s method To project a polyhedron, one can iteratively use the
Fourier’s method that eliminates a variabld?l This method can be described
as follows.

Let Q = {(’;) 6]R”><R|A+x+y<b+,Am—y<b7A'x<b’} with

At e Qm+X”, A~ € Q™ *™ and A’ € Q™' *™. Note that any rational polyhe-
dron can be put in this form by multiplying each inequality by the appropriate
value such that the coefficient of y is either 1, 0 or -1.

Let A"z < b” be the system given by adding a constraint of Atz +y < bt
with a constraint of A=z —y < b™, that is, A"z < b” corresponds to the set of
constraints:

A;"erAj_xgb;"erj_ forallie {1,....m*},j€{l,...,m },

where for some matrix A, A; denotes the i** row of A.

2This method is also known as the Fourier-Motzkin’s elimination method.



The projection of @ onto the x variables is given by the new inequalities as
well as those of @ not containing y, as stated by the following theorem.

Theorem 1.7 (Fourier, [1826)). The projection of Q onto the = variables equals:

proj.(Q) ={z e R" | Az <V, A"z < V'}.

Union of polytopes Balas (1998) gives a way to obtain a linear description
in a higher dimensional space of the union of a finite number of nonempty
polytopes from their respective linear description. We restate his theorem for
the union of two nonempty polytopes in the following theorem.

Theorem 1.8 (Balas, 1998). Let Py = {x € R" | Ajx < b1} and P, = {z €
R™ | Asx < ba} be two nonempty polytopes. Then, conv(Py U Py) = proj.(Q),
where Q is the following polytope:

T T =1+ T2,
_ T n n n Al'rl S)\bla
Q= . ER"XR" xR" xR Apzs < (1 — A)ba,
A 0<A<1

1.2.2 Total Dual Integrality

A rational system of linear inequalities Ax < b is totally dual integral (TDI) if
the minimization problem in the linear programming duality:

max{c'z | Az <b} =min{y'b|y ' A=c,y >0}

admits an integer optimal solution for each integer vector ¢ such that the maxi-
mum is finite. Edmonds and Giles (1977)) provide a sufficient condition for a TDI
system to describe an integer polyhedron, as stated in the following theorem.

Theorem 1.9 (Edmonds and Giles, |1977). If a rational system Az < b with b
integer is TDI, it describes an integer polyhedron.

Giles and Pulleyblank (1979) prove that every rational polyhedron can be
described by a TDI system. Moreover, every integer polyedron can be described
by a TDI system with an integer right-hand side.

Schrijver system A rational system Az < b is minimally TDI if any proper
subsystem of Az < b which defines the same polyhedron as Ax < b is not TDI.

Theorem 1.10 (Schrijver, [1981). If P is a full dimensional polyhedron, there
exists a unique minimally TDI system Ax < b describing P with A integer.
Moreover, b is integer if and only if P is integer.

When P is a full dimensional polyhedron, the minimally TDI system Az < b
describing P is called the Schrijver system of P.



Total dual integrality and Hilbert bases A set of vectors v', ..., v* of R
forms a Hilbert basis if each integer of cone({v!,...,v¥}) can be expressed as
the integer nonnegative sum of v!, ..., v*, that is:

k
cone({vl,...,v")NZ " ={z €2 |z = Z/\ivi, e zhy.
i=1
Theorem 1.11 (Giles and Pulleyblank, [1979)). The rational system Az <b is

TDI if and only if for each face F of the polyhedron P = {x | Az < b}, the rows
of A associated with the inequalities that are tight for F form a Hilbert basis.

Theorem [1.11| can be restricted to minimal faces. This gives the following
characterization of TDI systems describing polyhedral cones.

Corollary 1.1. A rational system Ax < 0 is TDI if and only if the rows of A
form a Hilbert basis.

1.2.3 Box-Total Dual Integrality

A stronger property than total dual integrality is box-total dual integrality,
where a system Az < b is boz-total dual integral (boz-TDI) if

Ar <b, L<z<u

is TDI for all rational vectors £ and w (with possible infinite components). On
the contrary to TDIness, all polyhedra cannot be described by box-TDI sys-
tems. Moreover, the box-TDIness is a property relative to polyhedra, and not
to systems since Cook ((1986) proves the following theorem.

Theorem 1.12 (Cook, |1986). If a system is box-TDI, then all TDI systems
describing the same polyhedron are box-TDI.

A polyhedron that can de described by a box-TDI system is called a box-TDI
polyhedron.

Chervet, Grappe, and Robert (2021) show that the box-TDIness of a cone
is preserved by polarity, as stated in the following theorem.

Theorem 1.13 (Chervet, Grappe, and Robert, 2021). A polyhedral cone is
boz-TDI if and only if its polar cone is.

There is a close relation between the box-TDIness of a polyhedron and
the box-TDIness of its tangent cones. This result has been formally stated
in (Chervet, Grappe, and Robert, [2021)) as follows.

Theorem 1.14. A polyhedron is box-TDI if and only if all its minimal tangent
cones are.

The dominant of a polyhedron P is the polyhedron given by {x | 3z €
P with z < z}. The box-TDIness of a polyhedron is transmitted to its domi-
nant, as stated in the following theorem.

Theorem 1.15. The dominant of a box-TDI polyhedron is box-TDI.



Matricial characterization of box-TDIness Chervet, Grappe, and Robert
(2021)) propose a characterization of the box-TDIness of a polyhedron from a
matricial point of view. We first introduce some definitions before stating their
results.

Let P C R™ be a polyhedron and F' be a face of P. A full row rank matrix
A € R™*™ is face-defining for F if aff (F') = {x € R™ : Ax = b} for some b € R™.
A sufficient condition for a matrix to be face-defining is the following.

Observation 1.4. Let M € Q™™™ be a full row rank matrixz. Let P be a
polyhedron of R™ and F be a face of P. If F = {x € P | Mx = d} for some d
and dim(F) = dim({x € R" | Mz = d}), then M is face-defining for F.

A matrix A € R™*" is equimodular if it is full row rank and all its m x m non-
zero determinants have the same absolute value. A matrix is totally equimodular
if every set of linear independent rows of A forms an equimodular matrix.

Theorem 1.16 (Chervet, Grappe, and Robert, 2021)). Let P be a polyhedron.
The following statements are equivalent:

(i) P is box-TDI.

(ii) Every face-defining matriz of every non-empty face of P which is not full-
dimensional is equimodular.

(#ii) Every non-empty face of P which is not full-dimensional has an equimod-
ular face-defining matriz.

As a consequence of Theorem totally equimodular matrices describe
box-TDI polyhedra, as stated by the following corollary. Note that this result
is already proved in (Chervet, Grappe, and Robert, [2021) but their proof does
not rely on Theorem [1.16| on the contrary to ours.

Corollary 1.2 (Chervet, Grappe, and Robert, [2021). A rational matriz A €
Q™*™ s totally equimodular if and only if the polyhedron {x: Az < b} is box-
TDI for all b € Q™.

Proof. (=) Suppose that A is totally equimodular. Let P = {z | Az < b} for
some b, and F' be any non-empty face of P which is not full dimensional. F

admits a face-defining matrix B which is submatrix of A. By definition of total
equimodularity, B is equimodular. Hence, by Theorem P is box-TDI.

(<) Suppose that A is not totally equimodular. Hence, A = (jﬁ) with
A= € Q%" being a non-equimodular full row rank matrix, and AS € Q"' *™.
Let x',... 2" %! be affinely independent points of {x € R" : A=z = 1}. Let
b< € Q" be such that biS > {maxa;z7 | j € {1,...,n—r+1}}, where a; denotes

the it" row of AS. Set b = <1§) Clearly, zt,..., 2" "™ e F = {x | A=z =

b
1, Az < b=} so, by Observation A~ is a face defining matrix of the face
F of P ={z| Az <b}. By Theorem P is not box-TDI. O
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Note that Corollary is the polyhedral counterpart of a well-known result
establishing the box-TDIness of a system with respect to the total unimodularity

of a matrix, as stated in the following theorem. Recall that a matrix is totally
unimodular if all its subdeterminants are equal to 0, -1 or 1.

Theorem 1.17 (Schrijver, [1986). A matriz A of Z™*" is totally unimodular if
and only if the system Ax < b is box-TDI for all b € Q™.

11



Chapter 2

Linear Description of the
Convex Hull of the
Solutions to Mixed-Integer
Linear Problems

This chapter presents some of my works related to the characterization of the
convex hull of the solutions to some combinatorial optimization problems.

For a mixed-integer linear problem, having a linear description of the con-
vex hull of its solutions permits to cast this problem as a (continuous) linear
one: optimizing the objective function subject to the inequalities describing the
convex hull. Even a partial description of the convex hull may be helpful to
solve the problem. For instance, the efficiency of the concorde solver (Apple-
gate et al., 2006]) is mainly due to the partial description of the convex hull of
the incidence vectors of the Hamiltonian circuits of a graph.

Obtaining a description of the convex hull of the solutions to an integer
linear problem is usually challenging, even for problems that can be solved in
polynomial time. A way to do it is to add variables since in higher dimension,
the convex hull may be easier to describe. In this case, one obtains an extended
formulation of the convex hull which can be projected to obtain a linear descrip-
tion in the original space. This is what has been done to obtain the description
of the circuit polytope, that is the convex hull of the incidence vectors of all
the circuits of a graph, for series-parallel graphs (Borne et al., |2015). The de-
scription of the convex hull of the vectors that are lexicographically between
two given vectors has also been obtained using extended formulations (Barbato,
Grappe, Lacroix, and Pira, 2018)).

It is also possible to characterize a convex hull by providing a set of valid
inequalities forming a polyhedron whose integer points are the solutions to the
integer linear problem, and by proving that this polyhedron is integer. This is
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the approach we use to characterize the st-bond polytope when the graph is
2-connected and outerplanar (Grappe and Lacroix, |2018]), where the st-bond
polytope is the convex hull of the incidence vectors of minimally inclusionwise
cuts separating two given nodes s and t.

In Section [2.1] we provide a linear description of the circuit polytope and the
bond polytope when the graph is series-parallel. These descriptions come from
a joint work with S. Borne, P. Fouilhoux, R. Grappe and P. Pesneau (Borne
et al., |2015)). We also give the linear description of the st-bond polytope for
the same class of graphs. This result stems from a joint work with R. Grappe
(Grappe and Lacroix, 2018). In Section we provide a linear description
of the lexicographical polytope, issued from a joint work with M. Barbato, R.
Grappe and C. Pira (Barbato, Grappe, Lacroix, and Pira, [2018)).

2.1 The Circuit and Bond Polytopes of a Series-
Parallel Graph

In (Borne et al., [2015), we give the description of the bond polytope, that is,
the convex hull of the incidence vectors of bonds, for series-parallel graphs.

A bond being a cut, the bond polytope is contained in the cut polytope, that
is, the convex hull of the incidence vectors of cuts. In series-parallel graphs, and
more generally in graphs with no K5-minor, the cut polytope is the set of points
satisfying the following inequalities (Barahona and Mahjoub, [1986):

for all circuits C,
for all F C C with |F| odd,

x> 0. (2.2)

2(F) —2(C\ F) < |F| -1 (2.1)

By Theorem [I.4] for series-parallel graphs, a bond intersects zero or twice
each circuit. Hence, we have the following valid inequalities for the bond poly-
tope:

x2(C) <2 for all circuits C. (2.3)

Inequalities (2.3) imply that each inequality associated with an edge

subset F' containing more than one edge is redundant. Hence, only the following

subset of inequalities ([2.1)) has to be considered for describing the bond polytope
in series-parallel graphs:

ze <x(C\e) forall circuits C, for all e € C. (2.4)

However, inequalities (2.2), (2.3) and (2.4) are not sufficient to describe
the bond polytope in series-parallel graphs. Indeed, Figure shows a graph

for which the polytope defined by (2.2), (2.3) and (2.4) has %XE\{”“’?} as a
non-integer vertex. This point satisfies all the inequalities, and it is the unique

solution to the system defined by the following tight constraints: (2.2]) associated
with the edge v1vs, (2.3) associated with each circuit not containing vyvs, and
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(2.4) associated with each circuit containing viv, and each edge of the circuit
different from vqvs.

Figure 2.1: A fractional vertex of {zx € R® : x satisfies (2.2)), (2.3) and ([2.4)}: it
has value 0 for the gray edge, and a value % for each dotted edge.

In (Borne et al., 2015)), we define a new family of valid inequalities based
on ear decompositions. This family contains the circuit inequalities . They
are sufficient to describe, together with and the bond polytope in
series-parallel graphs.

Our proof relies on extended formulations. Indeed, by definition, a 2-
connected series-parallel graph is obtained from C5 by a series of parallelizations
and subdivisions. One can describe in a straightforward way the set of bonds
of G from those of H, when G is obtained from H by either adding a parallel
edge or by subdividing an edge. Using the theorem of Balas on the union of
polyhedra, we obtain the description of the bond polytope of G from the one
of the bond polytope of H. By repeatedly applying this, we obtain a compact
extended formulation for the bond polytope in series-parallel graphs. We then
project the extended formulation at each step using Fourier’s method and show
that it always gives inequalities of type or (2.4), or the new family defined
on ear decompositions.

The bond polytope has been recently described for 3-connected graphs with
no (K5 \ e)-minor in (Chimani, Juhnke-Kubitzke, and Nover, 2023). For such
graphs, inequalities are not all valid since a bond may intersect some cir-
cuits more than twice. The authors characterize the subset of these inequalities
that remain valid, and show that together with and , it describes the
bond polytope. This work does not intersect ours since series-parallel graphs
are not 3-connected.

By Observation given a planar embedding of a series-parallel graph G,
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the bonds are in bijection with the circuits of the dual graph G*. The dual
graph of a series-parallel graph being series-parallel by Observation [1.1] we get
the description of the circuit polytope, that is, the convex hull of the incidence
vectors of circuits, for series-parallel graphs.

In (Grappe and Lacroix, 2018), we consider the st-bond polytope, that is,
the convex hull of the set of bonds separating two given nodes s and t. We
give its linear description for series-parallel graphs. For this, we start by show-
ing that every nontrivial simple 2-connected series-parallel graph has at least
two nodes of degree two. Moreover, when it has exactly two such nodes, it
is outerplanar. We then describe the st-bond polytope in 2-connected outer-
planar graphs and use this graph characterization to extend the description to
series-parallel graphs.

Generally, the intersection of integer polyhedra is not integer. However,
we show that the st-bond polytope in series-parallel graphs is nothing the but
intersection of the bond polytope and the dominant of the cut polytope.

2.2 Lexicographical Polytopes

In (Barbato, Grappe, Lacroix, and Pira, [2018)), we consider the lexicographical
polytope. This latter was described in (Gupte, 2016|) but we provide another
shorter proof of this result using extended formulations.

Given two points x and y of Z", x is lexicographically less than or equal to
y, denoted by = < y, if z = y or the first coordinate of z — y is negative. Given
liu € Z™, the lexicographical polytope PZ'“:S is the convex hull of the integer
points within [¢, u] that are lexicographicaily between r and s, that is,

PZjS:conv{xEZ”%gxgu,r<gp<s}.

For simplicity, we write P, js as Pfj (resp. P, j) when 7 = £ (resp. s = u).

Figure depicts the two dimensional lexicographical polytope P, js where

= ()= ()= ()= ()

In our proof, we first consider the set X fj of componentwise maximal integer
points of Pius, that is the set of points p' = (s51,...,8;-1,8 — L, Uit1,...,Upn),
for i = 1,...,n+ 1 such that s; > ¢; (p"*! = s by deﬁnition)lﬂ We represent
this set X fj as the set of st-paths of a given acyclic digraph. This gives an
extended formulation of the convex hull of X;j. We project it to obtain a
linear description of conv(X fj ) in the natural space. We then prove that Pfus

is equal to the submissive of conv(ij) intersected with {x € R" : x > ¢}.

1,.n : . . . <s
p™ is not a componentwise maximal point of P[,u

but it is still added to X for simpli-
fication of the proof.
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Figure 2.2: Yellow points are lexicographically less than or equal to s whereas
red ones are lexicographically greater than or equal to /. Pfj and PZ f are the

yellow and red polytopes and their intersection P, fs is in orange.

By symmetry, we obtain the description of Péf. We get the description of

P, S by proving that it is the intersection of Pfi and PZj.

16



Chapter 3

Polyhedra and Box-Total
Dual Integrality

This chapter presents my research works related to the box-TDIness of poly-
hedra and systems. Box-TDIness is a strong integrality property which is usu-
ally behind min/max relations such as the well-known max-flow/min-cut the-
orem (Ford and Fulkerson, [1956)). Finding box-TDI systems and polyhedra is
a tough task, and a research area consists in exhibiting such polyhedra and
systems.

In Section 3.1} we study the complexity of some problems related to box-TDI
polyhedra. We prove that optimizing a linear function over the integer points
of a box-TDI polyhedra is NP-hard. We also show that determining whether
a linear system describes a box-TDI polyhedra is a co-NP-complete problem.
This answers Question (90) in (Schrijver, [1986) that was open for almost forty
years. These results come from our characterization of the total equimodularity
of the incidence matrix of a graph. These results are published in a joint work
with P. Chervet, R. Grappe, F. Pisanu and R. Wolfler Calvo (Chervet, Grappe,
Lacroix, et al., 2023]). Section is devoted to the study of box-TDIness of
systems and polyhedra related to combinatorial objects defined on graphs. We
characterize the box-TDIness of these systems and polyhedra with respect to
series-parallel graphs. In Section [3.2.1] we show that the systems describing the
cycle cone, the T-join polytope and its dominant are box-TDI if and only if the
graph is series-parallel. These systems were known to be TDI (Schrijver, [2003)
but we extend these results by proving that they are box-TDI whenever they
are TDI. These results come from a joint work with D. Cornaz and R. Grappe
(Cornaz, Grappe, and Lacroix, [2019). In Section in a joint work with
M. Barbato, R. Grappe, E. Lancini and R. Wolfler Calvo (Barbato, Grappe,
Lacroix, Lancini, and Wolfler Calvo, 2022)) we provide the Schrijver system of
the flow cone when the graph is series-parallel. In Section we study the
k-edge connected spanning subgraph polyhedron. We prove that it is box-TDI if
and only if the graph is series-parallel. Moreover, we provide a box-TDI system
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describing it for such graphs. These results stem from a joint work with M.
Barbato, R. Grappe, and E. Lancini (Barbato, Grappe, Lacroix, and Lancini,
2023)).

3.1 Hard Problems on Box-Totally Dual Inte-
gral Polyhedra

In (Chervet, Grappe, Lacroix, et al., 2023)), we characterize when the incidence
matrix of a graph is totally equimodular. We use this characterization to prove
the NP-hardness of two problems related with box-TDI polyhedra.

Given a graph G = (V, E), let Ag denote the edge-vertex incidence matriz,
that is, the matrix whose rows are the characteristic vectors of the edges of G,
where the characteristic vector of an edge e = uv is the vector x¢ € {0,1}V
with x5, = 1 if w € {u,v} and x&, = 0 otherwise. The vertex-edge incidence
matriz is the transpose of Ag.

Hoffman and Kruskal characterize when the vertex-edge matrix incidence is
totally unimodular, as stated in the following theorem.

Theorem 3.1 (Hoffman and Kruskal, [2010). The vertex-edge incidence matriz
of a graph is totally unimodular if and only if the graph is bipartite.

Since, by definition, the transpose of a totally unimodular matrix is also
totally unimodular, and a totally unimodular matrix is totally equimodular, it
follows that when G is bipartite, Ag is totally equimodular. On the contrary
to total unimodularity, we prove that Ag remains totally equimodular when G
is not bipartite.

Theorem 3.2. The edge-vertex incidence matrix of a graph is totally equimod-
ular.

Given an undirected graph, a stable set is a set of pairwise nonadjacent
nodes. The stable set polytope of a graph is the convex hull of the incidence
vectors of its stable sets. The polytope {x € RV | Agz < 1,z > 0} is called the
edge relaxation of the stable set polytope of G and its integer points are precisely
the incidence vectors of the stable sets of G. Since the intersection of a box-
TDI polyhedron with RK is box-TDI, Theorem and Theorem imply that
the edge relaxation of the stable set polytope is a box-TDI polyhedron. Since
the stable problem is NP-hard (Karp, [1972), we get the following NP-hardness
result.

Corollary 3.1. Given a box-TDI polyhedron P and a cost vector c, finding an
integer point x maximizing ¢’ x over P is NP-hard.

By Theorem (3.1} Ag is totally equimodular for bipartite graphs. If G is an
odd hole, then A is also the edge-vertex incidence matrix of an odd hole, and
hence it is totally equimodular by Theorem We prove that these are the
only cases when A/, is totally equimodular.
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Theorem 3.3. The vertex-edge incidence matriz of a connected graph G =
(V, E) is totally equimodular if and only if G is an odd hole or a bipartite graph.

The problem of deciding whether a system Az < b with A integer is TDI is
in co-NP (Schrijver, |1986). Ding, Feng, and Zang (2008) show that this problem
is actually co-NP complete.

For this, the authors define the class of quasi-bipartite graphs, where a graph
is quasi-bipartite if for each odd circuit C of G, the graph G\ V(C) has at least
one isolated node. They prove that determining whether a graph is quasi-
bipartite is a NP-complete problem. They also prove the following equivalence.

Theorem 3.4 (Ding, Feng, and Zang, 2008). Given a connected graph G, the
system Agx > 1,2 > 0 s box-TDI if and only if G is a quasi-bipartite graph
different from Ky.

Given a graph G = (V, E), an edge cover is a set of edges covering each node.
The polyhedron {z € RF : ALz > 1,2 > 0} is called the edge relaxation of the
edge cover dominant of G and its binary points are precisely the characteristic
vectors of the edge covers of G.

When G is an odd hole, the edge relaxation of the edge cover dominant is
box-TDI by Theorems [3.3] and since when a polyhedron is box-TDI, so is its
intersection with Rf . We prove that this is the only case where this polyhedron
is box-TDI but the system A(T;x > 1,z > 0is not TDI, as stated in the following
theorem.

Theorem 3.5. The edge relazation of the edge cover dominant of a connected
graph G is box-TDI if and only if G is an odd hole or a quasi-bipartite graph
different from Ky.

The proof of Theorem mainly consists in proving that when there ex-
ists an odd circuit C such that G \ V(C) has no isolated node, the matrix M
corresponding to A/, restricted to the rows associated with nodes of V(C) is
a face defining matrix of the edge relaxation of the edge cover which is not
equimodular.

Cook (1986) shows that, given a rational system, the problem of determining
whether it describes a box-TDI polyhedron is in co-NP. As a corollary of Theo-
rem since recognizing whether a graph is quasi-bipartite is an NP-complete
problem (Ding, Feng, and Zang, [2008), we have the following result.

Corollary 3.2. Determining whether a rational system describes a box-TDI
polyhedron is a co-NP-complete problem.

3.2 Series-Parallel Graphs and Box-TDIness

This section presents several works related to the study of the box-TDIness
of some polyhedra and systems in series-parallel graphs. These works lead to
several characterizations of series-parallel graphs.
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3.2.1 Characterization of Series-Parallel Graphs in terms
of Box-TDI Systems

Series-parallel graphs are known be the class of graphs for which a certain num-
ber of linear systems are TDI. In (Cornaz, Grappe, and Lacroix, 2019), we
strengthen this result by showing that series-parallel graphs are the class of
graphs for which these systems are box-TDI. We start this section by present-
ing the different systems.

Seymour (1979) proves that the cycle cone of G, that is, the set of non-
negative combinations of cycles of G, is described by the following set of in-
equalities.

z(0(U)\{e}) —z. >0 for each U C V and each e € §(U),
x > 0.

(Cycle cone) {

For a graph G = (V, E) and an even subset 7' C V, a T'-join is a set of edges
inducing a graph in which the set of nodes of odd degree is T'. Note that a (-join
is a cycle. The T'-join polytope of G is the convex hull of its T-joins. Seymour
(1981)) proves that it is described by the following set of inequalities.

foreach U CV, F C4(U)

2(F) =2\ < IFI=1 Gon [0 A T) + [P odd,

0<z<1.

(T-join)

The T-join dominant of G is described by the following set of inequalities, see
Corollary 29.2b in (Schrijver, [2003)), where a T-cut is a cut §(U) with |T N U]

odd.
z(C)>1 for each T-cut C,

(T-join dominant) { +>0.

Schrijver (2003)) shows that Systems (Cycle cone), (T-join) and (T-join dom-
inant) are TDI if and only if the graph is series-parallel, see Corollary 29.9c.

Theorem 3.6 (Schrijver,|2003)). For any graph G = (V, E), the following state-
ments are equivalent:

(i) G is series-parallel,

(i) System (T-join dominant) is TDI for each choice of T,
(#ii) System (T-join) is TDI for each choice of T,

(iv) System (T-join) is TDI for some choice of T,

(v) System (Cycle cone) is TDI.

In (Cornaz, Grappe, and Lacroix, |[2019)), we strengthen this result by showing
that the aforementioned systems are actually box-TDI in series-parallel graphs.
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Theorem 3.7. For any graph G = (V, E), the following statements are equiv-
alent:

(i) G is series-parallel,

(i) System (T-join dominant) is box-TDI for each choice of T,
(#ii) System (T-join) is box-TDI for each choice of T,

(iv) System (T-join) is box-TDI for some choice of T,

(v) System (Cycle cone) is box-TDI.

By Theorem [3.7] it follows that for series-parallel graphs the T-join polytope,
its dominant and the cycle cone are box-TDI polyhedra. However, it does not
answer whether these polyhedra remain box-TDI whenever the graph is not
series-parallel, as these systems are no more TDI in this case by Theorem [3.6]

Chervet, Grappe, and Robert (2021)) almost answer this question by proving
that the cycle cone is not box-TDI whenever the graph is not series-parallel.
Schrijver (2003)) shows that the minimal tangent cones of the T-join polytope
are nothing but the cycle cone up to translations and axial rotations. Since these
operations preserve box-TDIness, by Theorem [I.14] the T-join polytope is not
box-TDI for each T" whenever the graph is not series-parallel. We complement
the answer by showing that when G is not series-parallel, the T-join dominant is
not box-TDI for all T C V. This proof is similar to the ones given in (Chervet,
Grappe, and Robert, 2021) and (Barbato, Grappe, Lacroix, and Lancini, [2023])
for proving the non box-TDlIness of the flow cone and the k-edge-connected
subgraph polyhedron for k > 2.

Proposition 3.1. For a non series-parallel graph G = (V,E), there exists
T CV with T even such that the T-join dominant is not box-TDI.

Proof. Since G is not series-parallel, there exist node sets Vi,...,Vy such that
G[V;] is connected for ¢ € {1,...,4}, and V; NV, = 0 and 6(V;) N §(V;) # 0 for
i#je{l,...,4}. Let v; € V; for i = {1,...,4} and set T = {v1,...,vsa}. Let
e1,...,es be edges belonging to distinct 6(V;) N§(V;) # 0 for i # j € {1,...,4}
as given in Figure (we suppose that e, € Fy for k =1,...,6). We show that
the T-join dominant is not box-TDI by exhibiting a non equimodular matrix
face-defining matrix, see Theorem [1.16

Consider the matrix M € {0, 1}3*!Zl whose rows are the transpose of x
for i = 1,2,3. M is full row rank by construction. Note that §(V;) is a T-
cut for ¢ = 1,2,3, and let F' be the face of the T-join dominant given by
setting to equality the constraints x(6(V;)) > 1 for ¢ = 1,2,3. We now exhibit
|E| — 2 affinely independent points of F. Let B = E \ U}_;3(V;). The points
po= XBU{€1,€5}7 py = XBU{€2,€5}’ p3 = XBU{€3,64} and XBU{€4,€5,€5} belong to
F and are affinely independent. For each e € E}, \ e, consider the point given
by p — x°* + x°® where p is the point among p;, po and ps having a one in
the coordinate associated with ex. Finally, for each e € B, consider the point

(Vi)
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p1 + x©. All these points are affinely independent and belong to F'. Hence, by
Observation M is face defining for F.
The matrix M restricted to columns associated with ey, ..., eg has the fol-
lowing form:
€1 €2 €3 €4 €5 €
¥V 1110 1 0 0
¥V 11 0 1 0 1 0
¥ o 11 0 0 1
The first three columns form a matrix with a determinant equal to two whereas
the last three ones form a matrix whose determinant is one. Hence, M is not
equimodular, which ends the proof. O

Figure 3.1: Fjy,..., Fg are non-empty edge sets. Each edge ex € Ej for k =
1,...,6 is represented with a solid line.

3.2.2 The Schrijver System of the Flow Cone in Series-
Parallel Graphs

The cut cone of a graph, that is, the conic hull of the incidence vectors of its
cuts, is box-TDI if and only if the graph is series-parallel (Chervet, Grappe, and
Robert, |2021)). The polar cone of its opposite is the flow cone. Since polarity
preserves box-TDIness, the flow cone is box-TDI if and only if the graph is
series-parallel. For such graphs, we provide the Schrijver system of the flow
cone.

Given a graph G = (V, E), a flow of G is a couple (C,e) with C a circuit
of G and e an edge of C. In a flow (C,e), the edge e represents a demand and
C'\ e represents the path satisfying this demand. The incidence vector of a flow
(C,e) is the 0/ + 1 vector x“\¢ — x°. The flow cone of G is the cone generated
by the flows of G' and the unit vectors x® of R¥. Seymour (1981) shows that
the flow cone is the polar of the opposite cone of the cut cone if and only if G
has no Ks-minor. As a consequence, we have the following:

Corollary 3.3. The flow cone of a graph G is
{x € R¥ | (D) >0 for all cuts D of G}
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if and only if G has no Ks-minor.

Chervet, Grappe, and Robert (2021)) show that the flow cone associated with
a graph G is box-TDI if and only if G is series-parallel. Since this cone is full
dimensional as it contains 0 and x° for all e € E, by Theorem the flow
cone can be described by a box-TDI Schrijver system when G is series-parallel.
We exhibit such a system in this case.

Note that the system:

xz(D) >0 for all cuts D of G,

which describes the flow cone for series-parallel graphs is not a Schrijver system
since it is not TDI for this class of graph. Indeed, if G = K3, for an objective
function equal to —1, the (linear programming) dual is:

min 0
yit+y2=1,
Y1 +ys =1,
Y2 +ys =1,
y =0,

and its unique solution is y = % However, Chervet, Grappe, and Robert (2021)
prove that dividing each inequality by two yields a box-TDI system describing
the flow cone when G is series-parallel:

1
ix(B) >0 for all bonds B of G.

The incidence vector of a multicut M = §(V1,..., Vi) being the half sum of
the incidence vectors of the cuts 6(V;) for i = 1,...,k, it follows that the flow
cone is described by:

x(M) >0 for all multicuts M of G. (3.1

In (Barbato, Grappe, Lacroix, Lancini, and Wolfler Calvo, [2022), we prove
that the incidence vectors of multicuts form a Hilbert Basis if and only if G is
series-parallel. By Corollary this implies that inequalities defines a
TDI system if and only if G is series-parallel.

A multicut M C E is chordal if contracting the edges of £\ M yields a
2-connected chordal graph. In (Barbato, Grappe, Lacroix, Lancini, and Wolfler
Calvo, [2022)), we prove that in series-parallel graphs, a multicut is the union
of multicuts if and only if it is not chordal. As a consequence, it is sufficient
to only consider the inequalities associated with chordal multicuts in the TDI
system describing the flow cone, as stated as follows.

Corollary 3.4 (Barbato, Grappe, Lacroix, Lancini, and Wolfler Calvo, [2022]).
The Schrijver system for the flow cone of a series-parallel graph G is the fol-
lowing:

x(M) >0 for all chordal multicuts M of G. (3.2)

Moreover, this system is box-TDI.
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3.2.3 Edge Connectivity

In (Barbato, Grappe, Lacroix, and Lancini, [2023)), we provide a new charac-
terization of series-parallel graphs related to the box-TDIness of the k-edge-
connected spanning subgraph polyhedron. We also provide two integer box-TDI
systems describing this polyhedron in series-parallel graphs, depending on the
parity of k.

A k-edge-connected spanning subgraph of a graph G = (V, E) is a graph
H = (V, F), with F a multiset of elements of F, that remains connected after the
removal of any k£ — 1 edges. The k-edge-connected spanning subgraph polyhedron
of G, hereafter denoted by P (G), is the convex hull of all the k-edge-connected
spanning subgraphs of G.

Note that the 1-edge-connected spanning subgraph polyhedron is the dom-
inant of the spanning tree polytope. This latter being box-TDI, P;(G) is box-
TDI by Theorem [I.15] (see (Lancini, 2019) for such a proof).

Didi Biha and Mahjoub (1996)) give a description of the k-edge-connected
spanning subgraph polyhedron in series-parallel graphs for all k.

Theorem 3.8 (Didi Biha and Mahjoub, [1996)). Let G be a series-parallel graph
and h be a positive integer. Then Py, (G) is described by:

x(D) > 2h  for all cuts D of G, (3.3a)

33
B3 {:c >0, (3.3b)

and Pop11(G) is described by:

(M) > (h+1)dy — 1 for all multicuts M of G, (3.4a)

B4 {a: > 0. (3.4b)

Chen, Ding, and Zang (2009)) prove that dividing by two the cut inequalities
(3-3al) in System (3.3]) gives a system for P5(G) that is box-TDI if and only if
G is series-parallel.

Theorem 3.9 (Chen, Ding, and Zang, [2009). The system

B3 %x(D) >1 forall cuts D of G, (3.5a)
>0, (3.5b)

s boz-TDI if and only if G is series-parallel.

Theorem implies that P5(G) is a box-TDI polyhedron when G is series-
parallel. For even k& > 4, by Theorem Py (G) is obtained by multiplying the
right-hand side of each inequality of System by g Since this operation
preserves box-TDIness, it follows that Py (G) is a box-TDI polyhedron when G
is series-parallel and k is even. We extend this result by proving the following.
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Theorem 3.10. For k > 2, P,(G) is box-TDI if and only if G is series-parallel.

The proof of Theorem relies on the matricial characterization of box-
TDI polyhedra. We first exhibit a non equimodular face defining matrix when
G has a K4-minor. This implies that P(G) is not box-TDI whenever G is not
series-parallel by Theorems and

To prove that P, (G) is box-TDI in series-parallel graphs for k odd, we show
that the polyhedron remains box-TDI when adding a parallel edge or when
subdividing an edge in G. We also show that the 1-sum of two graphs preserves
the box-TDIness of the k-edge connected spanning subgraph polyhedron, where
the I-sum of two graphs G and H is the graph obtained by identifying a node
of G with a node of H. More precisely, we prove that if Py(G) and Py(H)
are box-TDI for two graphs G and H, the k-edge connected spanning subgraph
polyhedron of any graph corresponding to the 1-sum of G and H is also box-
TDI. By definition of series-parallel graphs, since P (K3) is box-TDI, the result
follows.

We also provide integer TDI systems describing Py (G), depending on the
parity of k, see Theorems and

Theorem 3.11. For a positive integer h, the system

x(M) > hdpr  for all multicuts M of G, (3.6a)

3.6
B9 {x >0, (3.6b)

is box-TDI if and only if G is series-parallel.

The proof of Theorem [3.11] is as follows. By Theorem [3.10] it is sufficient
to prove that System is TDI when G is series-parallel. For this, we prove
that {x™ | M is a multicut of G} U {x° | e € E} form a Hilbert basis which
gives the desired result by Theorem [1.11] The proof is done by induction on
the number of edges. More precisely, we show that the incidence vectors of the
multicuts and edges of a graph G form a Hilbert basis if G is obtained from H
by adding a parallel edge or by subdividing one, and if the incidence vectors
of the multicuts and edges of H form a Hilbert basis. Similarly, we show that
when G is the 1-sum of H; and Hs, the incidence vectors of the multicuts and
edges of GG form a Hilbert basis if those of H; and Hs do.

Theorem 3.12. For a positive integer h, System (3.4)) is box-TDI if and only
if G is series-parallel.

Surprisingly, though series-parallel graphs are usually easy to handle, the
proof of Theorem [3.12]came out to be very technical. It is based on the following
new structural property of series-parallel graphs.

Proposition 3.2. For a simple nontrivial 2-connected series-parallel graph, at
least one of the following holds:

(a) two nodes of degree 2 are adjacent,
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(b) a node of degree 2 belongs to a circuit of length 3,
(c) two nodes of degree 2 belong to a same circuit of length 4.

We prove Theorem by considering a minimal counter example, that is,
a series-parallel graph, and a vector ¢ € Z¥ such that:

1. the dual of min{c"x | = satisfies (3.4))} is finite but has no integer optimal
solution,

2. G has a minimum number of edges,
3. Y ecp CE is minimum with respect to 2.

We then prove that no condition of Proposition holds in G, implying that
G is not series-parallel. By Theorem this proves Theorem [3.12]
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Part 11

Mixed-Integer Linear
Programming and Machine
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Chapter 4

Preliminaries

This chapter is devoted to the presentation of basic notions and definitions that
are used in the subsequent chapters. The first section is devoted to Lagrangian
relaxation whereas the second one focuses on machine learning.

4.1 Preliminaries on Lagrangian Relaxation

Lagrangian relaxation is a widely used method to obtain dual bounds. We focus
here on Lagrangian relaxation for Mixed-Integer Linear Problems (MILP), even
if it can applied more generally to convex optimization problems. For more
details to Lagrangian relaxation, the interested reader may refer to (Lemaréchal,
2001)).

4.1.1 Lagrangian Relaxed Problem and Lagrangian Dual
Problem

Consider the following mixed-integer linear problem:

maxc'z (4.1a)
(P)q Az <b (4.1b)
z €S, (4.1¢c)

where A € Q™*", b € Q™, and S = {z € Z" x RP | Cz < d} is nonempty.
Solving (P) is NP-hard in general (Karp,|1972), and providing dual bounds (i.e.,
upper bounds) helps to prune the solution space. Suppose that removing
yields a tractable problem. In this case, one can apply Lagrangian relaxation to
obtain an upper bound. This method consists in removing inequalities
but penalizing their violation. The trade-off between optimizing the original
objective function and maximizing the satisfaction of the dualized constraints
is done using Lagrangian multipliers which indicate the importance of each
dualized constraint with respect to the objective function.
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More formally, for 7 € R, the Lagrangian Relaxed problem of (P) is:

(LR(r)) {;n:x;Tx + 7' (b— Az) éjjz;

Since every solution to (P) satisfies Az < b and 7 is nonnegative, its cost
in (LR(m)) is greater than or equal to its cost in (P). Moreover, the solution
set of (P) is contained in the one of (LR(7)) so the latter is a relaxation of the
former, that is, (LR(7)) > (P) for all # € R?. The best Lagrangian dual bound
is given by solving the Lagrangian Dual problem (LD):

(LD) min LR(m). (4.3)

meRT

The quality of the bound (LD) depends on the constraints that are dualized.
There is a trade-off between the quality of this dual bound and the complexity to
solve (LD) which depends on the tractability of the Lagrangian relaxed problem.
The following theorem, stemming from linear duality, gives a clue on the quality
of the bound.

Theorem 4.1 (Geoffrion, 1974). If the linear problem:

maxc'z (4.4a)
Az <b (4.4b)
x € conv(S) (4.4c)

is feasible, then its optimum is equal to the optimum of (LD).

From Theorem it follows that (LD) gives a bound that is as tight as
the one given by the continuous relaxation. A necessary condition to obtain a
better bound than the continuous relaxation is to dualize constraints such that
S is not an integer polyhedron.

4.1.2 Solving the Lagrangian Dual Problem

The cost of each solution Z € S of (LR()) is a linear function of the Lagrangian
multiplier 7. Then, the dual function LR : R’ — R is a convex piecewise linear
function function defined by = — LR(w). It is continuous and convex, but
not differentiable on R’ in general. Figure gives an example of such a
function where m € R corresponds to the case where only one constraint has
been dualized.

There exist different algorithms to solve the Lagrangian dual problem. We
briefly present the algorithms used in the subsequent works. For more details on
these methods, one could refer for instance to (Lemaréchal, 2001)) or (Bertsekas,
2016, Chapter 7).

IThis figure and the subsequent ones in this preliminary chapter are to be credited to
Francesca Demelas.
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LR(m)

" ™

Figure 4.1: Example of a dual function drawn in green and obtained by dualizing
only one inequality, that is, # € Ry. Each line corresponds to the cost of a
solution to & with respect to the Lagrangian multiplier 7. The value 7* is
the one minimizing LR(w); the ordinate of the orange point corresponds to the
optimum of (LD).

Subgradient based methods

To find its minimum, that is, to solve (LD), one may apply a subgradient
method.

A vector ¢ € R™ is a subgradient of a function f : X C R™ — R at
point zg € X if
f(x)> f(zo) +g" (x —x0) VzeX. (4.5)
For each 7 € R, solving the Lagrangian relaxed problem LR(7) gives an
optimal solution 2™ and a subgradient of LR at point ™ equal to b — Ax™.
Starting from an initial point 7°, one may iteratively converge to the mini-
mum of (LD) with the series:

+
S R _ak(b_Axﬂ—k)} ’

where 7¥ is the Lagrangian multiplier at iteration k, 2™ an optimal solution to
LR(7%), aF > 0is the step-size, and [z]" = max{0, 2}. Poljak (1987, Chapter 5)
shows that convergence holds when the stepsize satisfies the following conditions:

o0
k : k _ k _
o > O,klgrolcoz =0, Za = +o0. (4.6)
k=1
However, stepsizes satisfying those conditions may lead to slow convergence in
practice. An active research area consists in finding stepsizes and in adapting
the subgradient method to accelerate its convergence (Bragin, [2024)).
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LR(m)

ok+1 ok T

Figure 4.2: Example of an iteration of the subgradient method. The dual func-
tion LR is the one of Figure The point in black corresponds to LR(m%).
The line in blue is (¢*) T (7 — 7%) + LR(7*), where g* is the subgradient at point

7%. The update of the point 7% with respect to subgradient ¢g* gives the point
k1
™ .

Figure gives an example of an iteration of the subgradient method.

Handling an exponential number of dualized constraints Subgradient
methods may be used to solve a Lagrangian relaxation with an exponential num-
ber of dualized constraints. In this case, only a small subset of these constraints
is considered at the beginning. Then, each time the Lagrangian relaxed prob-
lem is solved, a separation phase is performed to detect inequalities violated
by the optimal solution to the current Lagrangian relaxed problem, similarly
to what is done in cutting-plane algorithms (Dantzig, Fulkerson, and Johnson,
1954; Marchand et al., [2002). These inequalities are added on the fly to the
set of dualized inequalities before updating the Lagrangian multipliers. Such a
method is called non delayed Relaz-and-Cut algorithm (Lucena, |2005). There
exist variants where violated constraints are not added at each iteration of the
subgradient method but consist in solving successive Lagrangian dual problems
obtained by adding violated constraints (Lucena, 2006).

Cutting-plane methods

By definition, (LD) can be rewritten as minimizing a value that is greater or
equal to the cost of each solution to & parametrized by Lagrangian multipliers,
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Figure 4.3: Example of an iteration of the cutting-plane algorithm. The dual
function LR is the one of Figure [I.I] and is drawn in green. The set of solutions
to the current restricted master problem RM P(S’) is drawn in cyan and is
defined by three inequalities (4.7b]). The resolution of RM P(S’) gives the point
(m,v) in cyan. The separation problem gives the blue point (7, LR(7)) and
exhibits in blue an inequality violated by the cyan point (7,7). This
inequality is added to RM P(S’).

that is:
min v (4.7a)
(LD)Sv>cla4n'(b—Az) VreS, (4.7b)
m > 0. (4.7¢)

In general, System contains an exponential number of inequali-
ties , even if this set may be restricted to inequalities associated with ex-
treme points of conv(S). Hence, System may be solved by a cutting-plane
algorithm (Cheney and Goldstein, Kelley, which can be described
as follows.

For a subset S’ C S, let RM P(S’) be the system obtained from System
by considering only the inequalities associated with z € &’. Solving
RMP(S') gives a solution (7, 9). If (7,7) violates the inequality associ-
ated with some point x € S, this point is added to 8’ and the algorithm iterates.
Otherwise, (7, 7) corresponds to an optimal solution to System .

The separation problem, that is the problem of determining whether there
exists an inequality violated by (7, %) is solved by computing LR(7). If
its optimum is equal to ¥, no inequality is violated. Otherwise, (7, ) violates
the inequality associated with any optimal solution to LR(7).

Figure gives an example of an iteration of the cutting-plane algorithm.
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Bundle methods

The presented cutting-plane algorithm is known to require a huge number of
iterations to converge (Lemaréchal, [2001)). Several adaptions of this algorithm
have been devised in order to stabilize it. One if these is the bundle method.
It consists in considering at each iteration a stabilization point w°, and opti-
mizing the current restricted master problem while not being too far from this
stabilization point. This is done by adding a quadratic term in the objective
function corresponding to the square of the Euclidean distance with respect to
this stabilization point. For &’ C S, RM P(S’) becomes:

1
minv+%||7r—7rs\|2 (4.8a)
v>c z+n'(b—Azx) VreS, (4.8b)
7w >0, (4.8¢)

where 7 is the regularization parameter used to balance the weight of the norm
with respect to the original objective function.

The restricted master problem is not a linear problem anymore but a
quadratic one. However, the objective is convex and the constraints remain
linear, so it can be solved efficiently (Kiwiel, |1986; Kiwiel, (1989 Frangioni,
1996)). Moreover, the additional runtime required to solve this problem in each
iteration is offset by the reduction in the number of iterations for the entire
algorithm.

Figure [£:4] presents an example of an iteration of the bundle method. Due
to the stabilization term in the objective function of RM P(S’), the optimal
solution differs from the one of the cutting-plane algorithm given in Figure
and so does the inequality added to RM P(S’).

4.2 Preliminaries on Machine Learning

In this section, we give a brief overview of machine learning concepts and models
used in the subsequent chapters. This presentation is restricted to machine
learning based on neural networks. This approach is presented in Section
whereas Section[4:2.2]is dedicated to the presentation of different neural network
architectures. For a more detailled review of these concepts, one can refer to
(Murphy, 2013} Prince, 2023]).

4.2.1 Learning with Neural Networks

A machine learning task consists in approximating an unknown mapping from
each input of that task to its associated output. The notion of task is quite gen-
eral and covers several problematics and domain areas like for instance image
classification, syntactic parsing in natural language processing, or solution pre-
diction in mathematical programming. The set of inputs of the task is denoted
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Figure 4.4: Example of an iteration of the bundle algorithm. The dual function
LR is the one of Figure and is drawn in green. The set of solutions to the
current restricted master problem RM P(S’) is drawn in cyan and is defined
by three inequalities . The point in purple is the stabilization point at
the current iteration. The curve in purple represents the value of the objective
function with respect to the Lagrangian multiplier 7. The minimum
is obtained at the cyan point. The separation problem gives the blue point
(m, LR(7)) and exhibits in blue an inequality violated by the cyan point
(m,v). This inequality is added to RM P(S’).
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by X and the set of outputs by Y. Each element z € X is associated with an
output y € Y.

Given a task, machine learning is to learn from data the parameters of a
neural network, that is an approximation of the unknown mapping from each
input of the task to its associated output. Mathematically speaking, a neural
network is a mathematical function:

fo: X =Y, (4.9)

where 6 are its parameters. Different architectures exist that correspond to
different shapes of fy, see Section [£:2.2] for details.

Training a neural network consists in determining the parameters 6 such
that fp(x) tends to be the closest to the output y of = for every input z € X.
Since X is usually infinite, we consider a dataset D of samples of X for training.
For each sample x of D, the dissimilarity between fy(x) and the output y of x
is measured using a loss function. This latter and the neural network define a
machine learning model.

Training a machine learning model is then cast as an optimization problem
consisting in determining the parameters that minimize the averaged loss func-
tion over the dataset D. If D correctly represents the input set X, one should
expect the model to correctly handle unkown data.

The model depends on the machine learning task and on the data available
for training the model. We now present different machine learning paradigms:
supervised learning, structured learning and unsupervised learning.

Supervised learning

In supervised learning, the dataset D is composed of n samples of X and their
associated outputs, that is, D = {(z%,y") | i = 1,...,n}. The outputs y’ for i =
1,...,n are referred to labels, and the loss function measures the dissimilarity
between the prediction fs(z?) and the label 3. It is defined as:

L(y,y): Y xY = R,. (4.10)

The loss function must satisfy L(y,y) = 0 and the more similar y and y’ are, the
smaller should be L(y,y’). Then, training a model is nothing but determining;:

0" € argminZL(fg(xi),yi). (4.11)
o =

This problem is untractable as it consists in minimizing a high-dimensional
non linear function. Hence, the usual way to tackle this problem is by gradient
descent based methods to find a local optimum. For this, the neural network
fo parametrized by 6 and the loss L are designed in such a way that the gra-
dient %5 (fy(2?),y") with respect to parameters 6 can be efficiently computed
for all ¢ = 1,...,n. This allows to train the model using a stochastic gradient
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descent. The dataset is randomly partitionned into batches. For each batch B,
the gradient oL
Z %(f@(ml)vyz)
(«t,y')eB
is computed, and the parameters 6 are updated with respect to that gradient,
usually using the ADAM rule (Kingma and Ba, 2014).

Note that if there is a single batch containing the whole dataset, the stochas-
tic gradient descent is actually a gradient descent. Experimentally, stochastic
gradient descent is usually faster than gradient descent since each parameter
update requires less time (Bottou and Bousquet, 2007; Bottou and Bousquet,
2011)). Moreover, the randomness introduced by batches allows to escape from
local optima, see (Prince, [2023), Section 6.2) for more details.

Generalization and regularization The objective of machine learning is
to obtain after training models with a high generalization capacity, that is, a
model which is able to make accurate predictions on unseen data. To measure
this, the dataset is divided into a train set used for training the model and a
test set which corresponds to the unseen instances on which the generalization
capacity of the model is measure(fl

In general, the prediction accuracy is worse on the test set than on the train
test. This is due, among other things, to the noise in the dataset, that is, there
are multiple possible outputs for a same input. This may be due for instance to
the nature of the learning task itself, to some stochasticity process in the data
generation or to some errors in the labels.

Due to the noise in the train set, a mapping of each input of the train set
to its corresponding output does not necessarly correspond to the mapping we
want to learn. Hence, a model really accurate on the train set may not generalize
well. This phenomenon is known as overfitting.

To prevent overfitting, that is, to reduce the gap between the accuracy on
training and test sets, one may consider reqularization. This consists in adding in
the loss function a term to smooth the neural network. This regularization may
be for instance the Eclidean norm of the parameters that has to be minimized in
addition to the loss. The objective to minimize when training a model becomes:

> Lifol@'),y") + A0,
i=1

where ) is an hyperparameter used as a ponderation between the regularization
term and the original loss.

For a clear understanding of generalization issues and regularization, we refer
to (Prince, 2023 Chapters 8 and 9).

20ne usually also have a wvalidation set used to evaluate the generalization capacity of
different models or variants (usually defined by different values of hyperparameters like the
number of neurons or layers in the architecture) and to select the model with the highest
generalization capacity before evaluating it on the test set.
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Structured learning

Structured learning is when the output domain Y of a machine learning task
is constrained and may be represented as a set of integer points. In this case,
the learning framework changes: the prediction y is not directly given by the
output fp(x) of the neural network but this latter is used to parametrize the
problem of determining the best element of Y with respect to the input x. For
instance, in syntactic parsing, machine learning is used to predict the syntactic
tree of a sentence. The prediction must follow the structure of a syntactic tree.
The output domain is represented as incidence vectors of constrained spanning
arborescences in a digraph. A neural network is used to score the arcs of the
digraph, and the prediction is the spanning arborescence maximizing the score.

The problem of finding the best element given a network output is called
inference problem, and this problem may be more or less complex depending on
the machine learning task. In structured learning, a model is then defined by a
neural network, a loss and an inference model.

Energy based models Structured learning can be tackled using FEnergy
Based Model (EBM) framework. In EBMs, a value, referred to as energy, is
associated with each couple (z,y) € X x Y, and the smaller the energy is, the
more likely is that y is the output of x in the learning task. This energy is
defined using a neural network and is then parametrized by 6. It is denoted
by E(z,y,0). For a given € X, the inference problem consists in finding the
element y* € Y minimizing the energy, that is, y* = minyey E(z,y, ).

In supervised learning, training an EBM consists in determining 6* that
minimizes a loss such that after training, for each ¢ = 1,...,n, the energy
E(2%,y%, 0%) is lower than E(x%,y,0*) for all y # y*. In that case, solving the
inference problem associated with 2¢ and 6* gives the correct output . The
interested reader can refer to (Le Cun et al., [2006]) for a thorough description
of EBMs.

Different loss functions have been defined in the litterature. One of the most
famous is the perceptron loss defined by:

L(mi7yi) = E(wi,yi,Q) — minE(xi,y,H).
yey

The name perceptron loss stems from the structured perceptron (Collins, [2002)
considered as one of the first EBM and which can be described as follows.
Consider a learning task where Y C {0,1}¢ and X € R/*¢ that is each v € X
is a matrix whose i*" column is a vector of dimension f representing component
i € {1,...,d}. The structured perceptron is an EBM parametrized by a vector
6 € R/, its energy is defined as E(x,y,0) = (0T 2)y, and the loss function is the
perceptron loss.

Unsupervised learning and latent variables

Up to now, we have considered supervised learning where the dataset contains
for each input its associated label, and the loss function measures the dissimi-
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larity between the prediction from the input and the associated label. In unsu-
pervised learning, there is no label in the dataset.

Unsupervised learning is usually based on a latent representation of the in-
put. The latent space, denoted by Z, is much smaller than the input domain X,
and the latent representation z of an input z is intended to capture the impor-
tant underlying properties of  while being easier to handle. In some way, z can
be considered as a “compressed version” of z.

Machine learning with latent variables is based on the encoder-decoder frame-
work (Sutskever, Vinyals, and Le, 2014} Cho et al., [2014; Kalchbrenner and
Blunsom, [2013)). The encoder is a neural network that maps the input x € X
to its latent representation z € Z. This latent representation z is then used as
input for the decoder which is a neural network whose design depends on the
learning task. Figure [£5] gives an illustration of an encoder-decoder.
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Figure 4.5: Visualization of an encoder-decoder. The encoder g, is a neural
network parametrized by ¢ that takes some x € X as input and outputs its
latent representation z. The decoder fy is a neural network parametrized by 6
using the latent representation z for input and outputing the overall prediction
yevy.

A generative model is a model that may generate different outputs for a same
input. When using an encoder-decoder, a way to do it is to use a probabilistic
encoder that outputs parameters of a probabilistic distribution over the latent
space like the mean and variance of a Gaussian distribution for instance. Then,
several samples are drawn from the latent space using this distribution, and each
sample is used as input for the decoder producing as many outputs as drawn
samples.

A well-known type of probabilistic encoder-decoder is wvariational auto-
encoder (Kingma and Welling, 2014; Pinheiro Cinelli et al., [2021) that is de-
signed to learn a latent representation of the input. In that case, the output
domain is X, and the model is trained to be able to retrieve the input from the
latent representation.

4.2.2 Neural Network Architectures

Deep neural networks are built by stacking different “simple” neural networks
called layers. In a deep neural network with ¢ layers, the output h* of layer
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number k is the input of layer number k + 1 for k =1,...,¢ — 1. The input h°
of the first layer is the machine learning task = and the output h¢ of the final
layer corresponds to y or is used to parametrize the inference problem giving y.
Figure [£.6] provides a visualization of layers constituing a deep neural network.

2 -1

1

Figure 4.6: Stacking layers to build deep neural networks.

From a mathematical point of view, stacking layers is composing functions.
For £k = 1,...,¢, let fé“k denote the function parametrized by @ that corre-
sponds to layer k. The deep neural network obtained by stacking the ¢ layers is
equivalent to:

folw) = fho fil oo fhi(x)

and @ is the concatenation of parameters 6, ..., 6.

Note that as already mentionned, a crucial point to train a neural network
using gradient descent is to be able to efficiently compute the value g—g. Using the
chain rule, one can compute it from the values %: and fo.k_l. This calculus can
be done efficiently by dynamic programming (by reusing partial computations)
starting from the last layer and iteratively computing the values for a layer k
using the already computed values for layer k + 1. This algorithm is referred
to as backpropagation (Rumelhart, Hinton, and Williams, [1986; Rumelhart and
McClelland, [1987)) and is implemented in modern machine learning frameworks
such as Pytorch (Paszke et al., 2019) or Flux (Innes et al., [2018; Innes, 2018).
The implementation is done to be efficiently parallelized on GPU cores.

In the rest of this section, we review the different layers used to build deep
neural networks in the subsequent works. For a layer, we denote by x its input,
y its output and @ its parameters. When this layer is used as the k*" layer of
a deep neural network, z, y and 6 correspond to h*~1, h* and 6%, respectively.
Depending on the layer, x and y may be vectors or matrices. The function
o0 : R — R will denote a non linear function, usually called activation function.
This function can be a rectified linear unit (ReL.U) function (He, Zhang, et al.,
2015)), the softplus (Zheng et al.,|2015)), the hyperbolic tangent, and the sigmoid
function. When z is a vector or a matrix, o(z) consists in applying the activation
function over each component of z.

This review only covers a small part of the layers used in deep learning in
general. We refer to (Zhang, Lipton, et al., [2024; Prince, 2023) for more details
on the different layers.

Dense layers and feed forward neural networks

A dense layer takes as input a vector z € R% and consists in an affine map
followed by a nonlinear function on every component of the resulting vector,
that is:

y=ocWz+Db). (4.12)
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The parameter 6 of a dense layer is given by W and the bias b.

A neural network composed of dense layers is called a Feed Forward Neural
Network (FFNN). They are also referred to multilayer perceptron since a dense
layer where the output y € is a scalar was one of the first machine learning
model called perceptron (Rosenblatt, 1958).

Recurrent neural layers

Recurrent neural layers are designed to predict sequences. Given an input x =
(z1,...,2n), one may have to predict an output y = (y1,...,yn) where the
prediction y; for some step t = 1,...,n depends on x; but also on the past,
that is, on the previous inputs z; and predictions y; for ¢/ =1,...,¢t — 1. This
happens for instance in Part-of-Speech tagging (POS), a NLP task where given a
sentence, one has to tag each of its words with a part-of-speech tag like “noun”,
“verb” or “determiner”.

Recurrent neural layers may also be used to handle inputs of varying length.
Indeed, feed forward neural networks need inputs of the same length, and arti-
ficially getting inputs of equal length by filling missing values does not perform
well in general. It may be better to use a recurrent neural layer to process
sequentially each component and using for output the one of the last element.

In the following, we restrict our description to long short-term memory layers
which correspond to one of the most popular recurrent neural layers.

Long Short-Term Memory Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, [1997) is a special kind of recurrent neural layer designed to
avoid the exploiding or the vanishing of the gradient during backpropagation
due to long sequences of multiplications.

A vector s; € R% is used to represent the state of the LSTM. This vector
is propagated at each step ¢ of the prediction. Parameter 6 of an LSTM is
composed of four matrices 0/, 8%, §° and 6% of R%*24= and of four vectors b/,
b*, b° and b* of R%.

For each step t = 1,...,n, four vectors are computed using 0, x; and y;_1.
These four vectors fi, 0, i; and a; are obtained by applying a dense layeIEI on
the vector (¢ || y¢—1) which corresponds to the concatenation of a; and yt,lﬂ

fe=0(07 (¢ || ye—1) +by), (4.13)
ir =0 (0" (24 || ye—1) + bi), (4.14)
oy =0 (0° (2 || ye-1) + o), (4.15)
ar =0 (0%(x¢ [| ye—1) + ba)- (4.16)

(4.17)

3Usually, the activation function used in (4.16)) is the hyperbolic tangent whereas the other
activation functions are sigmoids.
4y is initialized with yo = 0.

40



Vector f;, referred to forget gate, is used to “remove information from the
past state” whereas vectors i; and a;, referred to as input gate and cell acti-
vation, are used to “add new information in the state”. Mathematically, these
operations are given by:

st =ft © sp-1 + i O ay, (4.18)
(4.19)

where ® denotes the Hadamart product, that is, the element-wise product.
Finally, the output y; is computed from the current state s; using the output
gate o; as follows:

Yr =01 © o (s¢). (4.20)

Bidirectional LSTM In a LSTM, the prediction ¥, is made using informa-
tion from the past thanks to both s; and y;_1. However, no information from the
future, that is no input z, state s;» or output gy associated with some t' > t is
used. When this information from the future matters, one can use Bidirectional
LSTM (BiLSTM). This layer consists in two disjoint LSTM, say LSTMF and
LSTMRE, such that LSTMF processes the sequence (1, ..., z,) from the begin-
ning to the end (as presented above), whereas LSTMY processes the sequence
in reverse sense, that is, from the end to the beginning. The output y{” and yf
at step t = 1,...,n of both LSTM are concatenated to form the output y; of
the BILSTM.

Graph convolutional layers and networks

Sometimes, the input of a learning task is or may be represented by a graph.
This is the case for instance when the task consists in detecting fraud in financial
networks (Van Belle et al., [2022; Motie and Raahemi, 2024) or in predicting the
citation count of scientific papers in academic networks (Dong, Johnson, and
Chawla, [2015; He, Xue, et al., [2023)). Graph neural networks are designed to
handle such inputs (Zhou, Cui, et al., [2020). Different types of graph neural
networks exist (Zhou, Zheng, et al.,2022; Corso et al.,2024) but we restrict our
presentation to the graph convolutional ones (Kipf and Welling, [2017)).

The input graph is used inside a graph convolutional layer to compute the
output of a node using its input and those of its neighbors. Mathematically
speaking, a Graph Convolutional layer is defined as follows.

Let G = (V,E) be an undirected graph. The adjacency matriz A €
{0, 1}VIXIVI of G has entry A;j equal to 1 if nodes ¢ and j are adjacent, and 0
otherwise. Let A = A + Iy where I}y is the identity matrix of size |[V| x [V,
and define the diagonal matrix D such that D;; = Z‘jzll flij fori e V.

The input x of this layer is a matrix of |[V/| rows and d, columns. The v*?

row of x corresponds to the vector input of node v € V. D 2AD 3z gives a
linear map where the v row is computed from the rows of x associated with v
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and its neighborsﬂ The matrix is then multiplied by the parameter matrix 6 of
the layer and a nonlinear function is applied to each element in order to obtain
a matrix y € RIVI*4 where the v** row corresponds to the output of node v.
We have:

y=o(D 2 AD 220), (4.21)

where the parameter 6 is a matrix of R%*dv

Graph convolutional networks consist in stacking several graph convolutional
layers. This allows to propagate information through the graph as the output
of a node v in a graph convolutional network with ¢ layers is computed from
the input of all the nodes at distance no more than ¢ from v.

Biaffine attention layers

Attention (Bahdanau, Cho, and Bengio, 2014; Kim et al.,|2017) is a core mecan-
ism of modern deep learning architectures. It mainly offers a way to focus on
some parts of the inputs by learning a ponderation when aggregating data. It
is used in several neural networks such as transformers (Vaswani et al., 2017)
or graph attention networks (Velickovié et al., |2018)).

The input is composed of a set of couples key/value (k;,v;) € R% x R

for i = 1,...,m, as well as a set of queries ¢; € R% for j = 1,...,n. The
output is a representation yi,...,y, by vectors of R%. Each representation Yj
is computed from the query g; and from k;,v; for all i =1,...,m.

Let ag(k,q) : R% x R% — R be a learnable function parametrized by 6.
Given a query, this function is used to gather information from the values by
computing for each key the proportion of the associated value used in the rep-

resentation. More formally, for j = 1,...,n, the output y; is computed as
follows:
m
yj = Za(ki, q;)vi, (4.22)
i=1
where

exp(ag(ki, q;))
;7:1 exp(ag (k’t’ 5 q]))

Note that (c(k1,q;), ..., a(km, q;)) is obtained by a softmax transformation
and satisfies a(k;,q;) > 0 for i = 1,...,m and Y ", a(ki,q;) = 1. Hence,
y; is a convex combination of v1,...,v,, where the coefficients of this convex
combination are given by the learnable function ay.

Different functions ag may be used for attention mecanism. In a biaffine
attention layer, ag is of the form:

ok, q) = 5 (4.23)

ap(k,q) =k Wq+b"k, (4.24)

and 6 corresponds to W € R%* *da and b € R%.

5 PG S S-S B . . O . .
°The matrix D~ 2 AD™ 2 is a renormalization of A aimed at balancing the influence across
all nodes irrespective to their degree.
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Chapter 5

Using Mixed-Integer Linear
Programming for Inference
in Machine Learning

This chapter is dedicated to my research relative to the use of mixed-integer
linear programming and Lagrangian relaxation to solve inference problems in
machine learning relative to syntactic parsing.

Syntactic parsing is a fundamental task in Natural Language Processing
(NLP) that reveals the syntactic structure of a sentence. It can be used for
instance for grammar checking, or as a component in more complex NLP tasks
(Drozdov et al., [2023; Yin et al., [2022)). Syntactic parsing is cast as finding a
discrete structure maximizing a score function or a likelihood, the score being
predicted via a neural network. The type of the discrete structure and the
requirements it must satisfy depend on the considered grammatical formalism.

In section we first give a brief description of dependency trees, and
present different requirements that a dependency tree may follow. We then
consider the dependency parsing problem where the dependency tree must be
well-nested and satisfy block degree requirements. We formulate this problem
as an integer linear problem and present a Lagrangian relaxation based heuristic
to solve it. This approach comes from a joint work with C. Corro, J. Le Roux,
A. Rozenknop and R. Wolfer Calvo (Corro, Le Roux, Lacroix, et al., 2016).

In Section we consider constituency parsing using spinal TAG. We for-
mulate this parsing problem as a generalized spanning arborescence problem.
We also propose a Lagrangian Decomposition based heuristic. These results
stem from a joint work with C. Corro and J. Le Roux (Corro, Le Roux, and
Lacroix, [2017).

Note that this chapter is not intended to be an in-depth presentation of syn-
tactic parsing. Only the NLP material necessary to present the aforementioned
works is given. For a thorough presentation of parsing or NLP in general, one
may refer for instance to (Jurafsky and Martin, 2025)).
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5.1 Dependency Parsing with Bounded Block
Degree and Well-nestedness

We present dependency trees and its variants in Section Section [5.1.
is dedicated to the presentation of a parsing algorithm based on Lagrangian
relaxation.

5.1.1 Dependency Trees

In dependency grammars, the syntactic structure of a sentence is described as
a set of syntactic relations between couples of words. Each relation emphasizes
a head word with a dependent word that modifies the head. This relation is
labeled with the grammatical function of the dependent with respect to the
head. For instance in “the algorithm”, the word “algorithm” is the head word
whereas “the” is the dependent one. The relation is labeled with “determiner”.

Syntactic relations of a sentence are usually represented using graphs. Given
a sentence w = wp, wy, ..., Wy, where wy is a dummy root word, we associate
a node with each word wﬂ and denote by V = {wo, ..., w,} this set of nodes.
A syntactic relation with head w; and dependent wj; is represented with an arc
(w;, wj)ﬂ Each arc is labeled with the associated grammatical function.

With this graph based representation, a (syntactic) dependency tree (DT) of
a sentence is defined as a set of syntactic relations such that their representation
by labeled arcs forms a spanning arborescence rooted at wy, that is, T is a set
of arcs such that:

e w; has no entering arc,
e w; has one entering arc for each i =1,...,n,
e the graph (V,T) contains no circuit.

In the following, a dependency tree will also refer to the associated spanning
arborescence rooted at wy. Figure gives an example of a dependency tree.

Projectivity Some grammar formalisms consider that the dependency tree
must satisfy additional requirements. The most known requirement is projec-
tivity (Nivre, [2003)). It consists in considering only dependency trees having
no crossing pairs of arcs, that is, the underlying spanning tree obtained by re-
moving the orientation of the arcs does not contain edges w;wy and w;w, with
i<j<k<ld.

Projective trees are the spanning arborescences that can be obtained, start-
ing from a forest containing n + 1 arborescences with one node, by iteratively
merging two consecutive arborescences, where merging two arborescences con-
sists in adding an arc linking their rooiﬂ and two arborescences are consecutive

Lw; refers both to the i*® word of the sentence and its associated node.
2Note that the head word w; is not the head of the arc but its tail.
3If wg is one of the roots, the arc must leave wq.
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Usmg mathematlcal programming helps dependency parsing.

Figure 5.1: Example of a dependency tree of the sentence “Using mathematical
programming helps dependency parsing.”. Syntactic relations are given as labels
on the arcs: dobj for direct object, csubj for clausal subject, amod for adjectival
modifier and compound for nominal compounds (the label root is of course not
a syntactic relation since wy is a dummy word).

;

Wo w1 W2 w3 Wqg W5 W Wt
I present works here that use MILP.

Figure 5.2: Example of a non-projective dependency tree.

if there exists j € {0,...,n — 1} such that one arborescence contains w; while
the other contains w;4q.

A constituent is a set of words that form a meaningful part of the sentence
from a grammatical point of view. A constituent is said discontinous if the
words are not consecutive in the sentence. Since constituents usually induce
subarborescences in dependency trees, requiring projective dependency trees is
usually too restrictive (Nivre, |2006]). For instance, the dependency tree given
in Figure is not projective due to the arcs (w2, w4) and (ws, wg). However,
imposing no constraints on the spanning arborescence rooted at wy may be too
permissive. Hence, different requirements have been considered that are less
restrictive than projectivity. Among them are the k-block degree requirement
and well-nestedness.

Block degree requirement Some grammatical formalisms impose some con-
tinuity on the words covered by subarborescences that can be expressed as fol-
lows. For a dependency tree T, a node t is reachable from a node s if s =t or
there exists a path from s to ¢ in 7. The yield of a node v € V' corresponds to
the set of nodes reachable from v with respect to 7.

The block degree of a node set W C V' \ {wp} is the number of nodes of W
without their predecessor inside W, where the predecessor of a node w; is the
node w;_1. The block degree of a node is the block degree of its yield and the
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block degree of T is the maximum among the block degrees of w1, ..., w,. T is
k-bounded block degree (k-BBD for short) if its block degree is less than or equal
to k. In Figure the block degree of node ws is two since its yield contains
wsz and ws but not wy nor wy. Since the block degree of every other node of
V \ {wo} is one, the block degree of T is two.

Well-nestedness Two disjoint node subsets I; and Iy of V' \ {0} interleave
if there exist 4,7 € I; and k,¢ € I, such that i < k < j < ¢. A dependency
tree is well-nested if there do not exist two nodes whose yields are disjoint and
interleave. In Figure[5.2] the dependency tree is well-nested as the yield of every
node of size greater than one contains wy.

5.1.2 Dependency Parsing Algorithm

The dependency parsing problem consists, given a sentence w = wq, w1, ..., Wy
where wy is a dummy root word, in determining the dependency tree of that
sentence. Since the 1990’s, it is cast as an optimization problem consisting in
returning the most probable dependency tree. For this, machine learning is used
to score parts of the DT and the parsing problem is to find the DT with the
highest score. The dependency parsing problem depends on the parts of the DT
that are scored as well as the grammar formalism used to characterize the set
of valid DT.

In (Corro, Le Roux, Lacroix, et al., 2016)), a score is assigned to each couple
of words that represents the probability that the syntactic relation of this couple
appears in the DT (the chosen label is the most probable one). The score of a
DT is then the sum of the scores of its arcs. Such type of score is referred to
in the literature as arc factored score. There exist other scoring functions such
as second-order scores (Eisner, [1997)) which in addition consider for instance
scores associated with pairs of arcs having the same tail, or scores associated
with paths of length two.

With arc factored scores and no additional requirements on the DT, the
parsing problem is a maximum spanning arborescence problem. Let D = (V, A)
be a directed graph where V' = {wq, w1, ..., w,} is the set of nodes associated
with the words of the sentence, and A is the set of possible syntactic relation&ﬂ
Let s € R4 be the scores associated with each possible syntactic relation. The
parsing problem consists in determining a spanning arborescence T rooted at wg
and maximizing ), 5o (McDonald, Pereira, et al., 2005). This problem can
be solved in O(|V'|?) using Tarjan’s algorithm (Tarjan, [1977). When restricting
the set of valid DT to projective ones, dependency parsing can be done in
O(|V']?) using Eisner algorithm (Eisner, 1996).

In (Corro, Le Roux, Lacroix, et al., |2016|), we consider for valid DT those
that are well-nested and k-BDD, where k is a given constant depending on the
languageﬂ While there exists a dynamic programming based parsing algorithm

4 A contains no arc entering wg since it is a dummy word.
5We also perform some experiments in which we drop wellnestedness.

46



for such DT, its complexity is in O(n3t2¥) where n is the number of words
in the sentence (Gémez-Rodriguez, Weir, and Carroll, 2009). Hence, it is too
ineffective to be used for parsing large data.

We formulate this parsing problem as an integer linear problem. Before
presenting the formulation, we give a graph characterization of well-nested and
k-BDD dependency trees that are used to derive valid inequalities. Let WZ* be
the family of node subsets of V' \ {wg} with block degree greater than or equal
to k. We denote by Z the family of couples of disjoint interleaving node subsets
of V'\ {0}. The following two propositions characterize whether a dependency
tree is k-BDD or well-nested.

Proposition 5.1. A dependency tree T is not k-BBD if and only if there exists
a node subset W € W2F+1 whose cut §(W) contains a unique arc of T.

Proposition 5.2. A dependency tree T is not well-nested if and only if there
exists (I1,I2) € T such that §(I1) NT and 6(I2) N T are singletons.

From Propositions [5.1] and one can derive the following formulation of
the dependency parsing problem:

maxw ' z (5.1a)
2(6™(w)) =1 Yo e V\ {wo}, (5.1b)
2(8™(W)) > 1 YW C V\ {wo}, (5.1c)
2(8(W)) > 2 YW C wktl (5.1d)
2(0(1)) + 2(5(1)) > 3 Y(I, 1) € T, (5.1¢)
ze {0,134 (5.1f)

By (5.1b)), every node but wg has one entering arc. By (5.1c), z is the
incidence vector of a set of arcs inducing a connected graph. Since G has no arc

entering wy, z is the incidence vector of a dependency tree. By Proposition [5.1
and , this DT is k-BDD. By Proposition and , it is also well-
nested.

We propose a Lagrangian based heuristic to solve System . Dualizing
inequalities and (5.1€), the Lagrangian relaxed problem reduces to com-
puting a maximum spanning arborescence rooted at wg where the arc costs are
parametrized by the Lagrangian multipliers associated with and .
The Lagrangian relaxed problem can be solved in O(n?) using Tarjan’s algorithm
(Tarjan, [1977). Since the number of dualized constraints is exponential, we use
a non delayed relax-and-cut algorithm to solve the Lagrangian dual problem,
see Section [f.1.2] At each iteration of this variant of the subgradient algorithm,
the separation of Inequalities and is done in O(n?) using the algo-
rithms described in (Mohl, |2006) and (Havelka, 2007)), respectively. Moreover,
at each iteration, a step of variable fixing is performed to reduce the size of the
problem. Our heuristic returns the best solution found after a fixed number
of iterations of the non delayed relax-and-cut algorithm, and if no solution is
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found, it returns the best projective tree using the Eisner algorithm (Eisner,
1996)).

Note that we also embed our Lagrangian heuristic inside a branch-and-bound
tree to derive an exact method to this parsing problem.

To learn arc scores, we use a structured perceptron model. Given a sentence,
a high-dimensional sparse feature vector is extracted for each word based on
linguistic properties. A feature vector f, € R? for each arc a = (w;, wj) € Ais
obtained by concatenating the feature vectors of w; and w; and another vector
containing features involving both words (McDonald, Crammer, and Pereira,
2005). The score of arc a is given by 0 f,, where # € R is the parameter of
the structured perceptron model. The energy of a DT is the sum of the scores
of its arcs. During training, the inference problem is given by removing block
degree requirements and wellnestedness, that is, the inference problem amounts
to computing a wy-spanning arborescence.

From an experimental point of view, our LR heuristic is competitive with
projective tree parsing (Eisner), non projective tree parsing (Maximum spanning
arborescence) and a mixture of them (compute the max spanning arborescence
and if it is not valid, return the best projective tree). Moreover, it always returns
a valid dependency tree on the contrary to the non projective tree parsing.

5.2 Discontinuous Constituency Parsing

In this section, we first introduce parse trees and present discontinous spinal
TAG formalism. We then present a Lagrangian decomposition based heuristic
for the parsing problem under this formalism.

5.2.1 Parse Trees and Discontinuous Spinal TAG

Context free grammar is a grammar formalism that consists in a set of rules
for constituent formation and merging, where a constituent (or phrase) is a set
of words that behave as a single unit from a grammatical point of view. Each
rule £ — r contains a non-terminal symbol ¢ and a list r of symbols that can
replace . The symbols in r may be terminal (i.e., words) or non-terminal.
Figure [5.3] gives examples of such rules.

S — NP
NP — Det Noun
Det —  the
Noun — algorithm

Figure 5.3: Example of a set of rules of a context free grammar.

The rules can be combined to generate the sentence from the initial non-
terminal symbol S (for sentence). Such a construction is represented as a tree
and is called parse tree. Figure provides a parse tree obtained with the rules
given in Figure whereas Figure[5.5|gives a parse tree of a complete sentence.

48



S

|
NP

Det Noun

\
the  algorithm

Figure 5.4: Example of a parse tree constructed from the set of rules of Fig-

ure @

S
S VP
|
VP
A% NP
\
V]?G NP helps N N
: \ \

Using Adj/\N constituency  parsing.

mathematical  programming

Figure 5.5: A parse tree of the sentence “Using mathematical programming helps
constituency parsing.”.

Shen and Joshi (2005) introduce spinal TAG formalism. A spine is a se-
quence of non-terminal symbols ending with a terminal one. The first non-
terminal symbol of the spine is its head. A parse tree is obtained by associating
a spine to each word and linking these spines via adjunctions, where an ad-
junctz’onﬂ consists in attaching the head of a spine to a non-terminal symbol
of another spine. This non-terminal symbol is the adjunction site. Since con-
stituents are usually words covered by subarborescences in dependency trees,
the spine adjunctions must form a DT, that is, we consider an arc (w;, w;) when
the head of a spine with terminal symbol w; is attached to a spine with termi-
nal symbol w; (independently to the adjunction site it is attached to), and this
set of arcs must form a dependency tree (see Section for details on DT).
Figure gives an example of a parse tree under spinal TAG formalism.

SFollowing TAG formalism, the adjunction may be regular or sister and must be labelled
accordingly; in our presentation, we do not differ both types of adjunctions.
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Figure 5.6: A parse tree with spines and adjunctions (dashed arrows). Each
color corresponds to a spine. The spine WHNP-WP-What with head WHNP is ad-
joined to the spine SBARQ-SQ-VP-VB-do? and the adjunction site is VP. The
induced dependency tree is non-projective.

5.2.2 Parsing Problem for Discontinous Spinal TAG

The parsing problem consists, given a sentence w = wy, w1, . .., w, where wy is
a dummy root word, in determining a spine s; associated with each word w;,
i =0,...,n, a DT T of w, and for each syntactic relation (w;,w;) of T' the
adjunction site of the spine associated with w; used for adjoining w; to w;.

In our approach, the determination of the adjunction sites is done in a
postprocessing step that is not described here. The parsing problem then cor-
responds to determining the spines and the DT. Moreover, the set of possi-
ble spines for each word w; of w is restricted to the most probable m spines
S}, ..., 5™ that are extracted in a preprocessing step not described hereﬂ

The parsing problem is cast as an optimization problem consisting in finding
the most probable parse tree. The probability of a parse tree is simplified to be
decomposable by arcs of the associated DT. More precisely, the probability of arc
(w;, wy) is expressed as Py ((w;, w;)|w)* P, (s;|(w;, w;), w) where Py ((w;, w;)|w)
is the probability of having the syntactic relation (w;,w;) in the DT knowing
the sentence w, and P,(s;|(w;, w;), w) is the probability of having spine s;
associated with word w; knowing the sentence w and that (w;, w;) is a syntactic
relation of the associated DT. The probability of a parse tree is then defined as:

[T Palwi,wy)lw) « Pu(syl(wi, w)), w).

(wi,w;)eT

Probabilities P, ((w;, w;)|w) and P, (s;|(w;,w;), w) are predicted by two sep-
arate neural networks. A context sensitive representation of each word is first
computed using bidirectional recurrent networks. Then, the probabilities are
predicted from this word representation using a feed forward neural network
followed by a biaffine attention layer, see (Corro, Le Roux, and Lacroix, [2017)
for more details.

In (Corro, Le Roux, and Lacroix, 2017)), we reformulate the parsing problem
as a generalized maximum spanning arborescence problem. Indeed, we consider
a digraph D = (V, A) where each node of V is associated with a spine for

"For the dummy root node, the spine is unique and fixed.
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each word. A partition 7 = {Vp,...,V,} of V is obtained by considering for
1 =0,...,n a class V; containing all the spines associated with word w;. The
arc set A consists in all arcs (k,¢) where k and ¢ belong to different classes
of the partition and ¢ does not belong to V. The score ¢ ¢ of each arc
(k,0) with k € V; and ¢ € V; is equal to log (P, ((w;, w;)|w) * P, (s|(w;, w;), w))
where s corresponds to the spine associated with node ¢. A solution to the
generalized maximum spanning arborescence problem, that is, a Generalized
Spanning Arborescence (GSA), is a couple (W, T) where W is a set of n + 1
nodes intersecting once each class of 7, and 7' is an arborescence spanning W and
rooted at the node vy of V. The generalized maximum spanning arborescence
consists in determining a GSA (W, T') such that ¢(7T) is maximum.

e’ ° ,7 e 2 - - ° ° N :\7
Y /’ ”/ —'_,—' ,/
(ROOT) & ot . o<~ e« /e
,
4

. . . . s .

. . . . .

i Vs Vs Vi Vs Ve
(What) I) (said) (should) 1) (do)

Figure 5.7: The generalized spanning arborescence inducing the parse tree in

Figure @

Let D™ be the graph obtained from D by identifying every cluster to a single
node. Since every cluster is a stable set, there is a one-to-one correspondence
between the arcs of D and those of D™. It follows that for a node set W
intersecting each cluster once, and a set of arcs T, (W, T) is a GSA if and only
if T C A[W] and T is a spanning arborescence rooted at vg in D7.

We provide an integer linear programming formulation for the generalized
maximum spanning arborescence problem. A GSA (W, T) is encoded using the
following variables. Let x € {0,1}" be such that x, equals 1 if v belongs to
W, and 0 otherwise. Similarly, let y € {0,1}* be such that y, equals 1 if
a € T, and 0 otherwise. The generalized maximum spanning arborescence can
be formulated as follows.
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max ¢ 'y (5.2a)
(Vi) =1 Vk=0,...,n, (5.2b)
y(™(v)) = z, Yo e V\ W, (5.2¢)
y(6°" (v) N 6™ (Vi) < Vk=0,...,n,Vv € V\V, (5.2d)
y(éin(vk%w/Vk)) >1 vr' S\ {Vo} (5.2¢)
x, €{0,1} YveV (5.2f)
ya € {0,1} Va € A (5.2g)

Let (Z,7) be a solution to andlet W={veV|z,=1}and T = {a €
A | §o = 1}. Equations (5.2b]) imply that W contains one node per cluster of 7.
By constraints and (5.2d), T only contains arcs of A[W]. By and
, T enters once every node of D™ but vg. Inequalities ensure that
T induces a connected graph in D™, so T is a vg-spanning arborescence of D™
(Schrijver, 2003). Hence, (W, T) is a GSA.

We propose a Lagrangian decomposition based heuristic built upon the fol-
lowing reformulation of . It consists in replacing variables y by three copies
y°,y', 9%, and ensuring that these copies have the same value using extra vari-
ables z variables. The choice of the copy g’ used to replace y inside each set
of constraints is done to obtain decomposable subproblems in the Lagrangian
relaxed problem. We get the following reformulation:

max %gb—r(yo +y' +9?) (5.3a)
(Vi) =1 Vk=0,...,n, (5.3b)
y (0™ (v)) = z Yo e V\ W, (5.3¢)
Y2 (6°" (0) N 6™ (Vi) < Vk=0,...,n,Yv e V\Vj, (5.3d)
yo(ain(vkgﬂlvk)) >1 v’ €\ {Vo}, (5.3¢)
(0™ (Vi) =1 k=1,...,n (5.3f)
y =z Vi=0,1,2, (5.3g)
z, € {0,1} Yo eV, (5.3h)
y: € {0,1} Ya € A,Vi=0,1,2. (5.31)

First, note that equations are redundant constraints obtained from
5.2) by summing for each kK = 1,...,n equations for all v € Vi and the
;i%b associated with k. These redundant constraints strengthen the following
decomposition.

By dualizing equations , we obtain a Lagrangian relaxed problem that
can decomposed into disjoint subproblems. Note first that since z appear in no
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constraint of this relaxed problem, the latter is finite only when the coefficient
in the objective function associated with z equals 0, implying that the sum of
the dual variables equal 0, and variable z vanishes. A first subproblem involves
variables y" and constraints and . Solving this subproblem reduces
to computing a vo-spanning tree in D™ and can be done in O(n?).

Since y! and y? are only linked by variables x, the remaining part can be
decomposed by cluster Vj, for £ = 0,...,n. The problem associated with Vj
reduces to selecting for each node v € Vj, its entering arc with the highest cost
and for every cluster V; with £ # k, to selecting the outgoing arc of v entering
Ve with the highest cost if it is positive. The sum over the costs of these arcs
corresponds to cost of a node, and the problem is nothing but choosing the node
in each cluster with the maximum cost. Solving the subproblems associated with
all clusters can then be done in O(]A]).

Hence solving the Lagrangian relaxed problem can be done in an efficient
way.

The Lagrangian dual problem is solved using a projected subgradient de-
scemﬁ At each iteration of this subgradient algorithm, a variable fixing scheme
is applied to reduce the size of the problem, and a reweighting of the cost is
performed to help the convergence of the subgradient descent. Moreover, at
each iteration, we also determine a GSA from the current solution Z,§ to the
Lagrangian relaxed problem by computing a spanning arborescence rooted at
vp on the graph induced by the nodes v € V for which Z, = 1. The algorithm
returns the best GSA found after 500 iterations of the subgradient algorithm.

From an experimental point of view, our algorithm outperforms the state-
of-the-art both in terms of accuracy and of running time. Moreover, with our
method we can obtain a certificate of optimality of the solutions given by our
heuristic for more than 99% of the sentences of the datasets.

8]t is a projected gradient descent to ensure that at each iteration, the sum of the dual
variables is zero, see (Corro, Le Roux, and Lacroix, 2017) for more details.
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Chapter 6

Computing Dual Bounds to
Mixed-Integer Linear
Problems using Machine
Learning

This chapter presents my research relative to the incorporation of machine learn-
ing inside mathematical programming algorithms to enhance their performance.
Indeed, mathematical programming solvers usually rely on heuristic decisions
which may dramatically affect their performance, even when these algorithms
are exact ones. Well-known examples are branch-and-bound based methods
where the choice of the node to process (aka, node selection) or the variable
to branch on (aka, variable selection) have a huge impact on the size of the
branch-and-bound tree, and hence on the overall running time. A vast research
litterature exists on handcrafted heuristics but since a few years, machine learn-
ing is used instead to tune such decisions (Bengio, Lodi, and Prouvost, [2021}
Zhang, Liu, et al., 2023; Scavuzzo et al., [2024). The aim is to learn from
data underlying properties of an instance and use them to drive the heuristic
decisions.

A key component for the efficiency of branch-and-bound methods is the
tightness of dual bounds. When this bound is provided by the continuous re-
laxation, strengthening inequalities may be incorporated to the relaxation using
a cutting-plane scheme, leading to branch-and-cut algorithms (Mitchell, |2009).
The heuristics devised for generating, selecting and removing cuts at each it-
eration are fundamental for such algorithms (Marchand et al., [2002; Dey and
Molinaro, 2018; Wesselmann and Suhl, 2012) and machine learning is now at
the core of recent research questions and advances (Deza and Khalil, |2023).

Lagrangian relaxation is another way to provide high-quality dual bounds for
mixed-integer linear problems. It consists in dualizing some linear inequalities,
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that is, removing them but penalizing their violation in the objective function.
For a trade-off between the original objective and the dualized inequalities’
satisfaction, a weighted sum of the violation is done. The weight associated
with each inequality is the Lagrangian multiplier and each feasible Lagrangian
multiplier vector provides a dual bound. To obtain accurate bounds, one usually
applies iterative subgradient based methods such as the subgradient algorithm
or the bundle method, see Section [£.1] for more details. However, these iterative
methods may be time-consuming. To encompass this problem, we propose to use
machine learning to predict Lagrangian multipliers. Assuming that instances
follow some unknown patterns, our aim is that machine learning catches such
patterns to make predictions for new instances sharing these patterns.

This approach stems from a joint work with F. Demelas, J. Le Roux and A.
Parmentier (Demelas et al., 2024)).

6.1 Learning Framework

Providing dual bounds based on Lagrangian relaxation can be interpreted as a
machine learning task. Our objective is to provide a generic tool where gener-
icity is intented as being able to apply it on a large range of mixed-integer
linear problems and Lagrangian relaxations. For this, the learning task input
only consists of a mixed-integer linear problem (P) and the set R of the linear
constraints of (P) that are dualized in the Lagrangian relaxation; it is denoted
by ¢ = (P, R). The output is the set of Lagrangian multipliers associated with
the dualized constraints. The dual bound is then obtained by computing with
a combinatorial algorithm the Lagrangian relaxed problem parametrized by the
predicted Lagrangian multipliers. By Lagrangian duality, the optimum of the
Lagrangian relaxed problem gives a dual bound to the input problem. The
learning task is to predict Lagrangian multipliers providing a bound approach-
ing the value of the Lagrangian dual problem, see Section for more details
on Lagrangian relaxation.

To have a complete representation of the input, the objective function, the
right-hand side and the constraint matrix defining the input problem must be
given explicitly. This implies that our approach only handles compact mixed-
integer linear problems, that is, problems with a polynomial number of variables
and constraints.

We focus on Lagrangian relaxations such that the Lagrangian dual prob-
lem provides a tighter bound that the one of the continuous relaxation. This
assumption is not too restrictive as the continuous relaxation of a compact for-
mulation can be efficiently solved using a linear solver. This assumption offers
two advantages. Firstly, given an input ¢ = (P, R), the continuous relaxation of
(P) can be solved to get an optimal pair of primal and dual solutions z* and A*,
and these solutions can be used to extract initial features, say x*. Secondly, in-
stead of directly predicting a Lagrangian multiplier for each dualized constraint
r € R, we predict its deviation with respect to the value A% of A* associated with
r, following the same idea as (He, Zhang, et al.,|2016) for residual connections.
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Since optimal Lagrangian multipliers may not be unique, we build our model
under unsupervised learning framework, that is, we do not try to predict La-
grangian multipliers that are close to specific optimal ones considered as labels.
Instead, to measure the quality of our predicted Lagrangian multipliers, we use
the value of the Lagrangian relaxed problem parametrized by our prediction.

We use a latent space to represent the dualized constraints. More specifically,
we use a probabilistic encoder-decoder scheme. The probabilistic encoder g,
parametrized by ¢, outputs parameters of a normal distribution over the latent
space for each dualized constraint. By sampling, we get a latent representation
z, of each dualized constraint r € R. This value z, is used as input for the
deterministic decoder fy, parametrized by @, that predicts the deviation of the
Lagrangian multiplier 7, with respect to A%. Since inequalities are dualized,
the Lagrangian multipliers must be nonnegative. Then, 7. = [\l + fo(z,)], for
each dualized constraint r € R, where [-]; denotes the softplus function’} The
(Lagrangian) dual function is used as the loss function.

Given a training dataset Z, the learning task is to find parameters ¢* and
0* such that:

¢*, 0" = arg Igi(}lZEZNN(q(p(XL)) |:LR([/\\LR + fo(2)]+; L)} ;
ez
where z € R¥*® is a matrix whose column z, € R? is the latent representation

of constraint r obtained by sampling over a normal distribution parametrized
by qs(x*), “R is the restriction of \* to the coordinates associated with R, and
fo(2) is the vector obtained by contatenating the value fy(z,) for all r € R.

6.2 Neural Network Architecture

In this section, we describe each part of the probabilistic encoder-decoder. Its
overall architecture is depicted in Figure 6.1

Input
v=(P,R)
+
CR
Solution
zt N

GNNy
Features .
Extraction D D Sampler

Input Encoder g, Latent Decoder fy Multipliers

Figure 6.1: Probabilistic encoder-decoder designed to predict a Lagrangian dual
bound.

1On the contrary to max{0,-} function, the soft version is differentiable at 0 and the
gradient for nonzero values is more informative as it is not only 0 or 1.
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Feature extraction Given an input ¢ = (P, R), a feature vector is obtained
for each variable and each constraint of (P) by using information from the objec-
tive function and the constraints of (P), from the set R of dualized constraints,
and from an optimal pair of primal and dual solutions to the continuous relax-
ation of (P)ﬂ Each vector is used as input of a feed forward neural network
to get a high-dimensional initial feature vector for each variable and each con-
straint.

Graph neural network A graph neural network is used to compute mean-
ingful features for the dualized constraints from the high-dimensional initial
features. For this, (P) is represented as a bipartite graph following (Gasse et
al., [2019) that will be used to perform graph convolutions.

The bipartite graph G = (U UV, E) is constructed as follows. The node sets
U and V contain a node per variable and per onstraint of (P), respectively. For
all u € U and v € V, there is an edge uv in FE if the variable associated with u
has a nonzero coefficient in the constraint associated with v.

The graph neural network is composed of ¢ layers in order to refine the
high-dimensional initial node features. Each layer is a graph neural layer as
represented in Figure [6.2] This layer is based on a graph convolutional layer
as described in Section :2.2] but both operations forming this layer, namely
the linear convolution and the non-linear transformatiodﬂ are preceeded by a
normalization layer (Ba, Kiros, and Hinton, [2016]), followed by a dropout layer
(Srivastava et al.,[2014), and sorrounded by a residual connection that adds the
input to the output (He, Zhang, et al., |2016|), similarly to what is done in the
transformer architecture (Vaswani et al., [2017).

( Graph Neural Layer

od

node N - - node
features Graph Message Passing Non-Linear Transformation features
inear Parallel
g FENN
tion & FFNN,
La or- ropou . La or- - Dropout T
malization ayer : malization g Layer
o

Figure 6.2: A visual representation of the Graph Neural Layer used in the
probabilistic encoder.

Sampler The graph neural network computes node embeddings for each vari-
able and each constraint of (P). The ones associated with the dualized con-
straints of R are used to sample a latent representation of these constraints.
To enable backpropagation, we use the reparametrization trick (Kingma and
Welling, 2014)): for each r € R, 2, is the output of a deterministic function taking

2See (Demelas et al., [2024)) for a precise description of the initial features.
3The linear convolution corresponds to the operations inside parenthesis whereas the non-
linear transformation corresponds to o in Equation (4.21)).
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some paremeters predicted by the encoder as well as a random noise following
a normal distribution, that is:

Zp = [y + 61’])(7}) OF 3

where £ is a standard normal random vector, that is, each of its components
&; is given by & ~ N(0,1). The value (u, || 7-) corresponds to the embedding
associated with the node in the last layer of our GNN associated with constraint
r € R. Following (Chua et al., |2018]), we clip the variance exp(7,.) to a safe
interval using the softplus function.

Decoder The deterministic decoder fy is a single feed forward neural network
taking as input a latent representation z, of a constraint » € R and outputing
the deviation of the Lagrangian multiplier m, associated with r with respect to
AL, that is . = [AL + fo(zr)]+-

6.3 Evaluation

Our approach is evaluated on two classical operations research problems that
are briefly described in the next two paragraphs. For more details on the prob-
lems, their formulation and the considered Lagrangian relaxations, the inter-
ested reader should look at the Appendix of (Demelas et al., [2024)).

Multi Commodity Capacitated Network Design (MC) In this problem,
one has a capacitated digraph and a set of commodities to route at minimum
cost from their origin to their destination while not exceeding arc capacities.
The cost of a solution is given by the the sum of the fixed costs of the arcs
used to route commodities plus the sum over these arcs of the routing cost that
linearly depends on the amont of commodities carried on the arc. Note that
each commodity may be routed on several paths.

The problem may be formulated as a mixed-integer linear problem by con-
sidering continuous flow variables for each commodity and a binary variable for
each arc to indicate whether or not an arc is used to route commodities. This
formulation contains three families of linear constraints: the flow conservation
equations to ensure having a flow for each commodity, the capacity inequalities
to force the amount of flow routed through any arc to be no more than its
capacity, and bound inequalities.

A classic Lagrangian relaxation is obtained by dualizing the flow conservation
constraintsﬂ The Lagrangian relaxed problem then decomposes per arc and
corresponds for each arc to a continuous knapsack problem.

4Since the dualized constraints are equations, the Lagrangian multipliers are not required
to be nonnegative. Then, in our model, the prediction is given by m = AL + fg(z,) for each
constraint r € R.
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Generalized Assignment (GA) In this problem, there is a set of items and
a set of bins, each with different capacities. The weight and profit of each item
vary depending on the bin it is assigned to. The objective is to assign items to
bins in a way that maximizes the total profit while ensuring that the combined
weight of items in any bin does not exceed its capacity. Note that an item may
remain unassigned to any bin.

The problem may be formulated as a binary linear problem by considering
a binary variable for each pair of item and bin in order to indicate whether or
not this item is assigned to that bin. This formulation contains two families of
inequalities: packing constraints ensuring that each item is assigned to at most
one bin and capacity inequalities forcing the sum of the weights of the items
assigned to any bin to not exceed its capacity.

A Lagrangian relaxation is obtained by dualizing the packing constraints.
The resulting Lagrangian relaxed problem decomposes per bin and corresponds
for each bin in a binary knapsack problem.

For both problems, our model provides accurate bounds in short running
time. It is orders of magnitude faster than solving the Lagrangian dual prob-
lem using state-of-the-art bundle methods while providing an average gap that
ranges from 2% for the small MC instances to less than 5% for the big ones.
For GA, it is less than 2%. Our method provides really more accurate bounds
than the ones given by solving the Lagrangian relaxed problem parametrized
by Lagrangian multipliers predicted using baseline machine learning models like
k-Nearest Neighbors regression or feed forward neural networks.

The Lagrangian multipliers predicted by our model can be used to initialize
the bundle method. Indeed, this method proceeds iteratively, starting from an
initial dual solution and converging to the optimal solution of the Lagrangian
dual problem. The choice of the initial dual solution affects the number of
iterations of the bundle method and, consequently, its running time. We have
shown that using the output of our model as the initial solution reduces the total
running time by between one-third and one-half, depending on the precision set
for the stopping criterion of the bundle method.
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Research Perspectives

In this last chapter, I briefly expose several research directions that correspond
to ongoing works, or research questions I would like to address in the future.
The research questions presented here are related with the works of current
Ph.D. students under my co-supervision or open questions raised during the
Ph.D. theses I co-supervised that were recently defended. Questions connected
to parts[[] and [[T of this document are presented in Section [[]and [2] respectively.
In Section [3] I present a research topic I have started working on this year.

1 Perspectives Related to Polyhedra

Polyhedra are everywhere in mixed-integer linear programming since the convex
hull of the solutions to any such problem is a polyhedron. Studying these polyhe-
dra gives insights on the structure of the solutions and may provide polynomial-
time solvable cases and min/max relations. As such, polyhedra is one of my
favorite way to tackle any mixed-integer linear problem and I intend to continue
exploring these objects in my research. Hence, the following research questions
do not fully represent my future research on polyhedra but correspond to some
questions emerged from my previous and current works that I want to answer
in the next future.

1.1 The Co-2-plex Polytope

This research perspective is a question that was raised at the end of the Ph.D.
thesis of Alexandre Dupont-Bouillard.

Given a graph G = (V, E), a co-k-plex is a set of nodes inducing a graph in
which the maximum degree is less than k. Co-k-plexes generalize stable sets as
these latter are co-1-plexes.

Recently, co-k-plexes have been studied since they allow to define cohesive
groups in the complement graph of a social network in a less restrictive manner
than stable sets (Seidman and Foster, [1978)).

In (Dupont-Bouillard et al., [2024), we introduce the utter graph u(G) of
a graph G = (V, E) so that there is a bijection between the co-2-plexes of G
and the stable sets of u(G). The utter graph u(G) is defined as follows. It
contains a node for each node v € V and for each edge e € E. It has an edge uv
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if the elements of G corresponding to v and v are either incident, adjacent or
adjacent by contraction, where a node v and and a nonincident edge e (resp. two
nonincident edges e and f) are adjacent by contraction if contracting e (resp. e
and f) results in two adjacent nodes.

When the graph is perfect, its stable set polytope, that is the convex hull of
the incidence vectors of its stable sets, is described by the clique and nonnegative
inequalities (Chvétal, 1975)). Due to the bijection between stable sets of u(G)
and co-2-plexes of G, this gives an extended formulation of the co-2-plex polytope
of G, that is, the convex hull of the incidence vectors of its co-2-plexes, when
u(G) is perfect. The class of graphs whose utter graphs are perfect are the
contraction perfect graphs which are the perfect graphs that remain perfect
when contracting any set of edges (Dupont-Bouillard et al., [2024)). In (Dupont
Bouillard, [2024), we project the extended formulation onto the natural space
RY when the graph is a tree. Could we generalize this result to the class of
contraction perfect graphs by projecting the extended formulation? A way to
start answering this question would be to characterize the co-2-plex polytope of
chordal graphs. These latter are a well-studied subclass of contraction perfect
graphs and their utter graphs are also chordal. This implies that the extended
formulation is compact since the number of cliques of a chordal graph is bounded
by its number of nodes. Answering this first question is one of my future works.

1.2 The Box-TDIness of the Perfect Matching Polytope

This research perspective is the continuation of the work done in the context of
the Ph.D. thesis of Francesco Pisanu.

A matching in a graph is a set of edges that are pairwise nonadjacent. A
matching is perfect if it covers all the nodes of the graph. Perfect matchings are
widely studied combinatorial objects (Lucchesi and Murty, 2024).

The matching polytope is the convex hull of the incidence vectors of edge
sets corresponding to matchings. A linear description of the matching polytope
has been given in (Edmonds, 1965, and Cunningham and Marsh (1978) prove
that this system is TDI. Ding, Tan, and Zang (2018) characterize the class of
graphs whose matching polytope is box-TDI.

The perfect matching polytope (PMP) is the convex hull of the incidence
vectors of edge sets corresponding to perfect matchings. The PMP is a face of
the matching polytope, and since all faces of a box-TDI polyhedron are box-
TDI, the characterization of the box-TDIness of the matching polytope of Ding,
Tan, and Zang (2018) gives sufficient conditions for the PMP to be box-TDI.
However, there exists an infinite number of graphs whose PMP is box-TDI but
its matching polytope is not. For instance, the matching polytope of the graph
in Figure Eﬂ is not box-TDI as it contains the subgraph in gray (Ding, Tan, and
Zang, 2018)). In contrast, the PMP of this graph is box-TDI. Moreover, this
situation occurs for every odd subdivision of this graph, where a graph H is an
odd subdivision of a graph G if H arises from G by replacing edges by paths with

5This figure is to be credited to Francesco Pisanu.
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an odd number of edges. Indeed, odd subdivision preserves the box-TDIness
of the PMP (Theorem 3.15 of (Pisanu, [2023))) and the non boxTDIness of the
matching polytope (Theorem 3.38 of (Pisanu, [2023)).

Figure 1: A graph whose PMP is box-TDI on the contrary to its matching
polytope as it contains the subgraph in gray. Moreover, for any odd subdivision
of this graph, the PMP remains box-TDI while the matching polytope remains
non box-TDI.

A research question is to characterize the class of graphs for which the PMP
is box-TDI. During the Ph.D. thesis of Francesco Pisanu, we obtained some pre-
liminary results in this direction. Before stating them, we give some definitions.

A cut is tight if it intersects every perfect matching once. It is trivial if it
is equal to &(v) for some v € V. Let F be a laminar family of nontrivial tight
cuts of a graph G. Contracting a shore of a cut of F gives a smaller graph,
and all the elements of F corresponding to cuts in the resulting graph are tight.
Repeating the contractions until no element of F corresponds to a nontrivial
tight cut gives a graph which is a F-contraction of G. The family F has the
odd cycle property if no F-contraction is bipartite. A cut C' has the odd cycle
property if the family {C} has.

In Figure |3, C' and C’ are two laminar nontrivial tight cuts. The different
{C, C"}-contractions are given in Figure[2| Note that {C,C’} has not the odd
cycle property since the graph in Figure [2b]is bipartite. However, one can check
that both C and C’ have the odd cycle property.

A near-brick is a graph having no tight cut with the odd cycle property. If
F is a maximal laminar family of tight cuts with the odd cycle property, then
every JF-contraction is a near-brick. A near-brick of a graph G is a near-brick
which corresponds to a F-contraction of some maximal laminar family of tight
cuts F of G with the odd-cycle property.

We first prove that contracting the shores of laminar nontrivial tight cuts
preserves the box-TDIness of the PMP.

Theorem 1 (Pisanu, [2023). Let G be a graph whose PMP is box-TDI, and let
F be any laminar family of nontrivial tight cuts of G. Then, the PMP of each
F-contraction of G is box-TDI.

We also characterize the class of near-bricks having a box-TDI PMP. An odd
intercyclic graph is a graph having no two disjoint odd circuits.
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(a) Contracting V \'Y (b) Contracting X and Y.  (c) Contracting V' \ X.

Figure 2: List of {C, C’}-contractions of the graph of Figure

Theorem 2 (Pisanu, [2023). The PMP of a near-brick is box-TDI if and only
if the near-brick is odd intercyclic.

Theorems|I]and [2]imply that a necessary condition for the PMP of a graph G
to be box-TDI is that every near-brick of G is odd intercyclic. However, this
condition is not sufficient. Indeed, Figure [3|shows an example of a graph whose
PMP is not box—TD]ﬂ Its four near-bricks are obtained by contracting either
a shore of C or of C’, and they are all odd intercyclic (see (Pisanu, [2023) for
more details on this example).

Figure 3: A graph whose PMP is not box-TDI but all its near-bricks are odd
intercyclic.

This leads to the following questions: could we give necessary and/or suffi-
cient conditions for the box-TDIness of the PMP of a graph provided that the
PMP of all its near-bricks are box-TDI? Another standpoint could be consid-
ered. Edmonds, Pulleyblank, and Lovész (1982) show that for every matching
covered graph, there exists a maximal laminar family of non trivial tight cuts
whose cuts are of two forms: barrier cuts or 2-separation cutsﬂ We prove that
the PMP of a graph G having a 2-separation cut §(X) is box-TDI if and only

SThis figure is also to be credited to Francesco Pisanu.
"Definitions of such types of cuts are omitted here but can be found in (Pisanu, [2023)) for
instance.
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if those of G/X and G/X are. Hence, could we define some necessary and/or
sufficient conditions of the same type for barrier cuts?

2 Perspectives Related to Machine Learning

The second part of this document has presented some of my works combining
machine learning and mixed-integer linear programming. I intend to continue
exploring the interplay between these two domains. I present in this section
different research questions that correspond to my planned future work.

2.1 Using Machine Learning Alongside Bundle Methods

This research direction is an ongoing work with Francesca Demelas which has
recently defended her Ph.D.

In Chapter [6] I present a work where dual bounds for mixed-integer linear
problems are given using machine learning. More precisely, a model predicts La-
grangian multipliers and this prediction is used to parametrize the Lagrangian
relaxed problem. Our approach is an amortization method that leverages ma-
chine learning to replace an iterative method such as subgradient or bundle
methods. It can also be used as an initialization of such iterative methods.

Although the proposed method yields accurate results, it has certains draw-
backs. A first one is the large dimension of the output space of our model
since the number of predictions equals the number of dualized constraints. This
tends to decrease the accuracy of our model when the size grows. Moreover, to
obtain such accurate results, our architecture relies on a graph neural network
whose size depends on the number of variables and constraints. Large datasets
are required to train this end-to-end learning model, making training ressource
intensive. Moreover, it is difficult to handle huge instances.

To overcome these drawbacks, we propose an alternative approach that lever-
ages machine learning alongside the bundle method via unrolling algorithms.
Such algorithms, originated from the seminal work of Gregor and LeCun (2010))
for learning sparse coding, consist in representing a given number of iterations
of an iterative algorithm using a recurrent neural network where each step cor-
responds to an iteration of the algorithm. Hence, a forward pass in the recur-
rent neural network corresponds to performing several iterations (equal to the
number of steps in the network) of the algorithm. This leads to parametrized
networks that are usually faster and need less steps than the corresponding al-
gorithm for a same level of accuracy. Moreover, since they rely on a dedicated
algorithm well-fitted for the task, they usually require less data and are more
accurate than generic end-to-end neural networks (Monga, Li, and Eldar, |2021)).

By using unrolling algorithms, we propose to predict, at each iteration of the
bundle method, both the value of the regularization parameter used to weight
the quadratic term in the objective functionﬂ and the optimal solution to the

81t corresponds to parameter 7 in (4.8]).
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restricted master problem. This allows us to reduce the running time in two
different ways. On the one hand, we skip resolutions of quadratic problems.
On the other hand, we reduce the number of iterations by predicting accurate
solutions and regularizations.

During the Ph.D. thesis of Francesca Demelas, we propose a learning model
when the Lagrangian relaxation is obtained by dualizing equations. In that
case, the restricted master problem solved at each iteration is given by —
(4.8b)) since the Lagrangian multipliers are not required to be nonnegative. At
each iteration of the bundle method, in order to get an optimal solution to the
restricted master problem, one may solve its dual (Lemaréchal, 2001, Theorem
32). At iteration ¢, supposing that S’ = {z!,..., 2!}, this dual has the following

form:
t . t 2
t T
max iz — — 2 1
ZEA(t)g 171 2 ;gz (2 b ( )
where 7, is the regularization parameter at iteration ¢, {(g;, ;) | i = 1,...,t}

is the gradient bundl(ﬂ with g; = b — Az’ and o; = ¢'2' — ng) 7° for all
i=1,...,n, and A(t) denotes the (¢t — 1)-dimensional simplex, that is, A(t) =
{reRl |17z =1}

At each step ¢t € {1,...,¢}, a latent representation z; is obtained by sam-
pling following a probability distribution parametrized by the output y; of the
recurrent neural network at step t. This latent representation is given to a de-
coder composed of feed forward neural networks that outputs two vectors k;
and ¢; corresponding to the key of (g, ;) and query to respectively, as well
as the regularization parameter 7;. The predicted solution to is given by a
parameter-free attention mechanism: the query ¢; is used with keys ki,..., k;
to get the point of R* whose j*" component equals k:qut for j =1,...,t. This
point is projected onto A(t) using the sparsemax function (Martins and As-
tudillo, [2016]) to obtain a solution to .

The input at each step ¢ of the recurrent neural network is a handcrafted vec-
tor obtained using statistical measures on the solution to the restricted master
problem and on (gi—1,04—1).

While this approach gives good results on the multi commodity capacitated
network design problem, some further investigations should be done.

Up to now, we only have considered equations as dualized constraints. Du-
alizing inequalities seems more difficult. Indeed, it modifies and its solution
set is no more a simplex, which may complexify the prediction of a solution. A
first option is to keep solving for the surrogate dual, construct by duality a
solution to —, and obtain a solution to the restricted master prob-
lem by projecting into the nonnegative orthanﬂ However, could this
approach give accurate predictions? Could we instead directly predict a feasible
solution to the dual of ?

A major interest of the method is that, by considering the dual , the
model has to predict at each iteration t a solution of dimension ¢. This re-

9We suppose in our model that a gradient is added to the bundle at each iteration.
10This can be done in a differentiable manner by using a softplus function for instance.

65



sults in a huge dimensional reduction of the prediction space compared to the
approach presented in Chapter [f] However, in order to obtain a good represen-
tation of the problem, one has to find input features that correctly represent
the current solution and problem. The proposed handcrafted features could be
largely improved and this representation question should definitely be taken into
consideration. Moreover, in the first iterations, the gradient bundle is too small
so it is difficult to make accurate predictions. Could we incorporate instance
features to guide the model in the first iterations when the bundle is not suffi-
cient? This would represent a major improvement with respect to the current
approach.

2.2 Solution Prediction with Graph Neural Networks and
Markov Random Fields

In Chapter[6] we use machine learning to predict dual bounds of a mixed-integer
linear problem by predicting Lagrangian multipliers and solving the associated
Lagrangian relaxed problem. However, machine learning may also be used to
give primal bounds by predicting near-optimal solutions (Zhang, Liu, et al.,
2023). This constitutes a research question I have started working on in the
context of Alexandre Schulz’s Ph.D. thesis.

For a binary linear problem (P) with variables z1,...,z,, a way to predict
solutions is to predict for each variable its probabilities to be equal to 0 and
1 respectively. Fixing each variable to its most probable value (or sampling
independently each variable following its predicted distribution) gives a point
that is unlikely to be feasible. Nevertheless, different algorithms exist that use
these predicted probabilities to find high quality solutions. Nair et al. (2020)
fix only a subset of variables to their most probable value. This results in a
smaller problem that can be efficiently solved using traditional mixed-integer
linear programming solvers. The choice of the variables to fix is made using the
SelectiveNet classifier (Geifman and El-Yaniv,|2019). Ding, Zhang, et al. (2020
consider a relaxed variant of variable fixing. They consider a set F' of variables
corresponding to those having a high confidence, where the confidence of a
variable is the probability of fixing it to its most probable value. Then, they add
in the mixed-integer linear problem a linear constraint imposing that the number
of variables in F' that are not equal to their most probable value is no more than
a fixed parameter a. The case & = 0 corresponds to fixing each variable in F'
to its most probable value, whereas positive o implies that the model may have
made some prediction errors and « may be corrected. Shen, Sun, et al. (2021)
use the prediction to order variables with respect to their decreasing confidence.
They solve the problem with a branch-and-bound method using a depth-first
search following that order. More precisely, at each node of the branch-and-
bound tree, the current relaxation is solved. If the continuous solution is not
binary, then the first variable in the order with a fractional value is used for
branching, and the next node to process is the child node corresponding to
fixing the branching variable to its most probable value. The heuristic stops
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whenever a solution is found. Huang et al. (2022) combine both methods to
increase performance: fix a set of variables with high confidence, and solve the
smaller resulting problem with the described branch-and-bound algorithm.

To predict the variables’ probabilities, these works follow the same learning
scheme. A graph representation of (P) is used to derive a graph neural network.
Initial features are extracted from the objective function, the constraints, and
the primal and dual solutions to the continuous relaxation of (P). They serve as
inputs for the graph neural network that computes variables’ embeddings. These
embeddings are then used as input of another neural network that predicts the
probabilities of each variable to be equal to 0 and 1, respectively. Given a dataset
consisting in a set of mixed-integer linear problems and their optimal solution,
training the overall model to predict accurate probabilities is usually done in a
supervised manner by minimizing the binary cross entropy with respect to the
labelled solution.

A major drawback of these approaches is that the probability of each variable
is predicted independently from the others, that is, the probability to have a
solution Z is given by:

Plz=1)= Hp(xj =), (2)

where P(z; = Z;), j = 1,...,n are the predicted probabilities. The depen-
dencies between variables have to be encoded via the embeddings of the graph
neural network that are used for the prediction. We propose to leverage this by
considering another factorization of the probability distribution using Markov
random fields.

A Markov Random Field (MRF) models a distribution probability p over
binary random Variable@ T1,...,T, that can be decomposed by factors, where
a factor is a nonnegative function defined over a subset of variables. Given a set
of factors Yp(zp), F € F, where xp C {x1,...,2,}, we consider the following
distribution: 1

Pz=1)= I vr(ar).

FeF

where Z = 7 o130 [Iper ¥r(xr) is the partition function ensuring that
probabilities sum to one. A MRF is usually represented with a bipartite graph
(X UF,E) where X and F are the set of random variables and factors respec-
tively, and there is an edge xF for each x € X and each F' € F if and only if
factor I is defined over a subset of variables containing x. This bipartite graph
is referred to as the MRF factor gmphE

11 A MRF may be defined over nonbinary random variables but we restrict here to the binary
case we are interested in to simplify the presentation.

12A MRF may also be represented as a graph where nodes are associated with random
variables and cliques are in bijection with factors.
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Considering F = {{z1},...,{z,}} corresponds to a distribution like
but more complicated factors may be considered to take into account variable
interactions.

Each factor ¢p(z ) is usually defined as the exponential of the opposite of a
dot product between the factor parameter 6 and the factor sufficient statistic
or(xr) = [Mop=ylycfo,13» where 1,,.—, is the indicator function that equals 1
if xtp =y and 0 otherwise. The probability distribution is then equal to:

Ple=7) = 5 [] con(-00 (W) 6r(zr))
feF

and the set § = {0p | f € F} is the MRF parameter set.

Our approach is to plug a MRF inside the learning scheme in order to obtain
a better approximation of the probability distribution of the solutions to the in-
put problem by taking variable correlations into account. The factor graph of
this MRF is built upon the input problem and its parameters are predicted by
a machine learning model from the embeddings outputted by the graph neu-
ral network. The probabilities for each variable are obtained by applying a
marginal inference algorithm on the MRF like mean field or loopy belief prop-
agation (Wainwright and Jordan, 2008). These probabilities take into account
the interactions represented by the MRF. Figure {4] gives an overview of the
whole machine learning framework to predict solutions.

Marginal
inference

Input
v=(P,R)
+
CR
Solution
zh N

Variables’
and

constraints’
embeddings

Graph
neural
network

Variables’

probabilities Heuristics

Figure 4: Our machine learning scheme to predict a solution to a binary linear
problem. We depict in purple changes with respect to the baseline learning
scheme.

Preliminary results on the maximum cardinality stable set problem show
that adding a MRF inside the learning scheme improves the accuracy of the
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predictions and gives better solutions. However, this approach raises several
questions.

How to build the MRF upon the input problem? A possibility is to con-
sider as factor graph the bipartite representation of the input problem where
constraints correspond to factors (Park and Shin, 2015|). If this is possible for
the stable set problem, since there are only two variables per constraint, this
leads in the general case to MRF with factors defined on many variables. This
implies too large factor parameters (with size up to 2™ if a constraint contains
all variables) to deal with. One may approximate large factors by a set of small
ones. But which constraints should be replaced and by which small factors?

Even if the MRF only contains small factors, the marginal inference is NP-
hard in general. Inference heuristics like loopy belief propagation (Wainwright
and Jordan, 2008]) usually provide a good approximation but at the expense of
extra computational burden. Should the factor graph be chosen to yield a poly-
nomial inference problem, e.g., be a tree? During training, may we approximate
marginal inference with other methods (Wiseman and Kim, [2019; Kuck et al.,
2020) to speed up training?

Finally, how sould we map the embeddings to the factor parameters? In
our preliminary experiments, this question is simple. Indeed, we consider the
same bipartite graph representation of a mixed-integer linear problem for the
graph neural network (Gasse et al.,|2019) and the factor graph. Hence, there is a
bijection between graph neural network node embeddings and factor parameters.
But how to do this mapping when both graphs differ? Several possibilities exist
but thorough investigations have to be done.

Another interesting question links polyhedra and machine learning. Indeed,
Chen, Liu, et al. (2023b)) have shown that graph neural networks do not have
enough separation power to predict the feasibility of a mixed-integer linear prob-
lem when only the objective function and the constraints are used to extract
features (no feature associated with continuous relaxation). In other words,
there exist a feasible input problem and an infeasible one, and any graph neu-
ral network will predict the same value (feasible or infeasible) for both prob-
lems. This does not happen for linear optimization problems (Chen, Liu, et al.,
2023a). Since solving a mixed-integer linear problem is equivalent to solving a
linear problem whose constraints correspond to the convex hull of its solutions,
it is possible in theory to distinguish the feasibility of a mixed-integer linear
problem using a graph neural network based on the graph representation of the
linear description of its convex hull. Obviously, this is not possible to get such
a graph neural network as it would contain in general an exponential number
of nodes but even a partial description of the convex hull may increase its rep-
resentation power. We plan to follow this approach by adding strengthening
inequalities in our problem before predicting solutions. However, many ques-
tions arise: are strengthening inequalities useful from an experimental point of
view to predict high quality solutions? Which kind of constraints should be
added? How to handle these constraints in the MRF? More generally, how may
machine learning take advantage from known polyhedral insights in order to
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predict solutions?

3 Mixed-Integer Linear Programming for Clas-
sification

Up to now, my works mixing machine learning and mixed-integer linear pro-
gramming domains concern either the use of mixed-integer linear programming
tools to formulate and solve the inference problem of some natural language
processing task (Chapter |5)), or the use of machine learning to enhance La-
grangian relaxation resolution (Chapter @ A research question I really enjoy
to investigate is the use of mixed-integer linear programming to design classifi-
cation trees. This question is part of the Ph.D. thesis of Daniel Kopisitskiy who
started in September 2024.

Consider a dataset D = {(z%,y"),i = 1,...,n} of n observations where
x' € RY is the feature vector of observation i, and y* € {0,..., L} is its label.
For ease of presentation, we consider a binary classification problem where each
feature has a binary domain, that is, z* € {0,1}¥ and y* € {0,1} fori =1,...,n.

A univariate classification tree is an arborescence D = (V, A) where each
internal node is associated with a feature xy, f € F', and has two leaving arcs
associated with value 0 and 1 respectively, and each leaf is associated with a
label 0 or 1. Any feature vector z € {0,1}F is associated with a path in the
classification tree D from the root to a leaf. This path is given by choosing,
starting from the root node, the arc leaving node v whose associated value equals
xy¢, where xy, f € F, is the feature associated with v. The label predicted by
the classification tree for x is the label of the leaf in the corresponding path, see
Figure [5] for an example.

Classification trees are widely used due to their interpretability as they can
be easily understood by human beings, and to their ability to learn complex
mappings. They constitute interesting models for explainable AT (Rudin,|2019).

Classification trees are usually constructed using heuristics such as CART
(Breiman et al., [1984) and C4.5 (Quinlan, [1993), see (Jena and Dehuri, [2020))
for a review of the state-of-the-art heuristics. These heuristics locally optimize
an objective that serves as a proxy for optimizing the global accuracy of the
model. However, the design of classification trees may be posed as a combinato-
rial optimization problem. Given a dataset and a positive integer h, determine
a classification tree of depth at most A which minimizes the number of misclas-
sified observations. Such classification trees are called optimal. Experiments
show that optimal classification trees provide better accuracy than the ones
designed by heuristics, even on unseen observations (out-of-sample accuracy),
that is on a test dataset different from the train dataset used for computing the
optimal classification tree (Bertsimas and Dunn, |2017; Verwer and Zhang, 2017;
Demirovié et al., 2022; Linden et al., |2025). Moreover, such trees are usually
much smaller than the greedy ones, increasing the interpretability of the model
(Lin et al., |2020; Linden et al., |2025)).
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0 1 0 1 1 0 0
0 0 0 1 0 1 0
0 0 1 1 1 0 0
1 0 1 1 0 1 0
0 1 1 0 1 0 1
0 0 1 0 0 1 1
1 0 0 1 1 0 1

Figure 5: On the left, a dataset composed of seven observations is displayed.
Each observation is defined by a binary feature vector of dimension 6 and a
binary label. On the right, a univariate classification tree is displayed. Each
internal node contains the feature used for splitting. The value of the feature
is indicated on the leaving arcs. The leaves are depicted in green and contain
their associated label inside. The fifth observation corresponds to the blue path
in the classification tree so this latter predicts label 1 for this observation as it
is the label of the leaf corresponding to the end node of the path. Since the
label y° of the fifth observation is 1, the decision tree correctly classifies this
observation.

Even if computing optimal classification trees is NP-hard (Hyafil and Rivest,
1976)), several exact approaches have been designed (Demirovié et al.,|2022; Ver-
haeghe et al., 2020)), especially using mixed-integer linear programming (Bert-
simas and Dunn, 2017; Verwer and Zhang, [2019; Aghaei, Gémez, and Vayanos,
2024; Zhu et al., [2020)), see (Carrizosa, Molero-Rio, and Romero Morales, 2021))
for more details on mathematical optimization for classification trees. Even if
these models and algorithms do not yet scale to large datasets, several algo-
rithms have been proposed which become more and more efficient.

Among them, the Benders decomposition developped by Aghaei, Gémez,
and Vayanos (2024)) seems to be well suited. Indeed, the authors formulate the
computation of optimal classification trees as a multiflow problem: each cor-
rectly classified observation is a flow of value 1 from the root to a leaf, and the
problem is to route the maximum amount of flow while the arc capacities are
specified by the selected features for internal nodes and the selected labels for
leaves. In their formulation, they consider binary variables for feature and label
selection on nodes and continuous flow variables for each observation. In their
Benders decomposition, the master problem is the design of the classification
tree whereas the auxiliary problem reduces to computing a set of flows, and
serves to count the number of correctly classified points for such a tree. The
auxiliary problem decomposes per observation. For each observation, optimality
cuts are inequalities associated with directed cuts in the tree and, by Menger’s
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Theorem (Menger, [1927)), they ensure the existence of a flow if the observation
is correctly classified. Hence, optimality cuts are separated observation by ob-
servation. The Benders algorithm improves the overall performance but gets
stuck at some point due to the number of generated optimality cuts.

We propose to enhance the Benders decomposition of Aghaei, Gémez, and
Vayanos (2024) by considering iterative surrogate problems obtained by par-
titioning observations into clusters and solving the problem considering each
cluster as a single observation. At each iteration, some clusters have to be re-
fined, that is, partitioned into several subclusters to obtain more accurate sur-
rogate problems. A promising approach is to adapt the Benders adaptive-cuts
method of Ramirez-Pico, Ljubié¢, and Moreno (2023) that has been designed
for two-stage stochastic problems. In these problems, the number of scenar-
ios is huge and classic Benders approaches generate either a cut per iteration
by aggregating all scenarios (single-cut approach) or many cuts by separating
Benders cuts scenario by scenario (multi-cut approach). Ramirez-Pico, Ljubié,
and Moreno (2023)) consider an adaptive-cuts approach where scenarios are dy-
namically partitioned into clusters, and the separation of Benders cuts is done
cluster by cluster. Similar works considering partitioning scenarios for Benders
decomposition exist for two-stage stochastic problems (Beltran-Royo, 2022 Biel
and Johansson, 2020; Trukhanov, Ntaimo, and Schaefer, 2010} Vandenbussche
et al., |2019). Note that a partition based approach has been considered for
optimal classification trees by Ales, Huré, and Lambert (2024) but not coupled
with a Benders decomposition.

In the Benders adaptive-cuts method (Aghaei, Gémez, and Vayanos, [2024)),
a core component is the way partitions are iteratively refined, and this has
a dramatic impact on the performance of the algorithm. There exist generic
algorithms (based on the values of dual variables in the auxiliary problem) but
could we find a more efficient way to do it for optimal classification trees?

In their experiments, the authors consider, as initial partition, the parti-
tion with only one cluster containing all scenarios. For optimal classification
trees, starting with such a partition may lead to several refinements increasing
the computational time. Could we warmstart the algorithm by constructing
a priori an initial partition? Ales, Huré, and Lambert (2024)) propose differ-
ent algorithms for partitioning the observations. Are their methods efficient in
that case? Do we need to enhance this method with other algorithmic Ben-
ders tricks (Rahmaniani et al., [2017)) like stabilization or cut selection/removal?
More generally, how to improve this algorithm to scale it to large datasets?

Several variants of optimal classification trees exist: multivariate optimal
classification trees (Bertsimas and Dunn, 2017) where a linear combination of
features is used for splittings, or optimal classification model trees where the
linear combination is done at each leaf (Roselli and Frank, 2025). Moreover,
different requirements, for instance arising from social sciences, may be added
like fairnees (Jo et al., |2023). Could we reshape our Benders adaptive-cuts
algorithm to adapt it to those variants?
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its construction process helps us to inductively provide the description in the original
space. As a consequence, using the link between bonds and circuits in planar graphs,
we also describe the bond polytope on series—parallel graphs.
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In an undirected graph, a circuit is a subset of edges inducing a connected subgraph in which every vertex
has degree two. In the literature, a circuit is sometimes called simple cycle. Given a graph and costs on its
edges, the circuit problem consists in finding a circuit of maximum cost. This problem is already NP-hard
in planar graphs [1], yet some polynomial cases are known, for instance when the costs are non-positive.

Although characterizing a polytope corresponding to an NP-hard problem is unlikely, a partial description
may be sufficient to develop an efficient polyhedral approach. Concerning the circuit polytope, which is the
convex hull of the (edge-)incidence vectors of the circuits of the graph, facets have been exhibited by Bauer [2]
and Coullard and Pulleyblank [3], and the cone has been characterized by Seymour [4]. Several variants of
cardinality constrained versions have been studied, such as [5-8].

For a better understanding of the circuit polytope on planar graphs, a natural first step is to study it in
smaller classes of graphs. For instance, in [3], the authors provide a complete description in Halin graphs.

Another interesting subclass of planar graphs are the series—parallel graphs. Due to their nice decomposi-
tion properties, many problems NP-hard in general are polynomial for these graphs, in which case it is quite
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standard to (try to) characterize the corresponding polytopes. Results of this flavor were obtained for various
combinatorial optimization problems, such as the stable set problem [9], graph partitioning problem [10],
2-connected and 2-edge-connected subgraph problems [11,12], k-edge-connected problems [13], Steiner-TSP
problem [14].

Since a linear time combinatorial algorithm solves the circuit problem in series—parallel graphs, an obvious
question arising is the description of the corresponding polytope. Surprisingly, it does not appear in the
literature, and we fill in this gap with Theorem 11.

The main ingredient for the proof of our main theorem is the existence of a compact extended formula-
tion for the circuit polytope on series—parallel graphs. An extended formulation of a given polyhedron P =
{r € R" : Az < b} is a polyhedron @ = {(z,y) € R" x R™ : Bx + Cy < d} whose projection onto the x
variables proj,(Q) = {z € R™ : there exists y € R™ such that (x,y) € Q} is P. The size of a polyhedron is
the number of inequalities needed to describe it. An extended formulation is called compact when its size is
polynomial. We refer to [15] for further insights on this topic.

The past few years, extended formulations proved to be a powerful tool for polyhedral optimization, and
thus received a growing interest in the community. Indeed, describing a polytope directly in its original
space is often pretty challenging, and by looking for an extended formulation one has more tools at disposal.
As an example, for most combinatorial optimization polytopes in series—parallel graphs, Martin et al. [16]
proposed a general technique to derive extended formulations from dynamic programming algorithms, but
the corresponding descriptions in the original space remain unknown.

Recently, it has been shown that the perfect matching polytope admits no compact extended formula-
tion [17]. It means, even if an optimization problem is polynomial, there may not exist such a formulation.
Here, though we are not able to explicitly construct a compact extended formulation for the circuit poly-
tope on series—parallel graphs, we show that there exists one, see Section 2.1.1. The construction process of
this extended formulation relies on a straightforward inductive description of the circuits of series—parallel
graphs, combined with a theorem of Balas [18,19]. It allows us to prove by induction that the circuit poly-
tope on series—parallel graphs is completely described by three families of inequalities. We provide examples
where exponentially many of these inequalities define facets, see Corollary 19. Thus, the circuit polytope on
series—parallel graphs is another example of polytope having exponentially many facet-defining inequalities
that admits a compact extended formulation.

A graph is series—parallel if and only if, given any planar drawing of the graph, its dual is series—parallel.
The dual of a circuit is a bond, that is a cut containing no other nonempty cut. These bonds play an
important role e.g. in multiflow problems [20]. By planar duality and the description of the circuit polytope on
series—parallel graphs, we get the description of the bond polytope on series—parallel graphs, see Theorem 13.

The paper is organized as follows. In Section 1, we fix graph related notation and definitions, and review
some known and new auxiliary results about circuits in series—parallel graphs. Section 2 deals with the
circuit polytope on series—parallel graphs. First, we get a polyhedral description of the latter for non
trivial 2-connected series—parallel graphs, by providing the existence of a compact extended formulation,
and then inductively projecting it. By applying standard techniques, the polyhedral description for general
series—parallel graphs follows, which has exponential size in general. In Section 3, using the planar duality,
we describe the bond polytope on series—parallel graphs, and then we study facet-defining inequalities, which
have counterparts for the circuit polytope as well.

1. Circuits in series—parallel graphs

Throughout, G = (V, E) will denote a connected undirected graph with n = |V| vertices and m = |E|
edges. The graph induced by a subset W of V' is the graph G[W] obtained by removing the vertices of V'\ W,
and dg(W) is the set of edges having exactly one extremity in W. Given disjoint U,W C V, dg(U, W) is
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the set of edges having one extremity in each of U and W. When it is clear from the context, we will omit
the subscript G. Given a set of edges F' C F, V(F') denotes the set of vertices incident to any edge of F.
We denote by AAB = (AU B) \ (AN B) the symmetric difference of A and B.

A subset F of E is called a cut if F = §g(W) for some W C V. If u € W and v € V'\ W, the cut separates
u and v. A cut defined by a singleton is a star. A bond is a cut containing no other nonempty cut. One
can check that a nonempty cut (W) is a bond if and only if both G[W] and G[V \ W] are connected. In
the literature, a bond is sometimes called a central cut. A bridge is an edge whose removal disconnects the
graph, that is a bond of size one. Note that the symmetric difference of bonds is a cut.

A subset of edges is called a cycle if it induces a subgraph where every vertex has even degree. A connected
cycle with every vertex of degree two is a circuit. If e is a circuit, it is called a loop. Let C(G) denote the set
of circuits of G. Note that the symmetric difference of circuits is a cycle.

By definition, the emptyset is both a bond and a circuit.

When no removal of a single vertex disconnects a graph, the latter is said 2-connected. Loops and bridges
are called trivial 2-connected graphs. The non trivial 2-connected components of a graph are the maximal
2-connected subgraphs of the graph, i.e., the components obtained after removing the loops and bridges.

A graph is series—parallel if all its non trivial 2-connected components can be built, starting from the
circuit of length two C5, by repeatedly applying the following operations: add a parallel edge to an existing
edge; or subdivide an existing edge, that is replace the edge by a path of length two. This construction gives
an inductive description of the circuits of such graphs.

Observation 1. Let G = (V, E) be a non trivial 2-connected series—parallel graph.

(i) If G is obtained from a graph H by subdividing an edge e € E(H) into e, f, then the circuits of G are
obtained from those of H as follows:
e C, for C € C(H) not containing e,
e CUf, for C € C(H) containing e.

(ii) If G is obtained from a graph H by adding a parallel edge f to an edge e € E(H), then the circuits of
G are obtained from those of H as follows:
e C, for C € C(H) not containing e,
e Cand C\eUf, for C € C(H) containing e,

o {e, [}

A well-known characterization of cuts is that they are the sets of edges intersecting every circuit an even
number of times. In series—parallel graphs, we have the following property [20].

Observation 2 (/20]). In a series—parallel graph, a bond and a circuit intersect in zero or two edges.

If the graph is also 2-connected, then this property becomes a characterization of circuits, see below. Note
that the following does not hold if the series—parallel graph is not 2-connected.

Lemma 3. In a non trivial 2-connected series—parallel graph, a set of edges is a circuit if and only if it
intersects every bond in zero or two edges.

Proof. We prove the non trivial direction. By contradiction, let G be a minimal counter-example, and let F’
be a set of edges intersecting every bond in zero or two edges that is not a circuit. First, suppose that G is
build from H by adding a parallel edge f to an edge e € E(H). Necessarily, we have f € F as otherwise H
would be a smaller counter-example. Similarly, e € F. Suppose there exists g € F'\ {e, f}. Since G is planar
and 2-connected, so is its dual. Any pair of edges in a 2-connected graph being contained in a circuit, the
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planar duality between circuits and bonds implies that there exists a bond B of G containing both ¢ and e.
Hence, B also contains f, which provides the contradiction |F'N B| > 3. Now, assume that G is build from
H by subdividing e € E(H) into {f,g}. Since G is 2-connected, {f, g} is a bond, hence F' contains either
both f and g or none of them. In both cases, H is clearly a smaller counter-example, a contradiction. [

For an ordering vy, ..., v, of V such that §({vi,...,v;}) is a bond for all ¢ = 1,...,n — 1, the partition
S={51,...,8,-1} of E defined by S; = 6(ve,{ves1,...,0n}), for £ =1,...,n— 1, is a star decomposition.
We will denote the initial star d(vy, {ve,...,v,}) by Is. Equivalently, a star decomposition is obtained by
partitioning the edgeset by iteratively removing stars of the graph such that, at each step, the vertex to be
removed is adjacent to some removed vertex, and the set of remaining vertices induces a connected graph.
Is is the unique element of the star decomposition which is a star of the original graph.

Using induction and the construction of non trivial 2-connected series—parallel graphs, one can see that in
these graphs any vertex is the initial vertex of some star decomposition. In particular, such decompositions

exist.
Lemma 4. Given a star decomposition S of a series—parallel graph G, the following holds:

(a) a circuit intersects each member of S at most twice,
(b) a circuit does not intersect two members of S twice.

Proof. Let C' be a circuit of G and vy,...,v, an ordering of V such that S = {S1,...,S,_1} with S, =
d(ve, {veg1,. - yvn}), for £=1,...,n—1.

Since every member of S is contained in a star of G and a circuit goes through each vertex at most
once, Lemma 4(a) holds. Let us show Lemma 4(b) by contradiction, and let ¢ < j be such that |S; N C| =
|S; NC| =2and |S,NC| < 1forall k < j, k # i. By construction of star decompositions, we have CNSy = 0,
for all £ < i, and C'\ ( Z;i Se) is a path of which S; contains two edges, hence |6({v1,...,v;}) N C| = 4.
Since 6({v1,...,v;}) is a bond, this contradicts Observation 2. O

Two sequences of edge subsets M = (My,..., M) and N = (Ny,...,Ng) form a star-cut collection
if {Mo,...,M;} C S and My = Ig, for some star decomposition S of G, and M;AN; is a cut of G, for
t=1,...,k. Note that the elements of A are not required to be disjoint.

2. Circuit polytope on series—parallel graphs

Given a graph G = (V, E) and F C E, xI € R¥ denotes the incidence vector of F, that is x' equals 1 if
e € F and 0 otherwise. Since there is a bijection between edge sets and their incidence vectors, we will often
use the same terminology for both. Let C(G) be the convex hull of the incidence vectors of the circuits of G,
that is C(G) = conv{x® : C € C(G)}. In this section, we give an external description of the circuit polytope
on series—parallel graphs.

Note that the circuit polytope of the graph is the union of the circuit polytopes of its loops, bridges, and
non trivial 2-connected components. Therefore, we start by studying the circuit polytope for this latter case,
and then derive the description for general series—parallel graphs.

Throughout, we will use the following theorem of Balas [18,19]. His result holds for any finite union of
polyhedra, yet we only state what we need in this paper, the union of two polytopes.

Theorem 5 (Balas [18,19]). Given two polytopes P, = {x € R" : A'x < b'} and P, = {x € R" : A%z < b?},
we have conv{P; U Py} = proj.(Q), where Q = {z = 2 + 2%, Ala! < (1 - \)bt, A%222 < A\2,0< X < 1},

Note that Theorem 5 applied to integral polytopes yields an extended formulation which is also integral.
Furthermore, it also implies the following.
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Corollary 6. Given two polytopes Py and Ps, there exists an extended formulation of conv{P; U P2} whose
size is two plus the sizes of Py and Ps.

Later on, we shall use this corollary when P, is a vertex, in which case we get an extended formulation
of conv{P; U P,} with two more inequalities than the one of P;.

2.1. 2-connected series—parallel graphs

In this section, we describe the circuit polytope for non trivial 2-connected series—parallel graphs. The
main ingredient of our proof is the existence of a compact extended formulation for this polytope, based on
Observation 1. Though this extended formulation is not explicit, we use its construction process to prove
inductively that the circuit polytope is described by the inequalities given in Theorem 10. Let us mention
that there are examples where exponentially many of these inequalities are facet-defining, see Corollary 19.

In this section, G = (V, F) is a non trivial 2-connected series—parallel graph.

2.1.1. Existence of a compact extended formulation

We show the existence of a compact extended formulation by induction on the construction of G. First,
note that C(Cs) = conv{(0,0),(1,1)} = {z € R% : z. = zy,z. + x5 < 2}, where e and f denote the
edges of Cy. Next, let us describe how to get an extended formulation for C(G) when G is obtained from a
2-connected series—parallel graph H by either subdividing an edge or adding a parallel edge.

When G is obtained from H by subdividing an edge e € E(H) into e, f, the following immediately derives
from Observation 1(i).

Observation 7. Suppose G is obtained from H by subdividing an edge e € E(H) into e, f. Then, adding a
variable x ¢ to any extended formulation of C(H) and imposing x. = x¢ provides an extended formulation

for C(G).

When G is obtained from H by adding a parallel edge f to e € E(H), an extended formulation for C(G)
can be obtained as follows.

Lemma 8. Suppose G is obtained from H by adding a parallel edge f to an edge e € E(H) and let Q(H) be
an integral polyhedron which is an extended formulation of C(H). Then,

(a) The polytope S(G) obtained by replacing x. by x.+x¢ in Q(H) and setting 0 < z, and 0 < x¢ is an ex-
tended formulation of the convex hull of the incidence vectors of all the circuits of G different from x©7.
(b) The convex hull of S(G) union x®/ is an extended formulation of C(G).

Proof. (a) Let R(G) denote the convex hull of incidence vectors of all the circuits of G except {e, f}. By
Observation 1(ii), since proj, Q(H) = C(H), we have proj,S(G)NZ™ = R(G)NZ™. Since Q(H) is integral,
so is S(G), which implies the integrality of proj,S(G).

(b) By (a), proj,S(G) is integral, hence so is conv{proj,S(G) U x> }. Since the projection of the convex
hull of a set of points is the convex hull of its projected points, proj, (Conv{S(G) U Xe’f}) is integral, and
we are done. [J

Note that the operations involved in Observation 7 and Lemma 8 preserve integrality. By construction of
non trivial 2-connected series—parallel graphs, and since C(Cs) is integral, we get an extended formulation
for C(G) by repeatedly applying Observation 7 and Lemma 8. Moreover, the extended formulation given by
Lemma 8(a) yields two new inequalities, and that applying Corollary 6 in Lemma 8(b) provides an extended
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formulation with two more inequalities. Thus, if G is obtained from H by adding a parallel edge, then an
extended formulation for C(G) has 4 more inequalities than an extended formulation for C'(H ). Furthermore,
if G is obtained from H by subdividing an edge, then an extended formulation for C'(G) has the size of
an extended formulation for C(H). The following corollary stems from these observations and the fact that
C(Cy) is described by 3 inequalities.

Corollary 9. There exists an extended formulation for C(QG) of size O(|E(G)|).

We mention here that a polytope closely related to the circuit polytope is, given a vertex r, the r-circuit
polytope, that is the convex hull of the circuits containing r. Indeed, the circuit polytope of a graph can be
seen as the union of all its r-circuit polytopes. In series—parallel graphs, the latter have been thoroughly
studied by Baiou and Mahjoub in [14] who provide, in particular, their description into the original space.
Therefore, an explicit extended formulation for the circuit polytope on series—parallel graphs can be obtained
by applying Balas’ Theorem [18,19] for the union of polyhedra together with their description. However,
since the description of the r-circuit polytope has exponentially many inequalities, this approach yields an
exponential-size extended formulation. Moreover, projecting such a formulation to get a description into the
original space usually requires tremendous efforts. In contrast, our approach allows to project step by step,
which is done in the next section.

2.1.2. Description in the original space
In this section, we show that the inequalities (1)—(3) given below describe the circuit polytope on non

trivial 2-connected series—parallel graphs, see Theorem 10. Throughout, for a sequence M = (M, ..., My)
of edge sets, x(M) will stand for Zle x(M;).
ze >0 for all e € E. (1)
z. < x(B\e) for all bonds B of G, for all e € B, (2)
(M) —x(N) <2 for all M, N star-cut collections of G, (3)

Inequalities (1) are called non-negativity constraints, (2) are bond constraints, and (3) are star-cut con-
straints.

Theorem 10. C(G) = {x € RY satisfying (2) and (3)}.

Proof. Let us first show that (1)-(3) are valid for C'(G). Clearly, every incidence vector of a circuit satisfies
the non-negativity constraints (1). The validity of bond constraints (2) comes from Observation 2. To show
the validity of star-cut constraints (3), let M, N be a star-cut collection and C' a circuit of G. Since M,
and M; AN, are cuts for i € {1,...,k}, each of them intersects C' an even number of times. Therefore, if C
intersects M; € M at most once, then XC(Mi) - XC(NZ-) <0if7>1and XC(Mi) = 0 if 4 = 0. The validity
of (M) — z(N) < 2 follows since, by Lemma 4, at most one member of M intersects C' twice, the other
ones intersecting C' at most once.

Let us prove the theorem by induction. The first step of the induction comes from C(Cs) = {z € R% :
satisfying (2) and z. + zy < 2} and the fact that {{e, f}},0 forms a star-cut collection, where Cy = {e, f}.
Suppose now that C(H) is given by inequalities (1)—(3) for a non trivial 2-connected series—parallel graph
H, and let us show that C(G) is also described by (1)-(3) when G is obtained from H by subdividing an
edge or by adding a parallel edge in H.

First, remark that if G is obtained from H by subdividing e into e, f, then C(G) is given by the inequalities
of C(H) and z, = xy. The inequalities of C'(H) of type (1) (3) remain of the same type in G, and z, = xy
is implied by the two inequalities of type (2) associated with the bond {e, f}.
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Now, let G' be obtained from H by adding a parallel edge f to e € E(H). By the induction hypothesis,
we have C(H) = {zf e R~ : AHzH < pH} where AH is given by the non-negativity (1), bond (2), and
star-cut (3) constraints for H. Denote by A and z/ the matrix and vector obtained from A¥ and z#
by, respectively, removing the column Af corresponding to e and the component :175 . The application of
Lemma 8(a) introduces a new variable y and provides the following description of S(G):

{(:cH,y) e R™! XR:AH:EH—i—Af(a:f—&—y) §bH,O§:L’§,O§y}.

Lemma 8(b) implies that C(G) is the convex hull of the union of S(G) and x{¢f}. Let us apply Theorem 5
to P = S(G) and P, = {x!/}}. The latter being a vertex, we can get rid of z' and z2 to get the following
extended formulation of C'(G), where z denotes the vector z after the removal of z. and x.

{(@ ze, 25, A\) ERM 22X RxRXxR: Az + AT (v, + 25 —20) < (1 = MpF A<z, A <2p,0 <A< 1)
To project it by Fourier-Motzkin’s method [21], we only need to consider the inequalities where \ appears,

and since A is given by (1) (3) for H, we may write them down explicitly, implicitly using the fact that if
e belongs to a cut of G, then so does f, and conversely:

0 <A (4)
-1 < =A (5)
. < A forh=e,f (6)
for all bonds B of G
—x(B\/{ < —2X
ze—2(B\ ) - containing e, f and £ € B\ {e, f} (7)
ze+xp—ax(D\{e f}) < 2X for all bonds D of G containing e, f (8)
(M) — 2(N) < 2— 2an(M,N) + DA for all star-cut collections M, N of G, (9)

with ae(M,N) >0,
where ae(M,N)=|{N eN:ec N} —|{M eM:ec M}|.

We now prove that the inequalities obtained by projecting out A are either contained or implied by the
non-negativity constraints (1) and bond constraints (2) and star-cut constraints (3) for G, which implies our
theorem. Recall that, to get rid of A, one has to combine every inequality where \’s coefficient is negative
with every inequality where it is positive [21]. Combinations with 0 < X\ immediately give rise to inequalities
of type (1), (2) or (3) for G. Thus, it remains to combine (8) with every other inequality.

First, remark that adding twice inequality (5) to any inequality (8) leads to an inequality obtained by
adding non-negativity constraints and the star-cut constraint z(Mjy) < 2 where My is a star of G containing
e, f. Moreover, adding (8) to twice (6) gives zp, —z(D\ h) < 0 for all bonds D containing e, f, and h € {e, f},
which are inequalities of type (2).

Adding (8) to (7) gives xp < z(B\ {e, f,€}) + z(D \ {e, f}). If D contains ¢, the latter is a sum of
non-negativity constraints (1). Otherwise, BAD is a cut contained in BU D \ {e, f} and thus contains a
bond J containing ¢ but not e, f, since a cut is a disjoint union of bonds. Hence, the inequality is the sum
of zy < x(J \ £) and non-negativity constraints (1).

For a bond D containing e, f and a star-cut collection M = (My,...,My), N = (Ny,...,Ni) with
ae(M,N) > 0, combining (8) and (9) gives (M) — z(N) + (e (M, N) 4+ 1)(xe + x5 — z(D \ {e, f})) < 2.
If e and f belong to a member of M, then a.(M,N)+1 = |{N € N : e € N}|. Moreover, considering
separately the elements of N containing e and f from the other ones, the inequality can be rewritten as:

sM)= Y (s \ e e\ {e D) - Y eV <2

NeN:e,feN NeN:e,fgN
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Since z(NAD) < x(N \ {e, f}) + (D \ {e, f}) for all N € N containing e and f, the above inequality is
implied by (M) — z(N”) < 2, where N/ = (N{, ..., N}) with N/ equals N;AD if e € N; and N; otherwise,
for i = 1,..., k. Moreover, since D and M; AN, are cuts, so is M; AN/, for i = 1,...,k, as the symmetric
difference of two cuts is a cut. Therefore, M, N’ is a star-cut collection.

Suppose now that no member of M contains e and f. Applying the previous argument leads to the
inequality (M) — 2(N”") + z. + zy — z(D \ {e, f}) < 2, where M, N is the star-cut collection defined
above. Moreover, there exists M1 containing e, f such that { My, ..., My, My41} is contained in a star de-
composition. Let M = (M, ..., Myy1) and N = (N7, .. . Ni,), where N| | = DAMj. 1. The symmetric
difference being associative, M1 ANy41 equals D, and hence M, N is a star-cut collection of G. Moreover,
the associated star-cut constraint (3) implies the inequality obtained by combination of (8) and (9). O

Let us mention a few simple constraints implied by the ones of Theorem 10. First, whenever {k, ¢} is a
bond, we have x, = xy, which is implied by the inequalities (2) for {k, ¢}. These will turn out to be the only
hyperplanes containing C'(G). We postpone the proof of this fact to Section 3.3, see Corollary 18 . For every
edge uv € E, dg(u) is a bond since G is 2-connected. Then, we obtain the inequality x,, < 1 by adding x,,
to each side of xy, < x(dg(u) \ wv) and by applying z(dg(u)) < 2, which is a special case of (3). We also
mention that, given a bond B, the inequality x(B) < 2 is implied by a suitable star-cut constraint.

We will see at the end of Section 3 a family of examples where exponentially many of the inequalities of
Theorem 10 define facets.

2.2. General series—parallel graphs

In this section, we provide a polyhedral description of the circuit polytope on general series—parallel
graphs, see Theorem 11. The result is obtained by applying a standard union technique and the fact that
the circuit polytope of a graph is the convex hull of the union of the circuit polytopes of its 2-connected
components.

Theorem 11. Let G be a series—parallel graph, G1,...,Gy its non trivial 2-connected components, £ its set
of loops, and ‘B its set of bridges. Then
x € R satisfying (2), x(B) =0 and
b foralli=1,... k,
" for all star-cut collections M;, N; of G;

D=1 S M) — 2N + 20(8) <2

=1

Proof. We prove the result by induction on the number of 2-connected components.

Let us see the first step. Since no bridge b belongs to a circuit, its circuit polytope is described by {z, = 0}.
Moreover, the circuit polytope of a loop ¢ is described by {0 < 2z, < 2}. Finally, the circuit polytope of a
non trivial 2-connected series—parallel component is given by Theorem 10.

Suppose that the result holds for two series—parallel graphs I and H = Uf:_ll H;, where I is 2-connected

and H;,i = 1,...,k — 1 are the 2-connected components of H, and let G = I'|J (Uf;ll H;) be the graph
obtained by identifying a vertex of I and a vertex of H. Then, C(G) = conv{C(H) U C(I)}. Remark that
CH)={ze€ RE(H) cAgzg <bg}and C(I) = {z € Rfm : Arzr < by} live in different spaces. Extend
them to polytopes of REH) x REU) Ly setting the new coordinates to zero, and apply Theorem 5 to get
C(G) = p’l”ij{IE = (QZ‘H,.Z’[),AHxH S )\bH,A[.Z’[ S (1 — )\)b[,o S A S 1}.

Let us get rid of A in the above extended formulation. Combinations with 0 < A or A < 1 immediately
give desired inequalities. It remains to combine agxy < Aby and ajx; < (1 —A)by when by # 0 and by # 0.
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Since in this case the induction hypothesis says that both inequality are of the new type, we get by = by = 2,
thus the resulting inequality is agxy + ajxy < by, and the theorem follows. [

Since every 2-connected component of a series—parallel graph has a compact extended formulation,
using the Theorem of Balas [18,19] for the union of several polytopes, one can extend Corollary 9 as
follows.

Corollary 12. If G s series—parallel, there exists a compact extended formulation of C(G) in size

O(|E]).
3. The bond polytope on series—parallel graphs

In this section, as a consequence of Theorem 11 and the planar duality, we describe the bond polytope
on series—parallel graphs. We also provide examples where the latter contains exponentially many facets.
Before stating these results, we introduce a few definitions.

3.1. Definitions

Given a series—parallel graph G, we denote its set of bonds by B(G), and the convex hull of their incidence
vectors by B(G).

If G is a non trivial 2-connected series—parallel graph, an open nested ear decomposition [22] £ of G is a
partition of F(G) into a sequence Ey, ..., Ej such that Ey is a circuit of G and the ears E;, i € {1,...,k},
are paths with the following properties:

e the two endpoints of each ear are distinct and appear in an E; with j <1,

e 1o interior point of an ear Ej; belongs to E; for all j < 1,

e if two ears F; and E; have both their endpoints in the same Ej, then any two paths contained in £}, one
between the endpoints of F; and the other between the endpoints of E;/, are either disjoint or contained
one in another.

We will denote by Cg¢ the unique circuit of an open nested ear decomposition £. Two sequences of
edge subsets F = (Fy, Fy,...,Fy) and P = (Py,..., Pg) form an ear-cycle collection if {Fy, Fy, ..., Fy} is
contained in an open nested ear decomposition &£ of G, Fy = C¢, and F;AP; is a cycle for i = 1,..., k. Note
that the elements of P are not required to be disjoint.

A graph H is a minor of G if H arises from G by contractions and deletions of edges and deletions of
vertices, where contracting an edge uv of E corresponds to deleting e and identifying v and v. A graph is
series—parallel if and only if it does not contain a K4-minor [23], where K4 denotes the complete graph on
four vertices.

3.2. The bond polytope on series—parallel graphs

K, being its own dual, a graph is series—parallel if and only if, given any planar drawing of the graph, its
dual is series—parallel. It is immediate that the circuits of such a graph are precisely the bonds of its dual,
thus the bond polytope of the graph is the circuit polytope of its dual. Then, applying Theorem 11 provides
a description of the bond polytope on series—parallel graphs.

Given a circuit C and e € C, x, < x(C \ e) is a circuit constraint, and given an ear-cycle collection,
x(F) —x(P) < 2is an ear-cycle constraint.
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Theorem 13. Let G be a series—parallel graph, G1,...,Gy its non trivial 2-connected components, £ its set
of loops and *B its set of bridges.

xr € R satisfying x. < x(C \ e) for all circuits C and e € C, x(£) =0 and
k
foralli=1,...,k,
i) — x(P; 2x(%B) < 2, .
Z(m(]:) 2(Pi)) +22(B) for all ear-cycle collections F;,P; of G;

i=1

B(G) =

Proof. Fix a planar drawing of G, and let G be the dual graph of G. The edgesets of G and G are in bijection,
and & will denote the edge of E(G) corresponding to e € E(G). As noted above, the bond polytope of G
is precisely the circuit polytope of G. First, recall that bridges of G are in bijection with loops of G, and
conversely. Then, by Theorem 11, to get the desired result, we just need to show that the bond polytope on

non trivial 2-connected series—parallel graphs is given by non-negativity, circuit and ear-cycle constraints.

Let G be a non trivial 2-connected series—parallel graph. Then, G is also a non trivial 2-connected
series—parallel graph. Since, by Theorem 10, C(G) is described by (1) (3), and by the bijection between
circuits in G and bonds in G, we only have to show that the ear-cycle constraints are valid for B (G) and
that a star-cut collection of G is an ear-cycle collection of G.

To see the validity of the constraints, let us show that, given an open nested ear decomposition

& ={Fy,...,Ey} and a bond B of G,
() if [BNE| =2 for some F € £, then |[BNF|<1forall Fe&\E.

First, note that, by Observation 2 and the fact that an ear is always contained in a circuit, we have | BNE| < 2,
for all £ € £. Now, suppose that F;, E; € £ both intersect B twice, with 7 < j. Denote by u and v the
extremities of F; and let e be an edge of E; N B. The graph induced by the edges of Ey U ... U E; U {uv} is
2-connected so it contains a circuit containing e and uv. Replacing uv by the ear E;, we get that G contains
a circuit C' containing e and E;. Therefore, |C'N B| > 3, yet B is a bond, a contradiction to Observation 2.
Therefore (x) holds.

Then, with arguments similar to those proving the validity of star-cut constraints for the circuit polytope
(see Theorem 10), we get the validity of the ear-cycle constraints by () and the fact that a circuit and a
cut intersect each other an even number of times.

We now prove by induction on the number of edges of G that a star decomposition of G corresponds to
an open nested ear decomposition of G. We will use edge subdivision and parallel addition operations, thus
note that these two operations are dual one of each other. As the dual of Cy is Cs, one can easily check that
a star decomposition of Cy corresponds to an open nested ear decomposition in its dual.

If G is obtained from H by subdividing an edge e € E(H) into e, f, then G is obtained from H by adding
a parallel edge f to é. By induction, any star decomposition S of H corresponds to an ear decomposition g
of H. Adding e to the suitable set of S (which is the first extremity of e appearing in the star decomposition)
gives a star decomposition of G, which straightforwardly corresponds to the ear decomposition of G obtained
from Es by replacing e by {e, f} in the member of s containing e.

If G is obtained from H by adding a parallel edge f to e € E(H), then G is obtained from H by
subdividing € into ¢, f. Let u be the vertex that is common to € and f, and v, w the other ends of é and
f Let S = {5(;1+ (v1), .. .,6(;271(1)71,1)} be a star decomposition of G. We may suppose, without loss of
generality, that w and v or u and w are consecutive in the star decomposition. Indeed, otherwise, u = v; for
some i € {2,...,n — 1}, and since Gj and G, are connected, exactly one of v,w is in G; that is, equals
some v; for j < i. In this case, the star decomposition §" obtained from S by removing u, and then inserting
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u right after v;, without changing the rest, gives the same partition of £ as S. Thus S and S’ are in bijection
with the same partition of the edgesets of G.

Since v and one of v, w appear consecutively in the star decomposition, contracting them gives a star
decomposition of H. By induction, the latter corresponds to an ear decomposition & of H. Now, possibly
having exchanged the role of e and f because of the contraction, €U {f} is an ear decomposition of G, and
we are done.

To finish the proof, if suffices to apply Theorem 11 and the fact that the dual of a cut is a cycle. [

It turns out that there are more ear-cycle collections of G than star-cut collections of G, and it is unclear
which restrictions are to be made in order to get a bijection. As a consequence, if B(G) can be deduced

from C(G) in a rather simple manner, the converse seems more challenging.
3.8. Facet-defining inequalities

Determining directly which inequalities are facet-defining for the circuit polytope is not that easy.
Surprisingly, the bond polytope is much simpler to study polyhedrally. The main reason is that we can
safely remove parallel edges, see Observation 14. Thus Theorem 13 is not only a standard planar duality
result, but also a tool to prove polyhedral results for the original polytope.

First, we provide the dimension of the bond polytope, see Lemma 15. Then, we characterize which
of the non-negativity and circuit constraints are facet-defining, see Lemma 16. Unfortunately, it seems
challenging to exhibit the structures for which ear-cycle inequalities define facets. We provide an example
where exponentially many of them are facet-defining, see Claim 17.

Seen the structure of the inequalities given by Theorem 13, it is enough to study the facet-defining ones
for non trivial 2-connected series—parallel graphs. In this section, let G = (V, E) be such graph.

Observation 14. The set of bonds of G is unchanged if we remove parallel edges.

Proof. Whenever two edges of the graph are parallel, every bond contains either both or none. [

By the above observation and the construction of non trivial 2-connected series—parallel graphs, we may
assume there are no parallel edges. This is emphasized by the following lemma.

Lemma 15. The dimension of B(G) is the number of edges of the graph obtained from G by removing every
parallel edge.

Proof. By Observation 14, we may assume that G has no parallel edges. Then, since the emptyset is a bond,
that is 0 € B(G), the result is equivalent to the existence of |E(G)| linearly independent bonds of G. Clearly,
dim B(G) < |E(G)|. We prove the result by induction on |E(G)|, noting that dim B(C3) = 3.

Since G has no parallel edges, G is obtained from a non trivial 2-connected series—parallel graph H by
subdividing an edge e into f,g.

If H contains no parallel edges, then the induction hypothesis gives a family of dim B(H) = |E(H)| =
|E(G)| —1 linearly independent bonds of H. Replacing e by f, for each member of F containing e, and then
adding {f, g}, gives a linearly independent family of |E(G)| bonds of G, and we are done.

Since G did not contain parallel edges, if H does, then these parallel edges are {e,h} for some h €
E(G)\ {f,g}. In this case, we have B(H) C {x. = x}. By the induction hypothesis, there exists a family
L of dim B(H) = |E(H)| —1 = |E(G)| — 2 linearly independent bonds of H. We may assume that e € B for
some B € L. Define D = B\ eU f, we get the family LU DU{f, g} of bonds of G. Let us prove that they are
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linearly independent, by showing that the corresponding matrix A has full column rank. Since D = B\ eU f,
by basic column operations we get that A has the same rank as the matrix whose columns are composed
of x¢, x/ and the elements of £. Thus A has full column rank if and only if the matrix obtained from £
by deleting the coordinate corresponding to e has. It is indeed the case because £ is a family of linearly
independent circuits of H, and they all satisfy x. = z;. 0O

The following lemma characterizes which of the non-negativity and circuit inequalities are facet-defining.
Lemma 16. The inequality

1. 2y > 0 defines a facet of B(G) if and only if ¢ is not contained in a triangle.
2.z < z(C\ ¥) defines a facet of B(G) if and only if C has no chord and |C| > 3.

Proof. By Observation 14, we may assume that G has no parallel edges. We prove both results by a
maximality argument.

(1) First, suppose that ¢ is contained in a triangle, say {¢, e, f}. The two circuit inequalities z.—z ¢ —x; < 0
and —z. + x5 — ¢ < 0 give 2y > 0 so the latter is not facet-defining.

Suppose now that ¢ is not contained in a triangle. Consider the face F' defined by x, > 0 and suppose that
it is not a facet, that is, there exists a face F’ defined by an inequality ax < b of B(G) such that F C F’.
Since () € F, we have b = 0. For every edge uv non incident to ¢, the bonds d(u), 6(v) and 6({u,v}) belong
to F, implying that a(d(u)) = a(d(v)) = a(d({u,v})) = 0, leading to a,, = 0. Finally, for any edge f = uv
incident to ¢ at node u, d(v) € F. By hypothesis, f is the only edge of §(v) incident to ¢, implying that
ay = 0. Thus, a = pxg, for some p < 0 and F' defines a facet.

(2) If |C| = 2, then C is two parallel edges e and f, and B(G) C {z. = xs}. If C has a chord ¢,
let C” and C” be the two circuits defined by C’' U C” \ ¢ = C, and assume ¢ € C’. Then, the inequality
x¢ < z(C\ ) is obtained applying the circuit inequalities for £ and C” and then for ¢ and C”, z, < x(C'\¥) =
z(C'\{l,c}) +x. <x(C'"\{l,c})+x(C"\ c)=x(C\¥).

Suppose that C' has no chord, |C| > 3, and F' = {z; < z(C \ ¢)} C {ax < b} = F, where F is facet-
defining. Since 0 € F’, we have b = 0. Let uv € E with u,v € V(C). Since {uv} = (dg(u)Udc(v))\dc({u,v}),
and 6 (u),dg(v), dg({u,v}) are bonds, and are contained in F’, we have

(#) auy =0, for all wv € E such that u,v ¢ V(C).

Denote the vertices of C' by {v1,..., v} where £ = vgvy and v;v; 41 € Cfori=1,...,k—1.Let u € V\V(C).
Note that there are at most two edges between u and {vy,...,v}. If there is exactly one, say uv;, then, by
(#) and dg(u) € F’, we have ay,, = 0. If there are two, say uv; and uv;, since G is series—parallel, every
uv;-path not containing v; does not intersect V(C'). Therefore, since G is 2-connected, there exists a bond
B = §g(W) containing uv; and £ such that B’ = §g(W U {u}) is also a bond. Since the edges of BAB’ are
uv;, uwv;, and edges not in 6¢(C), and then by B, B’ € I’ and (#), we get duy, = Quy;- By da(u) € F,
we have ayy, + ayy, = 0. Therefore, ayy, = ayy, = 0. Since C' had no chord, we proved a,, = 0 whenever

uv ¢ C.

To finish the proof, since G is 2-connected, there exists a bond B; containing ¢ and v;v;11 for all ¢ =
1,...,k — 1. By Observation 2, B; N C' = {{,v;v;11}, thus B; € F’'. Therefore, we have ay = —ay for all
f € C\ L. Since ax < 0 is valid for the bond d¢(v2), we have 0 > @y, vy, + Guyvy = 204, vy, thus we may assume
ap =1, and then we get F/ = F. [

We now provide a family of series—parallel graphs where an exponential number of ear-cycle constraints
are facet-defining.
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Fig. 1. An example of graph obtained from Cg by parallel addition and subdivision of all the edges.

Ezxample

The graph G we consider is built from the circuit on k£ edges Cy, where a parallel edges is added to every
edge and then all edges are subdivided. Fig. 1 shows the construction of such a graph from Cg. Denote by
e; and ¢} (resp. f; and f!) the edges obtained by subdividing one parallel edge (resp. the other one). Let u;
(resp. w;) be the vertex incident to e; and e (resp. f; and f/) for alli =1,... k.

Claim 17. x(C) < 2 is facet-defining for B(Gy) if C is a circuit of 2k edges.

Proof. Without loss of generality, suppose that C' = {e;, e} : i =1,...,k}. Let F' be the face induced by the
inequality and suppose that F’ C F' where F is a facet induced by the constraint ax < b. Since {e;, e}} € F’,
we have a., +a., = b fori=1,...,n. Moreover, {ei, fi, fj.e;} and {€}, fi, f;, e;} belong to F’, for all j # i,
from which we get a., = e’ Combining these two remarks give a., = Qer = b/2, fori=1,...,n. Now, since
both {e;, fi, fj,e;} and {e;, fi, fj, e;} belong to F', we have ay, = ay =0, for i = 1,...,n. The emptyset
being a bond, we have b > 0. In fact, b > 0 because otherwise (a,b) = 0. Therefore, without loss of generality,
we may assume that b = 2. Then, we get F' = F’, and we are done. [

If we set E; = {e;,e;} and F; = {f;, f/} for all i = 1,... k, one can also prove that the inequalities
(B U Fy) + >, (@x(M;) — x(B; U F; \ M) < 2 forall j € {1,...,k}, where M; € {E;, F;} for all
1 =1,...,k are facet-defining. In fact, together with the inequalities of Claim 17 and Lemma 16, this gives
all the facet-defining inequalities for the example. However, other examples show that ear-cycle constraints
are not always that nicely structured.

Let us mention some dual consequences of the results of Section 3.3 for the circuit polytope on
series—parallel graphs.

First, we get its dimension by planar duality and Lemma 15.

Corollary 18. Let F be a minimal set of edges intersecting every size two bond of G = (V, E). Then, the
dimension of C(Q) is |E\ F|.

Moreover, Claim 17 implies the following.

Corollary 19. There are examples for which exponentially many of the star-cut constraints (3) define facets
of the circuit polytope on series—parallel graphs.
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Thus, the circuit polytope on series—parallel graphs is another example of polytope having exponentially
many facet-defining inequalities that admits a compact extended formulation.
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THE ST-BOND POLYTOPE ON SERIES-PARALLEL GRAPHS

RoLAND GRAPPE AND MATHIEU LACROIX"

Abstract. The st-bond polytope of a graph is the convex hull of the incidence vectors of its st-bonds,
where an st-bond is a minimal st-cut. In this paper, we provide a linear description of the st-bond
polytope on series-parallel graphs. We also show that the st-bond polytope is the intersection of the
st-cut dominant and the bond polytope.
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1. INTRODUCTION

In combinatorial optimization, st-bonds are well-known objects since they are precisely the st-cuts involved
in the famous max-flow min-cut theorem [11]. However, they are not well described from a polyhedral point
of view. In this paper, we make a contribution in this regard by providing a linear description of the st-bond
polytope on series-parallel graphs. These graphs are precisely those with no Ky-minor [8].

In an undirected graph G = (V| E), a cut is the set of edges between a subset of vertices and its complement.
A cut containing only itself and the emptyset as cuts is called a bond. Nonempty bonds are the cuts whose
removal yields exactly two connected components.

Although cuts and bonds are similar, they behave quite differently. From a complexity point of view, opti-
mizing over bonds is harder than optimizing over cuts. The maximum cut problem — which asks for a cut of
maximum weight in an edge-weighted graph — is NP-hard in general [13] but becomes polynomial for graphs
with no Ks-minor [15], and hence for planar graphs [16]. In comparison, finding a bond of maximum weight in a
planar graph is already NP-hard but becomes polynomial for the subclass of graphs with no K4-minor. Indeed,
bonds are planar duals of circuits, and finding a circuit of maximum weight is NP-hard for planar graphs [14]
and polynomial for graphs with no Ky-minor [5].

The polyhedral aspects of these problems reflect these complexity results. The cut polytope and the bond
polytope of a graph are the convex hulls of the incidence vectors of its cuts and its bonds, respectively. The cut
polytope has been described for graphs with no Ks-minor in [3] whereas a description of the bond polytope is
only known for graphs with no K4-minor [5].

Given two distinct vertices s and ¢, an st-cut and an st-bond are respectively a cut and a bond whose removal
disconnects s and t. It follows that st-bonds are inclusionwise minimal st-cuts. The st-cut polytope and the
st-bond polytope are the convex hull of the incidence vectors of st-cuts and st-bonds, respectively.
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The behaviour of st-cuts and st-bonds is different from a complexity point of view. For instance, consider
the class of planar graphs where s and ¢ belong to a same face, hereafter called st-planar graphs. In these
graphs, finding an st-bond of maximum weight is NP-hard whereas an st-cut of maximum weight can be found
in polynomial time. Indeed, a nonempty bond is an st-bond for some pair of vertices s and ¢ on a same face.
Hence, finding an st-bond of maximum weight is at least as hard as finding a bond of maximum weight in a
planar graph. Computing an st-cut of maximum weight is polynomial-time solvable because adding an edge st
with a sufficiently large weight reduces the problem to a maximum cut problem in a graph with no Ks-minor.

From a polyhedral point of view, remark that when the graph contains the edge st, the st-cut (resp. st-bond)
polytope is a face of the cut (resp. bond) polytope. Hence, a polyhedral description for the st-cut (resp. st-bond)
polytope is known for graphs with no Ks-minor (resp. K -minor) but containing the edge st. In this paper, we
extend this polyhedral characterization by describing the st-bond polytope for graphs with no K4-minor for
any pair of vertices s and ¢.

By definition, the st-bond polytope is contained in the st-cut polytope. Nevertheless, these two polyhedra
have the same dominant. This so-called st-cut dominant has been thoroughly studied in [18].

In general, the intersection of two integer polyhedra is not integer. Even adding a simple constraint to a well-
structured polyhedron may destroy its integrality — see e.g. [6]. Few families of polyhedra are known to remain
integer after intersection. For instance, box-TDI polyhedra keep their integrality after being intersected with
any integer box [17]. The intersection of two polymatroids [9] or of two lexicographical polytopes [4] is integer.
Calvillo characterizes the graphs whose stable set polytope remains integer after being intersected with specific
hyperplanes [6]. For st-planar graphs, the intersection of the cut polytope [3] and the st-cut dominant [18] is
integer: it is nothing but the st-cut polytope. For series-parallel graphs, we prove that the st-bond polytope is
the intersection of the bond polytope and the st-cut dominant.

The contributions of this paper concern st-bonds in series-parallel graphs. We prove that finding an st-bond
of maximum weight in a series-parallel graph can be performed in polynomial time. Moreover, we provide a
polyhedral description of the st-bond polytope for such graphs. The approach is as follows. We describe the
st-bond polytope on the subclass of 2-connected outerplanar graphs. We also provide a sufficient condition for
a series-parallel graph to be outerplanar. We exploit this result to extend this polyhedral description of the
st-bond polytope to series-parallel graphs. A consequence of our result is that intersecting the bond polytope
and the st-cut dominant of a series-parallel graph does not destroy integrality: it precisely gives the st-bond
polytope.

The outline of the paper is as follows. In Section 2, we first give the main definitions and notation used
in this paper. We then show that a simple series-parallel graph with two vertices of degree at most two is
outerplanar. We use it to show that finding an st-bond of maximum weight in series-parallel graphs can be
done in polynomial time. In Section 3, we describe the st-bond polytope for 2-connected outerplanar graphs.
In Section 4, we extend this description to series-parallel graphs. As a consequence, we prove that, for these
graphs, the st-bond polytope is the intersection of the bond polytope and the st-cut dominant.

2. BONDS AND ST-BONDS IN SERIES-PARALLEL GRAPHS

Throughout the paper, G = (V, E) will denote a loopless connected undirected graph and s and ¢ two distinct
vertices of G. Given a vertex v of G, the graph G \ v is obtained from G by removing the vertex v and its incident
edges. Let uv be an edge of G. The graph G/uv is the graph obtained from G by contracting uv, that is, by
identifying v and v into a new vertex which becomes adjacent to all the former neighbors of v and v. We define
G\uv = (V,E\ {uv}). Let F be a subset of E. A set of vertices is covered by F' if each of its vertices is incident
to at least one edge of F. Given a subgraph H of G, the set F|y denotes the set of edges of F' which belong to
H. Given two sets A and B, the symmetric difference AAB is AAB = (AUB) \ (AN B).

A subset of edges is called a cycle if it induces a graph in which every vertex has even degree. A circuit is a
cycle inducing a connected graph in which every vertex has degree two. An st-circuit is a circuit covering both
s and t. A uv-path P is a set of edges inducing a connected subgraph in which v and v have degree one and
the other vertices have degree two. The vertices u and v are called end vertices of P whereas the other vertices
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covered by P are called internal vertices. A path is a uv-path for some distinct vertices u and v. Let P be an
uv-path and W a set of vertices covered by P. Running P from u to v induces a (total) order on W which
corresponds to the order in which the vertices of W are traversed by P starting from u. This order is called the
order of W induced by P starting from u.

A subset F of E is a cut if it is the set of edges having exactly one extremity in X, for some X C V; it is
denoted by F' = §(X). If s € X and t € V' \ X, the cut §(X) is an st-cut and separates s and t. A nonempty
bond is a cut containing no other nonempty cut. Equivalently, a nonempty bond is a cut whose removal gives
exactly two connected components. An st-bond is an st-cut which is a bond. A bridge is an edge whose removal
disconnects the graph. Equivalently, a bridge is a bond composed of a single edge.

A vertex whose removal yields several connected components is a cut verter. If s and ¢ belong to different
connected components after the removal of a cut vertex v, then v is an st-cut vertex. When no vertex removal
disconnects a connected graph with at least two vertices, the latter is said 2-connected. The 2-connected com-
ponents of a graph are the inclusionwise maximal 2-connected subgraphs of the graph. A 2-connected graph
composed of a single edge is called trivial. Note that the trivial 2-connected components of a graph G = (V, E)
are the graphs induced by the bridges of E.

2.1. Series-parallel and outerplanar graphs

A nontrivial 2-connected graph is series-parallel if it can be built, starting from the circuit of length two, by
repeatedly applying the following operations:

e parallel addition: add a parallel edge to an existing edge,
e subdivision: replace an edge uv by the path {uw,wv} where w is a new vertex.

A graph is series-parallel if all its nontrivial 2-connected components are.

Series-parallel graphs are also known to be those admitting the following kind of decomposition. An open
nested ear decomposition [10] of a graph G = (V, E) is a partition £ of F into a sequence Fy, ..., F) such that
Ey, also denoted by Cg, is a circuit of G and the ears E;, for i = 1,..., k, are paths with the following properties:

o the end vertices of I; are both covered by E; for some j < i,

e no internal vertex of E; is covered by E; for all j < 4,

o if two ears E; and Ly have both their end vertices in the same member E; of £, then there exit a path
P; in E; between the end vertices of E; and a path Py in E; between the end vertices of £ such that P;
and P; are either disjoint or contained one in another.

A nontrivial 2-connected graph is series-parallel if and only if it admits an open nested ear decomposition [10].

An important subclass of series-parallel graphs are outerplanar graphs. They are the graphs admitting a
planar drawing such that all the vertices lie on the unbounded face of the drawing, called the external face. An
outerplanar graph is always supposed to be drawn in this way and the same terminology is used for the graph
and the drawing. The chords are the edges which do not belong to the external face. In a simple outerplanar
graph, the external face and the chords are uniquely defined. The faces other than the external one are called
inner faces.

Lemma 2.2 provides a sufficient condition for a series-parallel graph to be outerplanar. We first give the
following lemma since it is used in the proof of Lemma 2.2. In both proofs, we implicitly use that deleting a
parallel edge or contracting an edge incident to a vertex of degree two in a graph preserves both 2-connectivity
and series-parallelness.

Lemma 2.1. A nontrivial simple 2-connected series-parallel graph has at least two vertices of degree two.

Proof. Let G = (V, E) be a counter example with a minimum number of vertices, that is, G is a nontrivial
simple 2-connected series-parallel graph with at most one vertex of degree two. By construction of nontrivial
2-connected series-parallel graphs, GG, being simple, has exactly one vertex of degree two, say v. Let zv and
vy be its incident edges. Contracting zv preserves the degrees in V' \ {v} and maintains 2-connectivity and
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series-parallelness. Hence, by the minimality of G, the graph G’ = G/zv is not simple, and thus zy € E. Thus,
G\ v is a simple 2-connected series-parallel graph with less vertices than G. By the minimality assumption,
G \ v has at least two vertices of degree two. All the vertices except  and y have the same degree in G and
G \ v, so they all are of degree greater than two. Therefore, the degrees of z and y equal two in G\ v and hence
three in G. But then (G \ v)/xy is a counter example — a contradiction to the minimality of G. O

Lemma 2.2. A simple series-parallel graph having exactly two vertices of degree at most two is outerplanar.

Proof. Let kg denote the number of vertices of degree at most two of a graph G.

We first prove the assertion for nontrivial 2-connected graphs. Let G = (V, E) be a counter example with
a minimum number of vertices, that is, G is a nontrivial simple 2-connected series-parallel graph with kg = 2
but is not outerplanar. Then, G differs from the circuit of length two. Since G is 2-connected, it has exactly
two vertices of degree two. Let v be a vertex of degree two of G and xv and vy its incident edges. The graph
G’ = G/xv is nontrivial, 2-connected and series-parallel. As kg = 1, Lemma 2.1 implies that G’ is not simple,
and hence zy € E. Hence, G” = G \ v is a simple 2-connected series-parallel graph. By Lemma 2.1, G” has at
least two vertices of degree two. Thus, by construction, at least one among x and y has degree two in G”. If
G" was outerplanar, then it would admit a planar drawing in which all its vertices, and hence also the edge zy,
lie on the external face. But then G would be outerplanar — a contradiction. Hence, G” is not outerplanar and,
by the minimality assumption, G’ has at least three vertices of degree two. Since G has exactly two vertices of
degree two, G” has three vertices of degree two including = and y. Then, G” /zy is a counter example having
fewer vertices than G — a contradiction. Thus, the assertion is proved for nontrivial 2-connected graphs. Note
that the assertion also holds for trivial 2-connected graphs.

We now prove the result for simple series-parallel graphs. Given G; = (V1, E1) and Gy = (Vs, Es), identifying
a vertex v; € Vi and a vertex vy € V3 yields a graph G satisfying kg > kg, + kg, — 2. Let G be a simple

series-parallel graph with kg = 2 and Gy,..., Gy be its 2-connected components. By Lemma 2.1 and since
kg > Zle kg, — 2(k — 1), we deduce kg, = 2 for i = 1,..., k. Therefore, as proved above, each 2-connected
component of G is outerplanar, hence so is G. U

2.2. Bonds and st-bonds

A well-known characterization of cuts is that they are the sets of edges intersecting every circuit an even
number of times. Bonds being cuts, each bond intersects every circuit an even number of times. For series-parallel
graphs, this property can be refined as follows.

Observation 2.3 (Chakrabarti et al. [7]). In a series-parallel graph, a bond and a circuit intersect in zero or
two edges.

If the graph is also 2-connected, this property becomes a characterization of bonds.

Lemma 2.4 (Borne et al. [5]). In a 2-connected series-parallel graph, a set of edges is a bond if and only if it
intersects every circuit in zero or two edges.

Let W be the set of st-cut vertices of G together with s and t. Then, every st-path of G covers W. Moreover, the
order of W induced by running any st-path from s to t is the same. This order will be denoted by vy, vz, ..., vjw|
throughout. Note that s = v; and ¢ = vy|. Let & = |[W| -1 and £ be the number of 2-connected components
of G. Let Hy = (V4, E1),...,Hy = (V, E¢) be the 2-connected components of G numbered in such a way that,
fori=1,...,k, H; = (V;, ;) contains v; and v;;1. Each bond separating two vertices of W being an st-bond,
we obtain the following observation.

Observation 2.5. The set of st-bonds of G is the union of the sets of v;v;+1-bonds of H; overi=1,... |W|-1.

By Observation 2.5, in order to solve the maximum st-bond problem, it is enough to solve the problem in each
2-connected component. In series-parallel graphs, this remark, combined with Lemma 2.2, gives the following
complexity result.
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Corollary 2.6. Finding an st-bond of mazimum weight in a series-parallel graph can be done in polynomial
time.

Proof. Let G = (V, E) be a series-parallel graph with edge weights w € R¥. By Observation 2.5, we may suppose
that G is 2-connected. We may suppose that G is nontrivial as otherwise it contains a unique bond. The following
graph operations may be applied on G without changing the weight of a maximum st-bond. If e and f are two
parallel edges, they can be replaced by a single edge with weight w. +wy. If e and f are in series, that is, there
exists a vertex v of degree two incident to e and f, then the edge among e and f with the minimum weight
may be contracted whenever v differs from s and ¢. By definition of series-parallelness, applying these two types
of operations as long as possible yields a simple 2-connected series-parallel graph G’ in which no vertex is of
degree two except possibly s and t. Hence, by Lemmas 2.1 and 2.2, G’ is outerplanar. From the definition of
outerplanar graphs, the number of st-bonds in G’ is quadratic in the number of its vertices. Thus, finding an
st-bond of maximum weight in G’ can be done in polynomial time by enumeration. Moreover, by construction,
one can retrieve from such an st-bond one of G having the same weight. O

3. THE ST-BOND POLYTOPE ON 2-CONNECTED OUTERPLANAR GRAPHS

In this section, we give a linear description of the st-bond polytope in 2-connected outerplanar graphs. Let
G = (V,E) be such a graph. If G is trivial, then it only has s and t as vertices and its only edge is st. The
st-bond polytope of G is then {z = 1}. We now suppose, for the rest of this section, that G is nontrivial. We
denote by Ps; and Qs the two st-paths of the external face Fexs, that is, Foxt = Pst U Qs:. We denote by Bst(G)
the convex hull of the incident vectors of the st-bonds of G.

We denote by P(G) the polytope defined by the set of x € RF satisfying the following inequalities:

ZTe >0, foralle € E, (3.1)
e <a(F\e), forall chords e and faces F' containing e, (3.2)
(P) > 1, for all st-paths P, (3.3)
z(P) =1, for all st-paths P contained in a circuit. (3.4)

We now prove in the next three lemmas that P(G) is a linear description of Bs:(G). More precisely, we
show the validity of inequalities (3.1)—(3.4) for Bs(G) in Lemma 3.1. We then show that every integer vector
satisfying these inequalities is the incident vector of an st-bond in Lemma 3.2. Finally, we end the proof by
showing that P(G) is an integer polytope in Lemma 3.4.

Lemma 3.1. B, (G) C P(G).

Proof. We show that the incidence vectors of st-bonds satisfy (3.1)—(3.4). A bond being a cut and a face being
a circuit, a bond cannot intersect a face in exactly one edge by Observation 2.3. This ensures the validity of
(3.2). The validity of (3.3) stems from the fact that removing the edges of an st-bond separates s and t. If an
st-path is contained in a circuit, then this circuit is the union of two disjoint st-paths. By (3.3), any st-bond
intersects this circuit at least twice. Thus, by Observation 2.3, inequalities (3.4) are valid. ]

Lemma 3.2. P(G)NZE C Bu(G).

Proof. Let Z be a point of P(G) N Z~. We need to show that it is the incident vector of an st-bond.

If the intersection of a circuit C' and an inner face F' is a chord of G, then, by (3.2), we have that Z(C) =
Z(C\e)+Z. <T(C\e)+Z(F\e)=z(C") with C' = CAF. By repeating this argument, and since Z(Feys) = 2
due to (3.4) associated with Ps; and Qs:, we obtain that

Z(C) <2, for each circuit C. (3.5)
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Inequalities (3.2) can be generalized to any circuit and any edge of this circuit as shown in the following
claim.

Claim 3.3. Z. < Z(C\ e) for all circuits C and for all edges e € C.

Proof. Let F be an inner face of G and e an edge of F'N Fiyy. Without loss of generality, we suppose that e € P;.
Let P = Ps; U F'\ e. Then, P contains an st-path and by (3.1), (3.3) and (3.4), we have 0 < Z(P) — Z(Py) =
Z(F\ Pst) — Z. < Z(F \ e) — T.. This, together with (3.2), gives

ZTe <Z(F\e), for allinner faces F' and for all edges e € F'. (3.6)

In a planar graph, a circuit is the symmetric difference of inner faces. Suppose that a circuit C' is the symmetric
difference of two inner faces F; and Fy. Let f be the edge of F; N Fy and let e be an edge of Fy \ F». Adding
inequalities (3.6) associated with e and Fi, and with f and Fy gives Z. < Z(C'\ e). The face Fy and the edge e
have been chosen arbitrarily so the inequality holds for every circuit consisting in the symmetric difference of
two inner faces and for every edge it contains. By induction on the number of inner faces contained in a circuit,
we obtain the desired result. O

For any edge e € F, let F be an inner face containing e. Combining inequality (3.5) associated with F' and
inequality (3.6) associated with F' and e gives T, < 1. Thus, by (3.1), Z is the incidence vector of a subset of E,
say E.

Since 7 satisfies (3.3), removing the set of edges E disconnects s and t. To end the proof, it remains to show
that Z is the incident vector of a bond. Since outerplanar graphs are series-parallel, by Lemma 2.4, one just needs
to show that Z(C') equals 0 or 2 for each circuit C' as Z is a 0—1 vector. This is immediate by inequalities (3.5)
and Claim 3.3. U

Lemma 3.4. P(G) = Bs(G).

Proof. By Lemmas 3.1 and 3.2, it remains to show that P(G) is an integer polytope. Suppose this is not true and
let G be a counter example with a minimal number of edges. By hypothesis, there exists a fractional extreme
point of P(G), say Z. The minimality assumption implies that G has no parallel edges because two parallel
edges have the same value in Z by (3.2). In the following, an st-path P satisfying Z(P) = 1 will be called a tight
path.

Claim 3.5. Z. > 0 for all the edges e of the external face.

Proof. If T, = 0 for some e € Feyy, then contract e. The resulting graph G/e is still outerplanar. By minimality,
its st-bond polytope is described by (3.1)—(3.4), yet these are precisely the inequalities obtained by setting
z. to zero in P(G), thus  yields a fractional extreme point in P(G/e) — a contradiction to the minimality
assumption. O

Claim 3.6. No vertex of V' \ {s,t} has degree two.

Proof. Suppose that v € V' \ {s,¢} is such that 6(u) = {e, f}. Note that e, f € Fext, hence we may assume
e, f € Py. By Claim 3.5 and equation (3.4) associated with Py, we have 0 < Z, <1 and 0 < Zy < 1. Let & be
the vector obtained from Z by adding € to Z. and —e to Z; for some positive scalar e. If € is small enough, then
Z belongs to Pg. As 7 satisfies with equality all the inequalities (3.1)—(3.4) which are tight for Z, it contradicts
the extremality of Z. O

Since G is a simple nontrivial 2-connected outerplanar graph, Lemma 2.1 and Claim 3.6 imply that s and ¢
have degree two. Moreover, st ¢ E as otherwise G/st would have only one vertex of degree 2 — a contradiction
to Lemma 2.1. Let p = |E \ Fexs|. Then, Feyt has p chords and G has p+ 1 inner faces. Number the faces in such
a way that F is the face containing s and |F; N Fjy1| =1 for ¢ = 1,...,p. Then, F,;, contains t. Moreover,
Fy and Fj4, are triangles and every inner face has at least one edge on the external face. Denote the chords of
Fext by c1,...,¢p such that {¢;} = F; N F;14, for i =1,...,p — see Figure 1 for an illustration.
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FIGURE 1. Numbered inner faces and chords.

Now, inequalities (3.2) can be rewritten as:

ze, < x(Fj\ ¢j), forj=1...,p, (3.7)
Te,_, <ax(Fj\cj_1), forj=2,....,p+1 (3.8)

We have the following property.

Claim 3.7. For each j =2,...,p, at most one inequality among (3.7) and (3.8) associated with j is tight for
x.

Proof. By contradiction, suppose there exists j € {2,...,p} such that z., = Z(F; \ ¢;) and Z., , = Z(F; \ ¢j_1).
Then Z. = 0 for all e € F; \ {¢j_1,¢;}. Since F; contains at least an edge of the external face, this contradicts
Claim 3.5. O

Let k be the maximum integer such that inequality (3.7) is satisfied with equality for every j =1,... k. Set
k = 0 if inequality (3.7) associated with j = 1 is not tight. Similarly, let ¢ be the minimum number such that
inequality (3.8) is satisfied with equality for every j = ¢,...,p+ 1. By Claim 3.7, we have k < /.

Claim 3.8. Forjc {l1,...,k} U{f—1,...,p}, we have T, > 0 and c; belongs to no tight path.

Proof. Since every inner face intersects the external face, the first part stems from Claim 3.5 and the tightness
of inequalities (3.7) for j = 1,...,k and (3.8) for j = ¢,...,p+ 1. We now prove the second part of the assertion.
Suppose it is not true for some j € {1,...,k}. Let 1 < j' < k be the minimum index such that ¢, is in a tight
path P. If 5 =1, then 1 = Z(P) = z(P \ ¢1) + Z(F1 \ ¢1) because Z., = Z(F; \ ¢1). Since (P U F}) \ ¢; is the
disjoint union of an st-path and an edge of the external face, this contradicts (3.3) by Claim 3.5. Thus, j' > 2.
But now, 1 = zZ(P) = Z(P\ ¢j/) + Z(Fj \¢;s) > Z(P') > 1, where P’ C PUF}/\ ¢j is an st-path containing ¢/ _.
This implies that ¢;7_q is in a tight path — a contradiction to the minimality of j’. The case j € {{ —1,...,p}
can be proved similarly. O

Let f, be an edge of Fi41 N Fext. Without loss of generality, we assume fs € Ps;. Let X be the set of vertices
of the component of Py containing s after the removal of fs. Note that §(X) = {c1,..., ¢k, fs,gs}, where g is
the edge incident to s which does not belong to Ps;. By construction of X and by Claim 3.8, every tight path
of G intersects 6(X;) exactly once.

We define a vertex set X; with respect to ¢ in a similar way. Then, §(X;) = {ce—1,...,¢p, ft,9:}, where
ft € Fy_1 N Foxy and g¢ € 6(t). Moreover, every tight path of G intersects §(X;) exactly once. We refer the
reader to Figure 2 for an example of X and Xj.

Given an edge set F' C E, we denote by x¥ its incidence vector. Let z = y%( x*X+) By construction,
z(P) = 0 for all tight paths. Furthermore, all the inequalities (3.7) except the one associated with j =k + 1
and all the inequalities (3.8) are satisfied with equality by x*Xs) . Moreover, all the inequalities (3.8) except
the one associated with j = ¢ — 1 and all the inequalities (3.7) are tight for x®(X*). Hence, z satisfies with
equality all the inequalities (3.7) and (3.8) except two: the inequality (3.7) associated with k + 1 and the
inequality (3.8) associated with ¢ — 1. Since none of these two inequalities is tight for Z, and since Z, > 0 for all

Xs) _
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FIGURE 2. Example of X, and X;.

e € §(X;) Ud(Xy) by Claims 3.5 and 3.8, the two points T £ ez belong to P(G) for some € > 0 small enough.
As z # 0, this contradicts the extremality of Z. O

4. THE st-BOND POLYTOPE ON SERIES-PARALLEL GRAPHS

We start this section by describing the st-bond polytope on 2-connected series-parallel graphs, see Section 4.1.
We then extend this description to general series-parallel graphs, see Section 4.2. We conclude by showing that
for these graphs, the st-bond polytope is actually the intersection between the bond polytope and the st-cut
dominant, see Section 4.3. Recall that By (G) denotes the convex hull of the incidence vectors of the st-bonds
of G. We define B(G) as the convex hull of the incidence vectors of the bonds of G.

4.1. 2-Connected series-parallel graphs
An ear of an open nested ear decomposition £ whose circuit C¢ is an st-circuit is called an st-ear.

Lemma 4.1. Given a 2-connected series-parallel graph G = (V, E) and distinct vertices s and t, the st-bond
polytope By (G) is the set of v € RE satisfying the following inequalities.

e >0, foralle e F, (4.1)
( ) <z(C\Q), forallst-ears Q and circuits C D Q, (4.2)
z(P) > 1, for all st-paths P, (4.3)
z(P)=1 for all st-paths P contained in a circuit, (4.4)

Top =1, whenever st € E. (4.5)

Proof. The result holds if G is trivial because By (G) = {xss = 1}. Suppose now that G is nontrivial.
Equation (4.5) can then be removed because if st is an edge of G, then it is an st-path of G contained in
a circuit and the equation is of type (4.4). The result also holds when G is the circuit of length two, say {e, f},
since Bo(G) = {xe = x5 = 1}.

Let us prove the result by induction on the number of edges of G. Assume that the bond polytope for every
2-connected series-parallel graph with less edges than G is given by (4.1)—(4.4).

First, suppose that G has two parallel edges g and h. By induction, B (G \ h) is given by (4.1)—(4.4). Remark
that x4 = a, for all © € B4 (G) as every bond contains either none of g and h or both of them. This equation
is given in (4.1)—(4.4) for G by the two inequalities (4.2) associated with the circuit C' = {g, h}. Moreover, for
any other inequality axz < b, at most one among a4 and a, is nonzero. Finally, the system (4.1)-(4.4) is such
that for every inequality az < b, there exists another a’x < b where o’ is obtained from a by exchanging a, and
ap. These remarks imply that By, (G) is described by (4.1)—(4.4).

Assume now that G has no parallel edge. By Lemma 2.1, G has at least two vertices of degree two. Suppose
that there are exactly two such vertices. Then G is outerplanar by Lemma 2.2. In this case, in the open nested
ear decomposition & with Cg = Feyy, the st-ears are precisely the chords of the graph. Thus, inequalities (4.2)
contain inequalities (3.2). We now prove the validity of (4.2) for By (G). Let Q be any st-ear and let £ be
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an open nested ear decomposition containing ) such that Cg is an st-circuit. For each e € Cg, since G is a
2-connected series-parallel graph, there exists a circuit containing both e and ). By Observation 2.3, a bond
intersecting twice () does not intersect Cg, which implies that it is not an st-bond. Observation 2.3 gives the
validity of (4.2). Therefore, the result follows from Lemma 3.4.

The last case to consider is when G has at least three vertices of degree two. Then, one of them, say v, is
different from s and t. Let f and g be the two edges incident to v and H be the 2-connected series-parallel
graph obtained from G by replacing the path {f, g} by a single edge e. By the induction hypothesis, By (H)
is described by (4.1)—(4.4). Let @ be the polytope obtained by replacing x. by = + x4 in By (H), and adding
2y > 0 and x, > 0. This operation preserves integrality. Indeed, let Z be a vertex of Q). At least one of z;
and Z, equals zero, as otherwise the points z & e(x! — x9) both belong to Q for some € > 0. Without loss of
generality, assume that Z; = 0. Then, the point Z defined by Z;, = Zj, for h # e and Z. = Zy belongs to By (H).
By definition of @ and since x, > 0 is an inequality of Bs:(H), T is a vertex of Bs;(H). As B (H) is an integer
polytope, Z is integer and so is Z. This implies that @ is an integer polytope.

Furthermore, the st-bonds of G are obtained from those of H as follows: keep the st-bonds of H not containing
e, and for every st-bond B of H containing e, take B\ eU f and B\ eU g. This implies that Q@ = Bs:(G). Given
the form of inequalities (4.1)—(4.4), this proves the result. O

4.2. General case

For the rest of the paper, G = (V, E) will denote a series-parallel graph and W the set of st-cut vertices
of G together with s and ¢. Recall that the vertices of W may be ordered according to the order induced by
running any st-path from s to ¢. This order is denoted by s = vy, va,..., vy = t. Let k = [W]|—1 and ¢ be the
number of 2-connected components of G. Let Hy = (Vq, F4), ..., Hy = (Vp, Ey) be the 2-connected components
of G numbered in such a way that, for i = 1,...,k, H; = (V;, E;) contains v; and v;4+1. Observation 2.5 may
then be translated in terms of polytopes as follows.

k
Observation 4.2. By (G) = conv (U BUMH(Hi)).

i=1
The following observation stems from the definition of the 2-connected components Hy, ..., H.
Observation 4.3. Every st-path of G is the union of v;v;41-paths of H; over i =1,...,k, and conversely.

We now provide a polyhedral description of the st-bond polytope on general series-parallel graphs, see
Theorem 4.4. The result is a consequence of Lemma 4.1, Observations 4.2 and 4.3, and the theorem of Balas
[1, 2] on the union of polyhedra.

Theorem 4.4. Let G = (V, E) be a series-parallel graph and s and t be distinct vertices of V.. The st-bond
polytope By (G) is the set of v € RE satisfying the following inequalities.

ze =0, for all e which belongs to no st-path, (4.6)
e > 0, forallee E, (4.7)
or all v;v;i1-ears Q@ and circuits C O Q of H;,

2(@Q) < x(C\ @), T ol vviears @ Qo (4.8)
z(P) > 1, for all st-paths P of G, (4.9)
for all st-paths P of G such that P|y, is contained
»(P) <1, i a circuit for alli=1,... k with H; nontrivial. (4.10)

Proof. First, note that every edge of an st-bond belongs to an st-path, which implies the validity of
inequalities (4.6). Moreover, the edges involved in (4.6) are precisely those which belong to Hy41, ..., Hp. From
now on, we may suppose that the only 2-connected components of G are Hy, ..., Hy.
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Remark that in Lemma 4.1, equalities (4.4) and (4.5) can be replaced by inequalities of type < because of
inequalities (4.3). Moreover, (4.5) is taken into account only for trivial 2-connected components as noticed in
the proof of Lemma 4.1. Since the polytopes of the right-hand side of Observation 4.2 live in different spaces,
by the theorem of Balas [1, 2], B (G) is the projection into the x-space of the set of z = (z!,...,2%) € RF
(where ' € RF for i = 1,...,k) and A € R¥ satisfying:

xt >0, foralli=1,...,k, for all e € E, (4.11)
i i forall i =1,...,k, for all v;v;,1-ears Q
7H(Q) = #(C\Q),<0 and circuits C' 2 @Q of H;, (4.12)
—2'(P) < =\, forall i =1,...,k, for all v;v;41-paths P of H;, (4.13)
#(P) < AL, for all. i = .1, e ,.k, f.or all v;v;41-paths P of H; (4.14)
contained in a circuit,
ximﬂ <\ for all trivial H;, (4.15)
0 <\, foralli=1,...,k, (4.16)

k
1=) A\ (4.17)
=1

The description of Bg:(G) in the natural space is obtained by projecting out A from (4.11)—(4.17). Since
(4.7)—(4.10) are valid for By (G), we prove that the projected inequalities are either contained in or implied by
(4.6)—(4.10), which implies our theorem.

We project out A applying Fourier-Motzkin’s elimination method [12]. Recall that, to get rid of A’, one has
to combine every inequality where A%’s coefficient is negative with every inequality where it is positive. Due to
the structure of (4.11)—(4.17), it is enough to consider the following combinations.

Inequalities (4.11) and (4.12) have to be kept in the projection and are nothing but (4.7) and (4.8) respec-
tively. The inequalities obtained by combination with (4.17) are of two forms. First, due to Observation 4.3,
combining (4.17) and (4.13) for ¢ = 1,...,k yields precisely inequalites (4.9). Second, by Observation 4.3, the
combination of (4.17) with, for every i = 1,..., k, an inequality of (4.14) if H, is nontrivial and (4.15) otherwise,
gives precisely (4.10). Note that, in the previous combination, replacing some inequalities of (4.14) or (4.15) by
(4.16) provides redundant inequalities.

The last possible combinations are those involving inequalities containing only \?, for some i € {1,...,k}. It
gives x' > 0, 2'(P) > 0 and x*(P) — 2*(P’) < 0 for all v;v;41-paths P and P’ of H; such that P is contained in
a circuit. These are redundant with respect to (4.7) and (4.9)-(4.10). O

4.3. Intersection property

The dominant of a polyhedron P of R" is Pt = {x € R" : z > y for some y € P}. In this section, we show
that intersecting the bond polytope and the st-cut dominant of a series parallel graph preserves integrality.
Indeed, using Theorem 4.4 and the descriptions of the bond polytope [5] and the st-cut dominant [18], we prove
that this intersection is nothing but the st-bond polytope.

We first state the result of [5] describing the bond polytope of a series-parallel graph, for which we need a
few definitions. Two collections of edge subsets F = {Fy, F1,...,Fg} and P = {Pi,..., P} form an ear-cycle
collection if F is contained in an open nested ear decomposition £ of G, Fy = Cg, and F;AP; is a cycle for
i1=1,...,q.

Theorem 4.5 (Borne et al. [5]). Let G be a series-parallel graph, Gi,...,G, its nontrivial 2-connected
components and B its set of bridges. The bond polytope of G is the set of x € RF satisfying the following
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inequalities.
ZTe > 0, foralle € F, (4.18)
z. < x(C\e), for all circuits C, for all e € C, (4.19)
L foralli=1
> (@(Fi) = x(Pi) + 22(B) < 2 P (4.20)

" for all ear-cycle collections F;, P; of Gj.

The st-cut dominant Bs:(G)" of G is described as follows, see e.g. [18]:
By (G)t = {z € RY : 2(P) > 1 for all st-paths P}.
An st-bond being both an st-cut and a bond, we get the inclusion By (G) C Bg(G)*T N B(G). It turns out that
the converse holds for series-parallel graphs, see below.
Corollary 4.6. If G is series-parallel, then Bgs(G) = Bst(G)t N B(G).

Proof. To prove By (G)T N B(G) C By (G), by Theorem 4.4, we show that (4.6)—(4.10) are valid for B (G)*t N
B(G). Note that B (G)* is the set of z € R¥ satisfying (4.7) and (4.9), as mentioned above. Recall that the

2-connected components Hy,..., H; of G are numbered in such a way that, for i = 1,...k, H; contains both
v; and v;41. Note that G1,...,G)p of Theorem 4.5 correspond to the nontrivial 2-connected components among
Hy,..., Hy.

Let P be any st-path associated with (4.10). By definition of P and Observation 4.3, there exists an st-path
P’ such that the restriction C; of P U P’ to H; is a v;v;41-circuit, for ¢ = 1,...,k with H; nontrivial. For
i=k+1,...,¢such that H; is nontrivial, pick a circuit C; of H;. Since every circuit is contained in some open
nested ear decomposition, {C;}, 0 is an ear-cycle collection of H; for i = 1,...,¢ such that H; is nontrivial. Let
B denote the edges of the trivial H;’s. Now, applying (4.9) for P and P’, the definition of C; and By, (4.7),
and finally (4.20), yields

k p
1+1<a(P)+a(P)= > x(Ci)+22(Bg) <Y x(Ci) +2x(B) < 2. (4.21)
nontlfi;ilal H; =t
Hence, there is equality everywhere and the validity of (4.10) follows. Moreover, since an edge e which belongs
to no st-path is either in B \ By or in some circuit of a nontrivial H; with j > k, we also get (4.6).
Finally, we prove the validity of (4.8). Let j € {1,...,k}, Q be a vjv;j41-ear of H;, and C be a circuit of H;
containing (). By definition, there exists an open nested ear decomposition £ of H; containing () such that Cg
is a v;v;41-circuit. By (4.21), we have

zp:w )+ 22(B) = 2 (4.22)

=1

for C; = Cg and Cj, i # j, is a circuit defined as in (4.21).
Note that {Cg,Q},{C \ Q} is an ear-cycle collection of Hj. Inequality (4.20) associated with Fj,
Pj ={Ce,Q},{C\ Q} and F;, P; = {C;}, 0 for i # j is

Mw

2(Ch) + z(Q) — 2(C \ Q) + 22(B) < 2. (4.23)

i=1

Subtracting equation (4.22) to inequality (4.23) gives (4.8). O
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Throughout, £, u, r, s will denote integer points satisfying £ < r < uand £ < s < u, thatis r and s are within [£, u]. A
point x € Z" is lexicographically smaller thany € Z", denoted by x < y, if x = y or the first nonzero coordinate of y — x is
positive. We write x < y if x < y and x £ y. The lexicographical polytope ngf is the convex hull of the integer points within
[€, u] that are lexicographically between r and s:

P =conv{xeZ': £ <x<ur=<x<s}

The top-lexicographical polytope sz = conv{x € Z" : £ < x < u,x < s} is the special case when r = £. Similarly, the

bottom-lexicographical polytope is Pﬁu =conv{xeZ" L <x<u,r=< x}.
Given a,u € R} and b € Ry, the knapsack polytope defined by K{f'b = conv{x € Z" : 0 < x < u,ax < b}is
superdecreasing if:

Zaiuifak fork=1,...,n. @)
i>k
Close relations between top-lexicographical and superdecreasing knapsack polytopes appear in the literature. For the 0/1
case, thatis when £ = 0 and u = 1, Gillmann and Kaibel [2] first noticed that top-lexicographical polytopes are special cases
of superdecreasing knapsack ones, and the converse has been later established by Muldoon et al. [5]. Recently, Gupte [3]
generalized the latter result by showing that all superdecreasing knapsacks are top-lexicographical polytopes.
To prove this last statement, Gupte [3] observes that a superdecreasing knapsack KL‘,"” is the top-lexicographical polytope
P> where s the lexicographically greatest integer point of I(L‘,’*b .The non trivial inclusion actually holds because every integer

o,u
point x of P;S satisfies ax < as. Indeed, by definition, if x < s, there exists k € {1,...,n}suchthatx, + 1 < sy and x; = s;

\u
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‘
source !

1 Py % n n+1

Fig. 1. Path representation of the points of X7},

fori < k. Hence, we have b — ax > as — ax > ZM
u; > X;.

It turns out that top-lexicographical polytopes are superdecreasing knapsack polytopes. Indeed, let Pg be a top-
lexicographical polytope for some s within [£, u]. Possibly after translating, we may assume £ = 0. Define a by a, =
Y ixaiui+ 1,fork = 1,...,n,and let b = as. Since the associated knapsack polytope Kf,"b is superdecreasing, if x <
then ax < as = b, for all x within [0, u]. Moreover, the converse holds because, inequalities (1) being all strict,s < x implies
b = as < ax. Therefore, Py, = K®P. These observations are summarized in the following.

ai(si — X)) + ax > Y ;_, ai(si — X; + u;) > 0, because of (1), s; > 0 and

Observation 1. Superdecreasing knapsacks are top-lexicographical polytopes, and conversely (up to translations).

Motivated by a wide range of applications, such as knapsack cryptosystems [6] or binary expansion of bounded integer
variables (e.g., [8, p. 477]), several papers are devoted to the polyhedral description of these families of polytopes. For the
0/1 case, the description appeared in [4] from the knapsack point of view. It was later rediscovered from the lexicographical
point of view in [2,5]. Moreover, Muldoon et al. [5] and Angulo et al. [ 1] independently showed that intersecting a 0/1 top-
with a 0/1 bottom-lexicographical polytope yields the description of the corresponding lexicographical polytope. Recently,
these results were generalized for the bounded case by Gupte [3].

In this paper, we provide the description of the lexicographical polytopes using extended formulations. Our approach
provides alternative proofs of the aforementioned results of Gupte [3].

The outline of the paper is as follows. In Section 1, we provide a flow based extended formulation of the convex
hull of the componentwise maximal points of a top-lexicographical polytope. Projecting this formulation is surprisingly
straightforward, and thus we get the description in the original space. In Section 2, using the fact that a top-lexicographical
polytope is, up to translation, the submissive of the above convex hull, we derive the description of top-lexicographical
polytopes. We then show that a lexicographical polytope is the intersection of its top- and bottom-lexicographical polytopes.

1. Convex hull of componentwise maximal points

From now on, Xffl will denote the set of the points p' = (s, ..., Si_1, 8 — 1, Uiyq, ..., Uy),fori = 1, ..., n+ 1such that
si > £;, where p"*! = s by definition. Note that X;; consists of the componentwise max1mal integer pomts of P;1},, to which
we added, for later convenience, the point p" = (51, e, Sne1,Sn — D ifs, > £,

1.1. A flow model for X,

We first model the points of X;Z as paths from 1to n + 1 in the digraph given in Fig. 1.

Our digraph is composed of n+ 1 layers, each containing two nodes except the first and the last ones. There are three arcs
connecting the layer k to the layer k + 1, an upper arc yy, a diagonal arc t; and a lower arc z,. The only exception concerns
the first level, which does not have the upper arc.

The arcs connecting two successive layers correspond to a coordinate of x € X,
from 1to n + 1, we define the point x by setting, fork =1, ..., n,

Uy 1fyk eP,
Xk

<s

. More precisely, given a directed path P

ss—1 ift,eP,
Sk ika e P.
As shown in Observation 2, the set of (x, y, z, t) satisfying the following set of inequalities is an extended formulation of
conv(X;):

Xi = wy; + (s — Dt; + siz; fori=1,...,n, (2)
y1=0 (3)

Yi =Yi-1 ttiq fori=2,...,n, (4)

Zi = Zip1 + tiya fori=1,...,n—1, (5)

ti=0 whenever s; = ¢;, (6)

Ytttz =1 (7)

Vi, ti,zi >0 fori=1,...,n. (8)
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Observation 2. conv(X;,) = projx{(x,y, z, t) satisfying (2)-(8)}.

Proof. First, note that there is a one-to-one correspondence between the points of Xffl and the paths from layer 1 to

layer n 4+ 1 of the digraph. This implies that Xfi is the projection onto the x variables of the integer points of Q =
{(x,y, z, t) satisfying (2)-(8)}. The digraph being acyclic, the set of (y, z, t) satisfying (3)-(8) is a path polytope and thus
is an integral polytope [7, Theorem 13.10]. The integrality of u and s implies that Q is integer, hence so is its projection onto
the x variables, which concludes the proof. O

1.2. Description of conv(X;';)
In the following result, we use Observation 2 to provide a linear description of conv(XZZ).

Lemma 3. conv(X},) is described by the inequalities:

n

> A = -1 9)
i=1,5;>¢;
Ax) <0 fork=1,...,n, (10)
Ar(x) >0 when s, = 4y, (11)
where, fork =1, ...,n,
k—1 k—1

A = (=51 + (W —s1) Y [T @-=si+1D|@-—s.

i=1,5;>¢; \ j=it+1,5>¢;

Proof. By Observation 2, it suffices to project onto the x variables of the set of x, y, t, z satisfying (2)-(8).
Fork = 1,...,n, wegety, = Z;‘;ll t; by (3) and (4). This, combined with (5) and (7), yields z; = 1 — Zle t;. Using
those two equations in (2), and t; = 0 whenever s, = £;, we obtain

k—1
te = Sk — Xk + (Ux — Sg) Z ti, fork=1,...,n (12)
i=1,5;>¢;
We now show by induction on k that, forallk =1, ..., n,
k k k
Yo=Y Gi—x [[ w-s+0. (13)
i=1,s;>¢; i=1,5;>¢; J=it1,si>¢;

By definition of ¢, (13) holds for k = 1. Let us suppose that (13) holds for k < n and show that it holds for k 4+ 1. The result
is immediate if sy = €11, hence assume that s 1 > £;+1. We have

k+1 k k
Z ti = (Skt1 — X 1) + (Uk1 — Skt1) Z ti + Z ti (14)
i=1,5i>¢; i=1,5i>¢; i=1,s5i>¢;
k k
= (kp1 = X)) + W1 —sipr 1D Y Gi—x) [[ @—s+1 (15)
i=1,5;>¢; j:i+1,5j>ﬁj
k+1 k+1
= > Gi-x J] @-s+1.
i=1,5;>¢; J=it1s>¢;

Above, equality (14) follows from (12) applied to t;41 and equality (15) follows using (13).
Injecting (13) in (12) yields

k—1 k—1
ho=sc—xe+@—s) » Gi—x) [] @-—s+1) fork=1,....n (16)
i=1,s5i>¢; j:i+1,5j>€j

Up to now, we only used linear transformations, thus projecting out the variables y, z gives us (16), Z?=1,s,-> 6

whenever s, = £, and t; > 0 otherwise. Then, projecting onto the x variable gives the desired result. O

ti<1,t,=0
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Note that the following derives from the above proof by combining (12) and the fact that, by (16), we have t;, = —A:

k—1
Ar(x) = (X — sp) + (U — sg) Z Ai(x), fork=1,...,n. 17)

i=1,5;>¢;

2. Lexicographical polytopes

In this section, we first provide the description of top-lexicographical polytopes. We then show that a lexicographical
polytope is the intersection of its top- and bottom-lexicographical polytopes.

2.1. Description of top-lexicographical polytopes

The following observation unveils the polyhedral relation between a top-lexicographical polytope and the convex hull
of its componentwise maximal points.

Observation 4. P, = (conv(X;;) +R") N {x > £}.

Proof. Since conv(XZZ) is integer and contained in {x > ¢}, the polyhedron on the right is integer. Seen the definitions, the
observation follows. O

Remark that, when £ = 0, P;"}, is precisely the submissive of conv(XZfJ). Now, we derive from Lemma 3 and Observation 4
the linear description of top-lexicographical polytopes.

Theorem 5. P, = {(x e R" : £ <x < u,A(x) <0, fork=1,...,n}.
Proof. Theorem 5 immediately follows from Observation 4 and the following description of conv(ijl) + R",
conv(XZZ) +R" ={xeR":x<uandA((x) <0, fork=1,...,n}. (18)

To prove (18), denote by Q its right hand side. By Lemma 3, the above inequalities are valid for conv(XZfl). Since their
coefficients for x are nonnegative, they also hold for conv(XZfl) + R". Note that the latter and Q have the same recession
cone, thus it remains to show that the vertices of Q are vertices of conv (X ;Z) Let us prove it by induction on the dimension,

the base case being immediate. We may assume that u, > s, as otherwise A, (x) = x, — s, and the induction concludes. Let
X be a vertex of Q.

Claim 6. ) Ai(x) > —1.

n
i=1,s;>¢;
Proof. The indices i of A;(x) involved in sums throughout this proof satisfy s; > ¢;, yet to ease the reading, we will omit the
subscripts “s; > ¢;”. By contradiction, assume that Z?:l Ai(X) < —1. Since x is a vertex, and x, appears only in x,, < u, and
An(x) < 0, at least one of them holds with equality. If the latter does, then by (17) and u, > s,, we get the contradiction
0=A% < (U —sp) (1 +AX) +---A1(X)) < (u, — Sp)(1 — 1) = 0. Therefore A,(X) < 0 and x, = u,. Forx € R",
we denote x' := (X1, ..., X,—1). Necessarily, X’ satisfies to equality n — 1 linearly independent of the remaining inequalities,
and hence X’ is a vertex of {x € R" ! : x; < uy, A(x) <0, fork=1,...,n—1}. By the induction hypothesis, X’ is a vertex
ofconv(X;f;/) +R™", hence Y17, Ai(X') > —1.But now A, (X) < 0,%, = uy and (17) imply Ay (®) 4 - - - + A1 (X) < —1,
a contradiction. W

Let us show that A,(X) = 0 whenever s, = {;. Indeed, in this case, X, only appears in A¢(X) < 0 and X, < uy, and

one is satisfied with equality since x is a vertex. If X, = uy, then by (17), Claim 6 and A;(x) < 0,fori = 1...,n, we get
0> A = (U — s (1 + Zkil ~¢; Ai(®)) > 0. Consequently, X belongs to conv(X;;) and this proves (18). O

i=1,s;
Symmetrically, bottom-lexicographical polytopes are described as follows.
Corollary 7. Pﬁ, ={xeR": £ <x<uBx) <0, fork=1,...,n}, where, fork=1,...,n,
k=1 k=1

Be(¥) = (e —X) + (e — ) Y [] -6+ Ei—x).

i=1,ri<uy; \j=i+1,r<y;
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2.2. Lexicographical polytopes

By definition, we have P;3; € P,3, N P, It turns out that the converse holds, see Theorem 8. In particular, P;5, N P, is
an integer polytope.

Theorem 8. A lexicographical polytope is the intersection of its top- and bottom-lexicographical polytopes.

Proof. It remains to prove that P;;’ 2 Q, where Q = P;3, N P;. Let us prove it by induction on the dimension, the one-
dimensional case being immediate.

If r; = s1, then the problem reduces to the (n — 1)-dimensional case, and using induction concludes.

Ifr; +1 < @ < sy — 1 for some integer 7, then let £’ be obtained from ¢ by replacing ¢, by 7. By s; > £} and the

definition of A, (x), applying Theorem 5 gives P, N {x; > m} = P;’ . Moreover, since = > ry, the latter is contained in P; .

ThereforeQ N {x; > 7} = P;fu is integer. Similarly, Q N {x; < '} is integer, hence so is Q, and we are done.
The remaining case is whenr; = s; — 1.Letx € P, NP If x; = 51, when X is written as a convex combination of

integer points of P}, all of them have their first coordinate equal to s;, and hence belong to P, . By convexity, so does X and
we are done. A similar argument may be applied if x; = ry. Therefore, we may assume thatr; < X; < sy.

Let A = X; — r1, and define y by y; = sy and yx = uy + @ for k = 2,...,n. Similarly, define z by z; = r; and
zi =40+ X{:i", fori = 2, ..., n. The following claim finishes the proof, where, given two points v and w of R", max(v, w)
(resp. min(v, w)) will denote the point of R" whose ith coordinate is max{v;, w;} (resp. min{v;, w;})fori=1,...,n.

Claim 9. X is a convex combination of j = max(y, £) and Z = min(z, u) which both belong to P; ;.

Proof. First, let us show thaty € conv(X;fl) + R".Asx < u, we havey < u. Moreover, A;(y) = y; — s; = 0. Now, we

prove by induction that A,(y) = %Ak()'c) fork = 2,...,n.Using (17), A1(y) = 0, the definition of y;, and the induction
hypothesis, we have Ay (y) = %[)_(k — s+ (A — D(ug — si) + (U — sg) Zg‘;;gsi% Ai(¥)].Since A — 1 = x; — 51 = A1(X)

ands; =r; + 1 > £, we get by (17) that A,(y) = %Ak()?), fork = 2,...,n.Since A¢(X) < 0, we have Ay(y) < 0. Hence,

<s

y € conv(X; ) + R". Therefore, there exists y* of conv(X;;) with y* > y. Clearly, y* > ¢ hence y* > max(y, £). Thus,

<s

max(y, £) belongs to conv(XLu) + R" and, by Observation 4, to sz Moreover, as its first coordinate equals s;, max(y, £)
belongs to P;7’. Similarly, min(z, u) also belongs to P; 7.

Finally, we have (1 — M)z + Ay; = (1 — A)(sy — 1) + Asy = s — 14+ A = Xx1. Fori € {2,...,n}, we have
(1=2)zi4+Ay; = min(x;—AL;, (1—2)u)+max((A—1)u;+X;, AL;) = x;—max(Al;, (A—Du;+x;)+max((A—Du+x;, Al;) = X;.
Therefore,x = (1 — A)z + Ayand wearedone. B [

Note that the above result implies that the family of lexicographical polytopes defined on a fixed box [¢, u] is closed by
intersection. Beside, combined with Theorem 5 and Corollary 7, it provides the description of lexicographical polytopes.

Corollary 10. The lexicographical polytope ngf is described as follows:

xeR": A(x) <0 fork=1,...,n
Py = Bi(x) <0 fork=1,...,n
L<x<u
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ARTICLE INFO ABSTRACT
Keywords: In this paper, we study the complexity of some fundamental questions regarding box-totally
Box-TDI polyhedron dual integral (box-TDI) polyhedra. First, although box-TDI polyhedra have strong integrality

Totally equimodular matrix

properties, we prove that Integer Programming over box-TDI polyhedra is NP-complete, that
Incidence matrix

is, finding an integer point optimizing a linear function over a box-TDI polyhedron is hard.
Second, we complement the result of Ding et al. (2008) who proved that deciding whether a
given system is box-TDI is co-NP-complete: we prove that recognizing whether a polyhedron is
box-TDI is co-NP-complete.

To derive these complexity results, we exhibit new classes of totally equimodular matrices
— a generalization of totally unimodular matrices — by characterizing the total equimodularity
of incidence matrices of graphs.

1. Introduction

Totally dual integral systems were introduced in the late 70’s and serve as a general framework for establishing various min—
max relations in combinatorial optimization [1]. A rational system of linear inequalities Ax < b is totally dual integral (TDI) if the
minimization problem in the linear programming duality relation:

max{c'x: Ax < b} =min{b'y: ATy=rc,y >0}

admits an integer optimal solution for each integer vector ¢ such that the maximum is finite. As is well-known, such systems Ax < b
can be used to define every integer polyhedron, with b integral [2].

A stronger property is the box-total dual integrality, where a system Ax < b is box-totally dual integral (box-TDI) if Ax < b,
¢ < x < u is TDI for all rational vectors £ and u (with possible infinite components). General properties of such systems can be
found in Cook [3] and Section 22.4 of Schrijver [1].

Box-TDI systems are intimately related to totally unimodular matrices. A matrix is totally unimodular (TU) if every subset of
linearly independent rows forms a unimodular matrix, a matrix being unimodular if it has full row rank and all its nonzero maximal
minors have value +1. A matrix A is TU if and only if the system Ax < b is box-TDI for each rational vector b [1, Page 318].

Until recently, the vast majority of known box-TDI systems were systems associated with TU matrices. For instance, Konig’s
Theorem [4] can be seen as a consequence of the fact that the vertex-edge incidence matrix of a graph is TU if and only if the graph
is bipartite [5].
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In the last two decades, several new box-TDI systems were exhibited. Chen, Ding, and Zang [6] characterized box-Mengerian
matroid ports. In [7], they provided a box-TDI system describing the 2-edge-connected spanning subgraph polyhedron for series—
parallel graphs. Ding, Tan, and Zang [8] characterized the graphs for which the Edmonds system for defining the matching
polytope [9], which is always TDI as shown by Cunningam and Marsh [10], is box-TDI. Ding, Zang, and Zhao [11] introduced new
subclasses of box-perfect graphs. Cornaz, Grappe, and Lacroix [12] provided several box-TDI systems in series—parallel graphs. More
recently, these graphs have also been characterized by the box-TDIness of their flow cone [13] and that of their k-edge-connected
polyhedron [14]. These last two results use characterizations of box-TDI polyhedra given by Chervet, Grappe, and Robert [15].

As stated before, every integer polyhedron can be defined by a TDI system. Yet, the statement no longer holds if we replace TDI
by box-TDI. A polyhedron that can be described by a box-TDI system is a box-TDI polyhedron, and every TDI system describing it
is actually box-TDI [3]. Box-TDI polyhedra characterize the following generalization of TU matrices. A matrix is totally equimodular
(TE) if every subset of linearly independent rows forms an equimodular matrix, a matrix being equimodular if it has full row rank
and all its nonzero maximal minors have the same absolute value. A matrix A is TE if and only if the polyhedron {x: Ax < b} is
box-TDI for each rational vector b [15].

Several complexity results relative to TDIness and box-TDIness are known. Deciding whether a system Ax < b is TDI or whether
it is box-TDI are two co-NP-complete problems [6]. The first problem remains co-NP-complete even for conic systems [16], that is,
when b = 0. A tractable case for the recognition of box-TDI systems is when A is TU, since total unimodularity can be tested in
polynomial time [17]. We continue along this line by providing two new hardness results.

Contributions. In this paper, we prove that the problem of deciding whether a given polyhedron is box-TDI is co-NP-complete. Our
proof builds upon the hardness result of Ding et al. [6] about the recognition of box-TDI systems.

We also prove that the edge-vertex incidence matrix of any graph is TE. This implies that the edge relaxation of the stable set
problem is a box-TDI polyhedron. From the NP-hardness of the maximum stable set problem, it follows that optimizing a linear
function over {x € Z": Ax < 1} is NP-hard when A is TE. Since the latter problem is polynomial when A is TU, this unveils a
major difference between TE and TU matrices. Moreover, this hardness result also implies that integer optimization over box-TDI
polyhedra is NP-hard.

Another difference between TE and TU matrices is that the transpose of a TE matrix is not always TE. We highlight this fact by
characterizing the equimodularity and the total equimodularity of the vertex-edge incidence matrix of a graph.

Outline. In Section 2, we provide the definitions and some results needed throughout the paper. In Section 3, we characterize the
equimodularity and the total equimodularity of the edge-vertex and of the vertex-edge incidence matrix of a graph. Based on these
results, in Section 4, we characterize the box-TDIness of the stable set polytope and that of the edge cover dominant polyhedron
of a graph. As a consequence, we prove that Integer Programming over box-TDI polyhedra is NP-complete and that recognizing
whether a polyhedron is box-TDI is co-NP-complete.

2. Preliminaries
2.1. Matrices and polyhedra

In a given matrix, a minor is the determinant of any square submatrix. When the latter has maximal size, the associated minor
is maximal.

Recall that an integer matrix is unimodular if it has full row rank and all its nonzero maximal minors are +1. More generally, a
rational matrix is equimodular if it has full row rank and all its nonzero maximal minors have the same absolute value. As observed
in [15], checking equimodularity can be done in polynomial time. Indeed, equimodular matrices are TU up to a basis change, and
checking total unimodularity can be done in polynomial time [17].

A face of a polyhedron P = {x: Ax < b} is the polyhedron obtained by imposing equality on some inequalities in the description
of P. A matrix M is face-defining for a face F of P if it has full row rank and the affine space generated by F can be written as
{x: Mx = d} for some vector d of appropriate size. These matrices characterize box-TDI polyhedra as follows.

Theorem 1 (Chervet et al. [15]). A polyhedron P is box-TDI if and only if every face-defining matrix of P is equimodular.
In our proofs, we will use Theorem 1 combined with the following observation.
Observation 2 (See, for Instance, Chervet et al. [15]). A full row rank matrix M is face-defining for a face F of a polyhedron P C R" if
and only if there exist a vector d and a set H C FNn{x: Mx = d} of dim(F)+1 affinely independent points such that |H|+rank(M) = n+1.
Recall that a matrix is TE if every subset of linearly independent rows forms an equimodular matrix. By Theorem 1, every
polyhedron whose constraint matrix is TE is box-TDI. It turns out that this characterizes TE matrices.
Theorem 3 (Chervet et al. [15]). A matrix A of Q™" is totally equimodular if and only if the polyhedron {x : Ax < b} is box-TDI for all
be Q.

TE matrices are to box-TDI polyhedra what TU matrices are to box-TDI systems.

Theorem 4 (Hoffman et al. [5]). A matrix A of Z"™" is totally unimodular if and only if the system Ax < b is box-TDI for all b € Z.
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2.2. Matrices and graphs

In this paper, all graphs are undirected. Without loss of generality, we assume that they are simple, connected, and have at least
one edge, as our results extend immediately to general undirected loopless graphs.

Let G = (V, E) be a graph. Given W C V, let (W) (respectively E(W)) be the set of edges with exactly one extremity (respectively
both extremities) in W. An edge uv is said to cover u and v. Given F C E, V(F) is the union of the vertices covered by each edge
of F. A graph G’ = (V', E') is a subgraph of G if E' C E and V' = V(E’). A subgraph G’ C G is a spanning subgraph of G if V' = V.
The degree of a vertex v of G is the number of edges of G covering v and is denoted by d;(v). A set of edges C C E is a circuit if
the subgraph (V(C), C) is connected and all its vertices have degree 2. A hole is a circuit for which E(V(C)) = C.! An odd circuit is
a circuit with an odd number of edges, similarly, an odd hole is a hole with an odd number of edges. A graph is bipartite if it does
not contain any odd circuit. A perfect matching of a graph is a set of pairwise nonadjacent edges covering all the vertices.

Let A; denote the edge-vertex incidence matrix of G, that is the matrix whose rows are the characteristic vectors of the edges of G,
where the characteristic vector of an edge e = uv is the vector y¢ € {0,1}" with & =1if we {u,v} and y = 0 otherwise. Similarly,
Ag is the vertex-edge incidence matrix. When a result applies to both the edge-vertex and the vertex-edge incidence matrices, we
simply write incidence matrix. For F C E, let A be the edge-vertex incidence matrix of the graph (V(F), F). The characteristic
vector of a vertex u is the vector y* € {0,1}" with xi=1if w=uand y = 0 otherwise.

0Odd circuits are involved in the value of the determinants of incidence matrices.

Theorem 5 (Grossman et al. [18]). For a connected graph G with n vertices and n edges, | det(Ag)| is equal to 0 if G is bipartite, and 2
otherwise.

Theorem 5 comes from the fact that since G is connected, it has exactly one circuit, and then the value of the determinant of its
incidence matrix depends on the parity of that circuit. Theorem 5 can be used to deduce a well-known result characterizing bipartite
graphs, generally referred to as Hoffman and Kruskal’s Theorem [5].

Theorem 6 (Hoffman et al. [5]). The incidence matrix of a graph is totally unimodular if and only if the graph is bipartite.

In our proofs, we will use the following lemma to show that a matrix is not equimodular.

Lemma 7. For an odd circuit C, and for every u € V(C), the matrix [AZ ;("] has full row rank but is not equimodular.

Proof. Reordering the rows and the columns of [A], y*|, we may assume that the matrix is as follows.

1 1

1 1

T u
A X

Since C is an odd circuit, | det(Ag)| =2, hence [AT, ;(“] has full row rank. Moreover, the last |C| columns form a lower triangular
matrix with 1s on the main diagonal, thus they have determinant 1. Therefore, the matrix is not equimodular. []

The definition of bipartite graphs can be generalized as follows. A graph G is quasi-bipartite if for each odd circuit C of G, the
graph G \ V(C) has at least one isolated vertex. These graphs characterize the box-TDIness of the system given in the following
theorem, where K, denotes the complete graph with 4 vertices.

Theorem 8 (Ding et al. [6]). Given a connected graph G, the system A(T;x > 1,x > 0 is box-TDI if and only if G is a quasi-bipartite graph
different from K,.

3. Incidence matrices and total equimodularity

In this section, we characterize when the incidence matrix of a graph is TE. Since total equimodularity is not preserved under
taking the transpose, this section is divided into two parts: edge-vertex incidence matrices and vertex-edge incidence matrices.

1 In this paper, triangles are considered holes.
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3.1. Edge-vertex incidence matrices

Recall that the edge-vertex incidence matrix of a graph is TU if and only if the graph is bipartite. This extends to all graphs as
follows in the more general context of total equimodularity.

Theorem 9. The edge-vertex incidence matrix of a graph is totally equimodular.

Proof. Let G = (V, E) be a graph and let M be a full row rank matrix formed by a subset of k rows of the edge-vertex incidence
matrix of G. Let us prove that M is equimodular by induction on its number of rows: the base case is when M has one row, and
then M is equimodular since a row has only values in {0, 1}. The matrix M encodes a subgraph H = (V, F) of G with k = |F| edges.

We have |V (F)| > |F|, as otherwise M would have too many columns of zeros to have full row rank. If |V (F)| = |F|, then M
has exactly one k x k submatrix which is nonsingular, hence M is equimodular. If |V (F)| > |F|, then H has a vertex u of degree
one. Indeed, if every vertex of V' (F) had degree at least two we would have 2|F| = Zwey( rdgW) 22|V (F), a contradiction.

The column of u in M contains a single one, in uv’s row, where v is the neighbor of u in H. Let M’ be the matrix obtained
from M by removing uv’s row. Note that M’ has full row rank since M has it. A nonsingular k x k submatrix N of M has to contain
at least one of u and v, as otherwise it has only zeros in uv’s row. When N contains exactly one of them, then, expand along uuv’s
row using the cofactor expansion. When N contains both of them, then develop, as before, with respect to u’s column. In both cases,
the determinant of N is equal to a maximal minor of M’, up to the sign. By the induction hypothesis, M’ is equimodular, so all
these determinants are equal in absolute value. Therefore, so are the nonzero k x k determinants of M, and M is equimodular. []

In [18], the authors proved that the problem of determining the maximum absolute value of a minor of a given incidence matrix
is NP-hard. Hence, Theorem 9 implies the following.

Corollary 10. Determining the maximum absolute value of a minor of a totally equimodular matrix is NP-hard.

3.2. Vertex-edge incidence matrices

In contrast to edge-vertex incidence matrices, vertex-edge incidence matrices of graphs are rarely TE. We characterize below the
classes of graphs for which they are. We also characterize when these matrices are equimodular. Note that when the graph G is
bipartite the incidence matrix of G does not have full row rank by Theorem 5. Otherwise, the determinant of a square incidence
matrix is 2%, where k > 1 is the number of vertex-disjoint odd circuits [18]. Therefore, to get an equimodular vertex-edge incidence
matrix, one should forbid vertex-disjoint odd circuits. It turns out that it is an equivalence, as proved below.

Theorem 11. The vertex-edge incidence matrix of a connected nonbipartite graph G = (V, E) is equimodular if and only if G has no pair
of vertex-disjoint odd circuits.

Proof. Note that every maximal square submatrix of a vertex-edge incidence matrix induces a spanning subgraph of G having |V|
edges. Since a spanning tree of G has |V| — | edges, this subgraph contains a circuit.

(=) Suppose that G has two vertex-disjoint odd circuits C; and C,, and let ¢; and e, be edges of C, and C,, respectively. Since G
is connected, there exists a spanning tree T of G containing C; U C, \ {e;,e,}. Since C, and C, are vertex-disjoint, there exists an
edge e of T whose removal splits 7" into two trees T; and T, with C; \ {e;} C T} and C, \ {ey} C T>.

By Theorem 5, | det(AT. Dl= |det(A¥U{e.})| =2, for i = 1,2. By construction, | det(AT

— T T —
T.ule; TU[el,ez)\(e])l = | det(A l})det(A )| =

TyUfe TyUf{ey}
T

4. The determinants of the maximal nonsingular square submatrices A, lereal\(e

, and A] e} of A, differ in absolute value, thus
Al is not equimodular.

(«) Suppose that G is not bipartite and has no two vertex-disjoint odd circuits. Note that since G is connected, it contains a
nonbipartite connected spanning subgraph H with |V| edges. By Theorem 5, we have |det(AII)| =2and A(T; has full row rank. This
holds for every nonbipartite connected spanning subgraph with |V'| edges. The other spanning subgraphs of G with |V| edges are
either connected and bipartite or a product of smaller minors corresponding to connected subgraphs. In the first case, the associated
minor is zero by Theorem 5. In the second case, by Theorem 5 and the fact that G has no two vertex-disjoint odd circuits, one of
these smaller minors is zero. Therefore, every maximal minor of A(T; belongs to {—2,0,2}, and Ag is equimodular. [

Theorem 11 gives a characterization of graphs having two vertex-disjoint odd circuits in terms of total equimodularity. A
graph-theoretic characterization of these graphs was given by Lovész — see [19, page 546], or [20] for a proof without matroid
decomposition. They also appear in the context of extended formulations [21] and unimodular covers [22]. In particular, since
equimodularity can be tested in polynomial time [15, Section 4.1], Theorem 11 provides another polynomial-time algorithm for
their recognition [23].

Theorem 12. The vertex-edge incidence matrix of a connected graph G = (V, E) is totally equimodular if and only if G is an odd hole or
a bipartite graph.
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Proof. (=) Suppose that G is neither bipartite nor an odd hole. Then, G contains an odd hole C and two edges uv and uw in C and
5(V(C)), respectively.

The submatrix of Ag restricted to the rows associated with V' (C) can be reordered such that the first |C| + 1 columns form the
matrix [Ac, ;(”]. By Lemma 7, it has full row rank but is not equimodular. This implies that Ag is not TE.
(«) If G is bipartite, then Ag is TU by Theorem 6, and hence TE. Now, if G is an odd hole, then Ag is also the edge-vertex incidence
matrix of an odd hole, and hence is TE by Theorem 9. []

By Theorem 12, deciding whether a vertex-edge incidence matrix is TE can be done in polynomial time. This might be a first
step towards the complexity of recognizing TE matrices, which is an open problem raised in [15].

4. Box-TDIness and complexity consequences

In this section, we provide several complexity results based on the characterization of total equimodularity of incidence matrices
devised in the previous section.

4.1. Edge relaxation of the stable set polytope

Given a graph G = (V, E), a stable set is a set of pairwise nonadjacent vertices. The polytope {x € R : Agx < 1,x > 0} is called
the edge relaxation of the stable set polytope of G and its integer points are precisely the characteristic vectors of the stable sets of G.

By Theorems 3 and 9, every polyhedron of the form {x € R : A;x < b} with b rational is box-TDI. As adding x > 0 preserves
box-TDIness, we have the following.

Corollary 13. The edge relaxation of the stable set polytope is box-TDIL

Since finding a maximum stable set in a given graph is NP-hard [24], Corollary 13 implies that integer programming over a
box-TDI polyhedron is NP-hard.

Corollary 14. Given a box-TDI polyhedron P and a cost vector c, finding an integer point x maximizing ¢! x over P is NP-hard.
4.2. Edge relaxation of the edge cover dominant

Since multiplying a row by —1 preserves total equimodularity, by Theorems 3 and 12, when G is an odd hole or a bipartite
graph, the polyhedron {x € R : A(T;x > 1} is box-TDI. It turns out that the converse holds.

Theorem 15. Given a connected graph G = (V, E), the polyhedron {x € RE : Agx > 1} is box-TDI if and only if G is an odd hole or a
bipartite graph.

Proof. To prove the reverse direction, suppose that G is neither an odd hole nor a bipartite graph. Let us build a subgraph H = (V, F)
of G for which the polytope is not box-TDI. Since {x € RF : AIIx > 1} is the projection onto F of {x € R : Agx > 1} intersected
with {x e RF : x, =0, for all e € E \ F}, this will imply that {x € R¥ : Alx > 1} is not box-TDL

Since G is connected, nonbipartite, and different from an odd hole, it contains an odd hole C with §(V(C)) nonempty. Denote
by U the set of vertices of V' \ V(C) whose neighbors are all in V(C). Let S be a subset of §(U) such that each vertex of U is covered
by exactly one edge of S. Let F = (E\§(U))US, and let H = (V, F). This graph is obtained from G by deleting edges so that every
vertex of U has exactly one neighbor in V' (C), whereas the vertices of V' \ (V(C) U U) have at least one neighbor but none in V' (C).

Let M be the |V(C)| x | F| matrix formed by the rows of AL associated with the vertices of V' (C). By considering the columns of
M associated to C and an edge of §(V(C)), observe that M contains a matrix of the type [AZ, ;(“] for some u € V(C). Therefore, by
Lemma 7, M has full row rank but is not equimodular.

We now show that M is face-defining for P = {x € Rf": A;{x > 1}. Since M has full row rank, by Observation 2 it is sufficient
to exhibit |F| — |V/(C)| + 1 affinely independent points of the face Q = Pn {x: Mx =1} of P. Let K = F \ (C U §(V(C))), we define:

1 1
P =520+ 5w S Y 18N S|t = 2V,
uev (C)

where L, is the unique perfect matching of the path C \ é(u). Then, we define two types of points:

« p¢ =p0+ y¢, for each e € K,
C =0 %( ol — 4\l for each uv € 8(V(C)) with u € V(C).

Together with p%, the points p are affinely independent because p¢ — p° = y°, for each e in K. Adding the points ¢ maintains
affine independence since ¢** is the only point with uv’s coordinate different from 1.

Moreover, all these points belong to Q since they satisfy x(6(u)) = 1 for all u € V(C) and x(6(v)) > 1 for all v € V \ V(C). To
see this, note that for each u in V(C), yLv — y\Lu satisfies x(6(u)) = —2 and x(6(v)) = 0 for all v # u. The number of points p is
|[K|+1=|F|-=|V(C)|—-18(V(C))| + 1 and the number of points q is |5(V(C))|, hence M is face-defining for F.

The matrix M is nonequimodular and face-defining for {x € RF : ALx > 1}. Therefore, the latter is not box-TDI by Theorem 1,
and neither is {x e RF : ATx >1}. [J
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Given a graph G = (V, E), an edge cover is a set of edges covering each vertex. The polyhedron {x € R : A(T;x >1,x >0} is
called the edge relaxation of the edge cover dominant of G and its binary points are precisely the characteristic vectors of the edge
covers of G.

Since adding box constraints preserves box-TDIness, by Theorem 15, the edge relaxation of the edge cover dominant of an odd
hole or a bipartite graph is box-TDI. The converse does not hold, because adding x > 0 might cut off faces defined by nonequimodular
matrices, such as the one given in the proof of Theorem 15. The larger class of graphs to be considered to get the converse is given
in Theorem 16 below.

The parallel between Theorems 8 and 16 highlights once more the subtle difference between the TDIness of a system and that
of a polyhedron. In particular, for an odd hole C,, the system Agnx > 1,x > 0 is not box-TDI while the associated polyhedron is
box-TDI. This means that this system is not TDI. This can be seen as the right-hand side is integer but, since » is odd, the point
%1 is a noninteger vertex of the associated polyhedron [2]. A box-TDI system describing this polyhedron is obtained by adding the
inequality 17x > %, which is one half of the sum of every inequality in AE,,X > 1.

Theorem 16. The edge relaxation of the edge cover dominant of a connected graph G is box-TDI if and only if G is an odd hole or a
quasi-bipartite graph different from K.

Proof. Let P; denote the edge relaxation of the edge cover dominant of G.

(«) By Theorem 8, if G is a quasi-bipartite graph different from K,, then the system Agx > 1,x > 0 is box-TDI, hence P is box-TDI.
If G is an odd hole, P, is the intersection of the polyhedron stated in Theorem 15 with the box {x: x > 0}. Theorem 15 and the

definition of box-TDI polyhedra imply that P, is box-TDI.

(=) Let us show that Py , 1s not box-TDI. By definition, Py, ={x: ALx >1,x > 0}, where

T _
Ay, =

cC o = =
S - o -
— O O =
S - = o
- o = o
—_—_ o o

The full row rank matrix formed by the last three rows of AT4, say B, is not equimodular because the determinant of the
first three columns is 1, whereas that of the last three is 2. Moreover, the four points z; = (1,0,0,0,0,1)7, z, = (0,1,0,0,1,0),
z3 =(0,0,1,1,0, 0)T and z4 =(1,1,1,0,0, 0)" belong to Py, satisfy Bx =1, and are affinely independent. Therefore, by Observation 2,
B is a face-defining matrix of Pg,. This implies that Py, is not box-TDI by Theorem 1.

To complete the proof there remains to show that P is not box-TDI when G is neither quasi-bipartite nor an odd hole. In this
case, there exists an odd circuit C such that G \ V(C) is nonempty and has no isolated vertices. If C has a chord e, then C U {e}
contains a smaller odd circuit C’. Since C\ C’ is a path of length at least two, G \ V(C’) has no isolated vertices. Therefore, we may
assume that C is an odd hole.

Let M be the submatrix of Ag formed by the rows associated with the vertices of V' (C). By construction, §(V(C)) is nonempty,
hence M contains [A., y*|, for some u € V(C). By Lemma 7, M is not equimodular.

We show that M is face-defining for P;. Since M has full row rank, by Observation 2 it is sufficient to exhibit |E| — [V/(C)| + 1
affinely independent points of the face F = P; n {x : Mx =1} of P;. We exhibit the same points as in the proof of Theorem 15,
the difference is that, here, the set U is empty since there are no isolated vertices when removing V' (C):

1
< =520+ x5,

« p¢=p0 + y¢, for each e € K,

o g = y" 4+ yLu + ¥X for each uv € §(V(C)) with u € V(C).

As shown in the proof of Theorem 15, these points are affinely independent and satisfy Agx > 1, Mx = 1. Since these points also
satisfy x > 0, they belong to the face P;n{x: Mx =1} for which M is a face-defining matrix. By Theorem 1, P is not box-TDI. []

Theorem 16 implies that recognizing box-TDI polyhedra is co-NP-complete since recognizing quasi-bipartite graphs is [6].

Corollary 17. Recognizing box-TDI polyhedra is co-NP-complete.

Conclusion

In this paper, we provide two hardness results regarding box-TDI polyhedra, and their proofs are based on the exhibition of
new classes of binary TE matrices. A natural subsequent question is the characterization of binary TE matrices, and further that of
{0,1,—1} TE matrices.
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1. Introduction

Throughout the paper, all the entries will be rational. A linear system Az > b,z > 0 is totally dual
integral (TDI for short) if the maximum in the LP-duality equation

min{c'z: Az >b, >0} =max{b y: ATy <ec y >0}

has an integer optimal solution for all integer vectors ¢ for which the optimum is finite. This property
is much sought-after since such systems describe integer polyhedra when b is integer and yield min—max
relations [1]. An even stronger property than TDIness is box-TDIness, where a boz-TDI system is a TDI
system Az > b,z > 0 which remains TDI when adding box-constraints ¢ < x < u, for all rational' vectors
£, u. In other words, it is box-TDI if

max{b y+ Tzt —u'22 ATy+2t —22<c,y>0, 2,22 >0}
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has an integer solution for all integer vectors ¢ and all rational vectors £, v for which the optimum is finite.
General properties of such systems can be found in Cook [2] and Chapter 22.4 of Schrijver [3]. Note that,
although every rational polyhedron {x : Ax > b,z > 0} is described by a TDI system %ASL‘ > %b, x > 0, for
some integer k, not every polyhedron is described by a box-TDI system.

The book by Schrijver [4] contains numerous min-max relations of combinatorial optimization derived
from TDI systems. When such systems are box-TDI, most of the time, the matrix A is totally unimodular.
The past few years, this topic has received a renewed interest [5,6], and other box-TDI systems have been
studied [7-9], with matrices that are not totally unimodular. A 0-1 matrix A so that the linear system
Az > 1, x > 0 is (box-) TDI is called (boz-) Mengerian. In 1977, Seymour [10] proved that a 0-1 matrix
associated with a binary clutter is Mengerian if and only if it does not contain ()¢ as a minor. In 2008, Chen,
Ding and Zang [8] proved that such matrices are box-Mengerian if and only if they contain neither Qg nor
Q7 as a minor. Recently, Ding, Tan and Zang [11] announced a characterization of the graphs for which a
box-TDI system describes the matching polytope.

In 2009, Chen, Ding and Zang [9] proved that a graph is series—parallel if and only if the system %A;C >1,
x > 0 describing the 2-edge-connected spanning subgraph polytope is box-TDI, where A is the cut-edge
incidence matrix of the graph. Another set of characterizations of series—parallel graphs given by Schrijver
asserts that they are precisely the graphs for which the standard linear systems describing the cut cone, the
cycle cone [12], the cut polytope [13], the T-join polytope [14] and the T-join dominant [15] are TDI — see
Corollary 29.9c of [4]. Moreover, it is proved in [16] that a graph is series—parallel if and only if the standard
linear system describing its multicut polytope is TDI.

Multiflows are among the most famous NP-hard problems in combinatorial optimization and have been
considerably studied, see for instance [4]. We focus on integer multiflows in the present paper. Multiflow
problems involve two simple undirected graphs, a supply graph G = (V, E) and a demand graph H = (V, R),
and two vectors, a capacity vector c € Zf and a demand vector d € Zf. An edge e € E is a link of capacity
ce whereas an edge r € R is a net of demand d,.. From now on, (G, H, ¢,d) will refer to such a quadruplet.
For a net r = st, let P(r) be the set of all st-paths in G, and let P be the union of P(r) for all nets r. A
multiflow of (G, H,c,d) is an integer vector y € Z” satisfying the following system of linear inequalities:

Z yp > d, for each net r € R,
PeP(r)
(MFLOW) Z yp < c. for each link e € F,
PeP:ecP
y = 0.
Two famous NP-hard problems are related to multiflows. Given G, H and ¢, the mazimum multiflow problem
asks for a demand vector d such that there exists a multiflow for (G, H,c,d) and ) _p d, is maximum.

Given (G, H,¢,d) and some cost vector w € Zf on the links, the min-cost multifiow problem asks for a
multiflow minimizing the sum of w.y. over all links e € E, where ye := ) pcp. . p ¥p is the amount of flow
through link e.

A necessary condition for the existence of a multiflow in (G, H, ¢, d) is the cut condition which requires
that d(DNR) < ¢(DNE) for all cuts D of G + H, the latter being G+ H = (V, EU R) where E and R are
considered as disjoint, that is, G + H may contain parallel edges. Seymour [14] proved that a graph (V| F')
is series—parallel if and only if for all partitions F' into E and R, and for all ¢ € Zf and d € Zf, the cut
condition implies the existence of a multiflow.

Contribution. In this paper, we investigate some box-TDI systems related to multiflows. Our main result
is to strengthen the TDI characterizations of series—parallel graphs mentioned earlier by proving that the
standard linear systems describing the cut cone, the cycle cone, the T-join polytope, the cut polytope, the
multicut polytope, and the T-join dominant are actually box-TDI systems for series—parallel graphs — see
Theorem 1.
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From the box-TDIness of the cut cone, we derive a min—max relation for series—parallel graphs that
involves a new multiflow problem generalizing both the maximum multiflow and min-cost multiflow problems.
Given (G, H,c,d), a profit £ € Zf and a cost u € Zf, the trader multiflow problem asks to maximize
T2 — w22 over all (y,21,22) € Zf X Zf x Z% such that y is a multiflow of (G, H, ¢, d~) with é = ¢ + 22
and d = d + z'. Therefore, in this new multiflow problem, we gain £, for each additional unit of demand on
net r € R that we are able to satisfy, we pay u. to add a unit of capacity on link e € F, and the goal is
to maximize the total benefit. The min—max relation we derive connects the trader multiflow problem and
box-multicuts, where box-multicuts are a generalization of multicuts. We also show that the trader multiflow
problem is polynomial time solvable in series—parallel graphs.

Outline. In Section 2, we establish our characterization of series—parallel graphs in terms of box-TDI systems.
Section 3 is devoted to the trader multiflow problem. We first show how it generalizes both the maximum
multiflow and min-cost multifiow problems. Then, we provide our min—max relation for the trader multiflow
problem in series—parallel graphs and explain why this problem is polynomial in these graphs. For the sake
of clarity, the most technical part of the proof of Theorem 1 is postponed to the Appendix. The rest of this
section is devoted to definitions.

Definitions. Throughout, G = (V, E) will denote an undirected graph and 7" C V' a set of vertices of even
cardinality. A graph is series—parallel if it is obtained from a forest by repeating the operations of replacing
one edge by two edges in parallel, or by two edges in series. Equivalently, these are the graphs without Ky
minor [17]. Then, a series—parallel graph is planar and its planar dual is also series—parallel. Following [4], a
cycle is a subset C' C E so that every vertex of (V,C) has an even degree. A minimal nonempty cycle is a
circuit. The cut defined by a subset of vertices U, denoted by §(U), is the set of edges having one extremity
in U and the other one in V' \ U. A minimal nonempty cut is a bond. Note that cycles (resp. cuts) are
disjoint unions of circuits (resp. bonds). A multicut is the set of all the edges between different classes of
some partition of the vertex set. A T-join is a subset of edges F' such that the odd degree vertices of (V, F')
are the ones in 7. Note that a cycle is an (-join. A T-cut is a cut §(U) with |[U NT| odd. For z € R¥ and
F C E, we use the notation z(F') = ) ... We will make no difference between combinatorial objects
and their characteristic vectors, that is, for instance, we will speak of nonnegative combinations of cycles
instead of nonnegative combinations of characteristic vectors of cycles.

2. Box-TDI systems of series—parallel graphs

In this section, we first provide the systems involved in our main theorem. Then, we state and prove
Theorem 1, which establishes that the standard linear systems describing the cut cone, the cycle cone, the
T-join polytope, the cut polytope, the multicut polytope and the T-join dominant are box-TDI if and only
if the graph is series—parallel. These systems were already known to be TDI [4,16].

2.1. TDI systems of series—parallel graphs. ..

Let us write now the systems involved in Theorem 1. Let G = (V, E) be an undirected graph and 7' C V/
a set of vertices of even cardinality.

Seymour [12] proved that the cycle cone of G, that is, the set of nonnegative combinations of cycles of
G, is described by the following set of inequalities.

z(6(U)\{e}) =z >0 for each U C V and each e € 6(U),
(Cycle cone) { e> 0.
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The T-join polytope of G is the convex hull of its T-joins. Seymour [14] proved that it is described by the
following set of inequalities.

foreach U CV, F C§(U)

z(F) —z(0(U)\ F) <[F| -1 with |U N T| + |F| odd,

0<z<1.

(T-join)

The T-join dominant of G is the set of vectors greater than or equal to some T-join of G. This dominant is
described by the following set of inequalities, see Corollary 29.2b in [4].

z(C)>1 for each T-cut C,

(T-join dominant) { 2> 0.

Sebé [18] provided a minimal TDI system describing the T-join dominant of G.
Let us assume that G is planar and let G* denote its dual graph. Recall that the cycles of G are the cuts
of G*. Hence,

— > . .
(Cut cone) { i(gg {e}) =2 >0 for each circuit C' and each edge e € C,

describes the cut cone of G, that is, the set of nonnegative combinations of cuts of G. Moreover, by taking
T = ) in system (7-join), and then writing the planar dual, we have the following description of the cut
polytope of G, that is, the convex hull of its cuts.

for each circuit C and F C C

p(F) = 2(CNE) <P =1 1P odd,

0<x<1.

(Cut)

Actually, the systems (Cut cone) and (Cut) describe the cut cone and the cut polytope for a larger class
than planar graphs, namely graphs with no K5-minor — see [14] and [13], respectively.

Schrijver showed that the systems (Cycle cone), (T-join) and (7-join dominant) are TDI if and only if
the graph is series—parallel— see Corollary 29.9¢ of [4]. A graph is series—parallel if and only if its dual is;
this result, combined with the fact that cycles are (-joins, implies that (Cut cone) and (Cut) are TDI if and
only if the graph is series—parallel.

Multicuts can be equivalently defined as arbitrary unions of cuts, or as sets of edges D C E such that
IDNC| # 1 for all cycles C. The multicut polytope of a graph is the convex hull of its multicuts, and is
therefore contained in the polyhedron defined by the inequalities of (Cut cone) and = < 1. Chopra [19]
showed that the following system, called (Multicut), describes the multicut polytope of a graph if and only
if the graph is series—parallel.

x(C\{e}) —x. >0 for each circuit C' and each edge e € C,

(Multlcut){ 0<z<1.

Corollary 4.1 of [16] strengthens the result of Chopra [19] by stating that system (Multicut) is TDI if and
only if the graph is series—parallel.

2.2. ...are actually box-TDI

We now strengthen the aforementioned TDlIness results. More precisely, we show that each system
mentioned in Section 2.1 which is TDI for series—parallel graphs is actually box-TDI for these graphs.
Our theorem implies Corollary 4.1 of [16] and Corollary 29.9¢ of [4].

Theorem 1. Let G = (V, E) be a graph. The following statements are equivalent.
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(i) G is series—parallel.

(ii) System (Cut cone) is box-TDI.
(iii) System (Cycle cone) is box-TDI.

(iv) System (T-join) is box-TDI, for all T CV of even cardinality.

(v) System (Cut) is box-TDI.

(vi) System (Multicut) is box-TDI.
(vii) System (T-join dominant) is box-TDI, for all T CV of even cardinality.

Proof. Proof. Series-parallelness is already necessary for the systems of (ii)—(vii) to be TDI — see [16] for
(vi) and Corollary 29.9¢ of [4] for the others. A box-TDI system being TDI, the necessity of (i) follows. For
the other directions, we will show that (i) = (i4) = (iii) = (iv) = (v) and (i7) = (vi) and (iv) = (vii).

(i) = (ii): Let G = (V, E) be series-parallel, ¢ € Z¥ and ¢,u € Q¥ with ¢ < u. The primal problem is
to optimize over the system (Cut cone) intersected with the box {z : ¢ < x < u}. Since we have z > 0, we
may suppose that £ > 0 and we get:

mine' x

(P)q z(C\{e}) —z.>0 for each circuit C' of G and each edge e € C,
0</<z<u.

To prove box-TDlIness, one has to show that if the dual given below has an optimal solution, then it also
has an integer one.

max ¢zl — T 22

(D) Z ( Z Yye,f  — yC’,e) < e — Zé + zf for each e € E,
circuit C3e feC\{e}
y>0, zL22>0.

The feasible set for (D) has the form Q = {z1,22 > 0, y > 0: 2! — 22 + Ay < ¢}, and its projection onto
the space of z = (21, 22) € REXF is proj,(Q) = {21,22 > 0: v 2t —vT22 <wv'¢, for each v € K} where K
is the projection cone K = {v € RF : vTA > 0T, v > 0}. Observe that K is the set of v € R¥ satisfying
the inequalities of the system (Cut cone). Since G is series—parallel, K is the cut cone of G [14]. Therefore

proj,(Q) = {(z*,2%) € REXF . 21(D) — 22(D) < ¢(D), for each cut D of G}.

The following claim states that proj,(Q) is an integer polyhedron. It is a direct corollary of a technical
result whose statement and proof are postponed to the Appendix.

Claim 2. proj,(Q) is integer whenever c is integer.

Suppose (D) has an optimal solution. By Claim 2, there exists an integer optimal solution (z!,22) of
max ' 2" — u" 2% over proj_(Q). We now build an optimal solution (7, z!, 22) of (D) as follows.

Let b := ¢ — z! + z%. Then b is integer and satisfies b(D) > 0 for each cut D of G. Define R as the set
of all e € E with b, < 0 and E' = E\ R. Let &' = (V,E’) and H = (V,R). Let ¢ € ZF and d € ZF
be defined by ¢, = b, for all e € E' and d, = —b, for all € R. Then d(DNR) < /(DN E’) for each
cut D of G’ + H. In other words, the cut condition is satisfied in (G’, H,c,d). Hence, G’ + H = G being

series—parallel, Theorem 8.1 of [14] implies that there exists a multiflow § of (G’, H, ¢/, d). Define y as follows:

__J ygp ifb.<0and P=C\{e},
YCpe = 0 otherwise.

By construction, (7, z',2?%) is an integer optimal solution of (D), and we are done.
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(79) = (i4i): The system (Cycle cone) of a series—parallel graph is the system (Cut cone) of its planar
dual which is also a series—parallel graph. As the latter system is box-TDI precisely for such graphs, we get
the desired implication.

(7i1) = (iv): In the following, Az < b is a system whose underlying polyhedron P = {z : Az < b} is
pointed. The vertex system associated with a vertex z of {x : Az < b} is the system A,z < b, composed of
the inequalities of Ax < b satisfied with equality by z.

Claim 3. The system Ax < b is box-TDI if and only if the vertex system associated with each vertex of
P ={x: Az < b} is boz-TDIL

Proof. Cook proves that a system is box-TDI if and only if, for each face F' of the associated polyhedron,
the set of active rows for F' forms a box Hilbert basis [2, Proposition 2.2].

Suppose that all the vertex systems of P are box-TDI. Let F' be a proper face of P and z be a vertex
of F. Then, the active rows in A,z < b, for the minimal face of {x : A,x < b,} containing F' are exactly
the same as those in Az < b for F. Hence, by [2, Proposition 2.2], the set of active rows for F' forms a box
Hilbert basis. Since this holds for every face of P, [2, Proposition 2.2] implies that Az < b is box-TDI. The
converse can be proved in a similar way. W

Let T" C V. Recall that vertices of the polytope defined by the system (7-join) correspond to T-joins
of GG, and conversely. Let J be any T-join of G. By Claim 3, it suffices to show that the vertex system of
(T-join) associated with vertex J is box-TDL. Let ¢; : R — RE be defined by

1l—z. ifeed,
[@s()]e ::{ z. ifeeE\J.

The next two claims exhibit properties of ¢ ;.

Claim 4. The system obtained from (Cycle cone) by replacing x by ¢ j(x) is the vertex system of (T-join)
associated with J.

Proof. Schrijver proves that replacing x by ¢;(x) in the vertex system of (T-join) associated with J gives
the system (Cycle cone) — see (29.61) to (29.63) page 506 in [4] for the details. As ¢ (¢s(x)) = z, the
assertion follows. W

Claim 5. Replacing x by ¢j(x) preserves box-TDIness.

Proof. From the definition of box-TDI systems, it follows that replacing some coordinates by their opposite
preserves box-TDIness. So does translation, see Theorem 5.34 in [4]. W

The (Cycle cone) being box-TDI by (iii), Claims 4 and 5 imply the box-TDIness of the vertex system of
(T-join) associated with J. Since this holds for any T-join J of G, Claim 3 gives the box-TDIness of (T-join).

(iv) = (v): We have already shown that (7-join) is box-TDI if and only if the graph is series-parallel.
Recall that the cuts of a planar graph are the cycles of its planar dual, and that cycles are §-joins. Therefore,
(Cut) is nothing but the system ((-join) for the planar dual of the graph, and since planar duality preserves
series—parallelness, we get that (iv) implies (v).

(49) = (vi): This is immediate because (Multicut) is nothing but the box-TDI system (Cut cone) together
with the box-constraints x < 1.

(iv) = (vii): The system describing the T-join polytope being box-TDI, the TDI system (7-join dominant)
describing its dominant is also box-TDI — by Theorem 22.11 of [3]. O
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Box-TDI systems have the remarkable property that any TDI system describing the same polyhedron is
also box-TDI [2]. This gives the following consequence of Theorem 1. The minimal TDI system describing
the T-join dominant given by Sebd [18] becomes box-TDI when the graph is series—parallel.

3. Trader multiflow vs box-multicut

In this section, we first explain how the trader multiflow problem generalizes both the min-cost multiflow
and maximum multiflow problems. We then provide a min—max relation involving the trader multiflow
problem and the so-called box-multicuts. Finally, we briefly explain why the trader multiflow problem is
polynomial in series—parallel graphs.

3.1. Related multiflow problems

Recall that an instance (G, H,c,d,l,u) of the trader multiflow problem is composed of two simple
undirected graphs G = (V, E) and H = (V, R), a capacity ¢ € Z%, a demand d € Z¥, a profit £ € Z% and a
cost u € Zf. The trader multiflow problem aims at maximizing £ 2! —u " 22 over all (y, 21, 22) € ZE XZE XZE
such that y is a multiflow of (G, H, ¢, J) withé=c+ 22 and d = d + 2.

This problem contains the maximum multiflow problem as a special case. Let (G, H,c,d,{,u) be an
instance of the trader multiflow problem with d = 0, / = 1 and u = +o0. In any optimal solution (7, 2!, z2),
since u = +o0, we have z? = 0, that is, capacities remain unchanged. Since d = 0 and ¢ = 1, the problem
reduces to find z' such that ) %} is maximum and there exists a multifiow in (G, H, ¢, 2*). This is nothing
but the maximum multiflow problem associated with (G, H, ¢).

The trader multiflow problem also contains the min-cost multiflow problem as a special case. Let
(G,H,c,d,w) be an instance of the min-cost multiflow problem. It is transformed into an instance
(G' H',d,d,l';u) of the trader multifiow problem as follows. Let G’ = (V' E’) be the graph obtained
from G by subdividing every link e € F into two links ej, es in series. Then, the amount of flow passing by
e1 equals the amount of flow passing by es. Let c’61 = ¢, and u’el = +4o00. The capacity of e; is chosen in
order to limit the value of the flow passing by e, es to c.. Let 0’62 =0 and u;2 = w,. The role of e; is to
charge a fee w, for each unit of flow passing by ej,es. Let H = (V') R), d = d and ¢’ = 0. In an optimal
solution (,z%, 22) of the trader multiflow problem, we may suppose without loss of generality that z! = 0
since £/ = 0. Since u; = +o0, the amount of flow passing by e1, ez is no more than ¢ = c.. Since ¢, = 0,
for each unit of flow passing by e1, ea, one has to increase the capacity of e; by one at cost uéQ = w,. Hence,
y defines a multiflow in (G, H, ¢, d) minimizing the total cost of the flow.

3.2. Min—-max theorem

Given a graph and integer vectors ¢ and w indexed on its edges, the integer vectors x satisfying system
(Cut cone) and ¢ < x < w are called boz-multicuts within [¢,u]. If we are also given a cost vector ¢ defined
on the edges, the minimum boz-multicut problem seeks a box-multicut x within [¢, u] of minimum cost c'z.

Box-multicuts are a generalization of multicuts, these latter being box-multicuts within [0,1]. Box-
multicuts also generalize separating multicuts, where, given a supply graph G and a demand graph
H = (V,R), a separating multicut is a multicut of G + H containing R. Indeed, separating multicuts
are box-multicuts of G + H within [¢, 1] where ¢ equals 1 for every net of R and 0 otherwise.

The min—max relation between the trader multifliow and minimum box-multicut problems given in the
following Corollary 6 is a consequence of Theorem 1. Its statement uses the following notation: given a
supply graph G = (V, E) and a demand graph H = (V, R) and two vectors v! € Z¥ and v? € Z%, the vector
associated with the edges of G + H defined by v! and v? is denoted by (v!,v?).
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Corollary 6. The mazimum trader multiflow of (G, H, c,d, ¢, u) equals the minimum box-multicut of G+ H
within [(0,£), (u, +00)] with respect to costs (¢, —d), if G+ H is series—parallel.

Proof. First, set ¢ = (¢,—d), { = (0,¢) and @& = (u, +00). Consider the linear program (P) of the proof
of Theorem 1 where G, ¢, ¢ and u are replaced by G + H, ¢, ? and 1, respectively. Since i, = 0, we may
suppose, without loss of generality, that z! = 0 for all links e € E in an optimal solution (¥, 2!, z?) of the
dual (D). Moreover, as u, = +00, z2 = 0 for all nets € R. The dual can then be written as:

max E - E U 2>

reER ecE
) Z (yC,r - Z ij) >d, + 2 for each r € R,
(D ) circuit Cor fec\{r}
Z ( Z Yo, — yC,e> < ce+ 23 for each e € E,

circuit C3e feC\{e}
y=0, z.z°>0.

By strong duality, the optimal values of (P) and (D’) are equal, when finite. In this case, we will show
that there exists an integer optimal solution for both problems.

We may suppose that yc s = 0 if f € E. Otherwise, one may decrease yc, s by some € > 0. If the solution
becomes infeasible, then there exist a circuit C! 5 f and link f € C"\ {f} with yor p» > € since ¢ > 0.
Decreasing ycv by € and increasing g g by € where C” is the circuit of CAC’ containing f’ restores its
feasibility. Similarly, we may suppose that 4 ; = 0if C'\ f intersects R. Thus, for every yc ¢ > 0, f € R and
C\ f € P(r). Since G + H is series—parallel, system (Cut cone) is box-TDI and (7, z!, 22) may be assumed
integer. The latter then corresponds to an optimal solution to the trader multiflow problem. Finally, since i
and 4 are integer, the box-TDIness of system (Cut cone) implies that the optimal solution of (P) is integer,
that is, a box-multicut of G' + H within [/,4]. O

Min—max relations involving min-cost multiflow and maximum multiflow stem from Corollary 6 since the
transformations described in Section 3.1 preserve series-parallelness. In particular, Corollary 6 implies that
the two following min-max relations of [16] that hold if G + H is series—parallel:

e the maximum multiflow equals the minimum separating multicut,
e the minimum multiflow loss equals the maximum multicut,

where the minimum multiflow loss problem asks to remove a minimum number of demands of H to ensure
the existence of a multiflow in G + H.

Applying the arguments used in the proof of (i) = (i7) of Theorem 1, it can be shown that optimizing
over (D’) amounts to optimize over an integer polyhedron similar to proj,(Q). For series—parallel graphs,
optimizing over such a polyhedron is polynomial-time solvable [20,21]. It yields an increase of capacities
and demands which maximizes the objective function and ensures that the cut condition is satisfied. Then,
applying Theorem 8.1 of [14] provides an optimal solution to the trader multiflow problem. To sum up, we
have the following complexity result.

Corollary 7. If G+ H is series—parallel, then the mazimum trader multiflow problem on (G, H,c,d, ¥, u)
is polynomial-time solvable for all vectors £ and u and for all integer vectors ¢ and d.

As seen in Corollary 7, our approach yields a polynomial algorithm, however it relies on the ellipsoid
method. We conclude with the question: is there a combinatorial algorithm that solves the trader multiflow
problem in series—parallel graphs?
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Appendix
The proof of Theorem 1 is based on Claim 2 which is a direct consequence of the following result.

Lemma 8. Let G = (V,E) be a graph. The polyhedron P(G,c) defined by
P(G,c) = {(v,y) € RE*F . 2(D) — y(D) < ¢(D), for each cut D of G}

is integer for all integer weights ¢ € ZF if and only if G is series—parallel.

Proof. Necessity. First, note that P(é, ¢) has a fractional extreme point if G is the complete graph Ky
with cost é¢ = —1 on the three edges of a triangle and ¢, = +1 on the remaining star. Indeed, the point
p = (Z,9) defined by g. = 1/2 for the edges of the triangle and zero elsewhere is the unique optimal solution
of maximizing T — "y over P(é, ¢), where { is zero and 4 is the all-one vector. Now, let G be a graph
which is not series—parallel, then, by [17], it has a K -minor, that is we can remove and contract some edges
of G to obtain K. Let us extend (¢4, 1) to (,¢,a) by defining £, = —oo and @, = 400 for the new edges
e, with ¢, = 400 if e must be contracted, and ¢, = 0 if it must be deleted. Clearly, the point p obtained by
extending p with zero components is the unique optimal solution of maximizing 0Tx — u'y over P (é, c).

Sufficiency. By contradiction, let (G,c) be a counter-example with a minimum number of edges.
Throughout, p = (z,y) will denote some fractional extreme point of P(G, ¢) and

l;::c—:i—i—gj.

Note that b(D) > 0, for each cut D.

First, note that G has no loops or bridges. Indeed, a loop belongs to no cut, and a bridge e appears exactly
in three nonredundant constraints, namely x. > 0, y. > 0 and y. — z. > c., two of which are satisfied with
equality by any extreme point.

Moreover, P(G,c) is full-dimensional. To see this, observe that the point p = (z,y) € RF*F defined by
z. =1 and y. = +oo for all e € E belongs to P(G, ¢). Moreover, for each edge e € E, the point pZ (resp. p¥)
obtained from p by resetting z. to zero (resp. y. to zero) also belongs to P(G, ¢) since each cut has size at
least two. The 2|E| + 1 points p, pZ, pY, for e € E, are affinely independent, hence the dimension of P(G, )
is 2|E)|.

In consequence, the point p is the solution of a system of 2|E| equations of the following type, where the
left-hand-side forms a full-rank matrix.

z. =0 for some edges e, (A1)
Ye =0 for some edges e, (A.2)
Z(D) —y(D) =¢(D) for some bonds D # (). (A.3)

Suppose G has two parallel edges € and f. Then, replacing (Zz, %) by (Ze,¥e) + (Zp yp) and (Tf,yp)
by (0,0) yields a feasible point (Z,7) because € and f belong to the same cuts. This point (Z,y) satisfies
all Eqs. (A.1)—(A.3) except possibly the Egs. (A.1) and (A.2) associated with €. But these two equations
are not satisfied only if 27 > 0 or y; > 0 respectively. This implies that (z,7) satisfies 2|E| equations
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among (A.1)-(A.3), 7 = 0, and y7 = 0. Hence, it is also an extreme point of P(G, ¢). Therefore resetting
ce = ¢z + ¢j and removing f gives a counter-example with a smaller number of edges, a contradiction. We
have just proved the following.

G has no parallel edges. (A.4)

Note that, if both z. > 0 and . > 0 for some edge e, then one could reset z., .=z, — ¢ and y, :== Y. — €
(for some € > 0) and still satisfy (A.1)—(A.3), contradicting the extremality of p. Thus,

for all e, either . = 0 or g, = 0. (A.5)

We can choose ¢ so as to minimize the norm of p (e.g. Euclidean). Consequently, nonzero coordinates of
p are fractional. Indeed, we have
0<p<1, (A.6)

as otherwise, if Z, > 1 (resp. g, > 1) for some edge e, then (A.1)—(A.3) would still be satisfied after resetting
Te =Ze— 1 and c. :=ce — 1 (resp. ¥e := e — 1 and ¢ := c. + 1).

By (A.4) and by construction of series—parallel graphs, there are two edges € and f in series. We may
assume w.l.o.g. that be < Bf. Since D = {e, f} is a cut, we have 13]; > —b. Denote by p = (&,9) €
REMIIXENSY the restriction of p to E\{f} x E\{f}, and let G be the graph obtained from G by contracting
f, and é the restriction of ¢ to E'\ {f}. Clearly, p belongs to P(G, ¢), and the latter is full-dimensional since
neither loops nor bridges appeared in G.

Moreover, since c¢ is integer and p fractional, (A.3) and (A.5) imply that at least two edges have a fractional
Z or y coordinate. Therefore p is fractional, and hence, by minimality of |E|, p is not an extreme point of
P(G,¢).

Remark that in fact we have:

by — [be (A7)

If it is not true, then p does not saturate the constraint associated to D, and moreover Bf > bs. Hence,
except maybe for 7 = 0 or y; = 0, the edge f appears in no equation among (A.1)~(A.3). Then p is an
extreme point, a contradiction.

By the integrality of ¢, a direct consequence of (A.5)—(A.7) is that:

Exactly one of Zz, ye is fractional <= exactly one of Z ¢,y is fractional. (A.8)

Since p is not extreme, there is a (nonzero) direction d = (d®, d¥) € REVFIXEMI} and an e > 0 such that

1 Sl A
p=5p+e-d)+5(p—c-d)
2 2
where both p+ ¢ -d and p — £ - d belong to P(G, ¢). Extend the direction d = (d®,d¥) € REVI/IXE\} 0 o
direction d = (d*,d¥) € RE*E by arbitrarily defining the two missing components J;% and CZ?—. So

1
1325(134‘5'01)‘*‘

(p—e-d) Ve >0

o=

where the points p* = p+e-d and p~ = p — ¢ - d are different. Since p is extreme, we can assume that
pt = (zT,y") ¢ P(G,c). Clearly, we have

Tz = 0 (resp. Jz = 0) implies dZ = 0 (resp. d2 = 0). (A.9)

Define b := ¢ — 1t + gT. By (A.7), there are two cases.
Case 1: bz = l_)f > 0.
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Define

_ T _ JY i om
{de de lf.l’f>0 and

F _fdi—dz ifgp>0
0 otherwise

0 otherwise.

8
\‘Qﬁ‘

By definition of d, and by (A.8)~(A.9), we have

B;—Bé:(g;—ﬂé)—(fg—-’fé):5@%—‘%):(@?—%)—(5 —ff):l; —Ef-

i+

+
f

Therefore, b} = l;;f. By (A.9), choosing a small enough ¢ ensures the nonnegativity of p*. Since p™ does not
belong to P(G, c), we get that pt violates (D) — y(D) < ¢(D), that is,

B§+E}—Bé+6f—+2s(cig—dg) <0, Ve>0 (A.10)

Notice that exactly one of Z; and ¥ is fractional, as otherwise (A.9) would imply dZ = d = 0, and then
(A.10) would give the contradiction l_)(D) < 0. Consequently, we have bs + l_)f > 0, a contradiction to the
fact that (A.10) holds for all € > 0. This settles Case 1.

Case 2: by = —l;f < 0.

Define o
_ _{de—de 1fxf>0 and

= dz —d¥ ify;>0
0 otherwise o

f 0 otherwise.

By deﬁnition ofﬁcz, and by (A.8)~(A.9), we have b} — b = (d¥ — d2) = (i}f — ) — (gj} —y5) = Bf —bt.
Therefore, b}' = —bt.

In particular, pT satisfies the constraint of the cut D, and since nonnegativity is ensured, then pt violates
the constraint of a cut D containing f but not e, that is

b+ (D) = b(D) + e(d¥(D) — d*(D)) <0 (Ve > 0) (A.11)

Since D’ = DU {e} \ {f} is a cut, we have b(D’) > 0, thus b(D) = b(D’) — bz + l_)f > (. This contradiction
to (A.11) finishes the proof. [
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1. Introduction

Totally dual integral systems were introduced in the late 70s and are strongly connected to min-max relations in
combinatorial optimization [16]. A rational system of linear inequalities Ax < b is totally dual integral (TDI) if the
minimization problem in the linear programming duality:

max{cx:Ax < b} = min{yb:y > 0, yA = c}

admits an integer optimal solution for each integer vector c¢ such that the maximum is finite. Such systems describe
integer polyhedra when b is integer [13]. Schrijver [15] proved that every full-dimensional polyhedron is described by a
unique minimal TDI system Ax < b with A integer—its Schrijver system [6].

A stronger property is the box-total dual integrality, where a system Ax < b is box-totally dual integral (box-TDI) if

Ax<b, £<x<u

is TDI for all rational vectors £ and u (with possible infinite components). General properties of such systems can be found
in Cook [5] and Chapter 22.4 of Schrijver [16]. Note that, although every rational polyhedron {x : Ax < b} is described
by a TDI system %Ax < %b, for some integer k, not every polyhedron is described by a box-TDI system. A polyhedron

* Corresponding author.
E-mail address: lancini@lipn.univ-paris13.fr (E. Lancini).

1 Michele Barbato participated in this work as a member of FCiéncias.ID (University of Lisbon) and was financially supported by Portuguese
National Funding under Project PTDC/MAT-NAN/2196/2014.

2 Supported by ANR, France DISTANCIA (ANR-17-CE40-0015).

https://doi.org/10.1016/j.dam.2020.03.054
0166-218X/© 2020 Elsevier B.V. All rights reserved.



M. Barbato, R. Grappe, M. Lacroix et al. / Discrete Applied Mathematics 308 (2022) 162-167 163

described by a box-TDI system is called a box-TDI polyhedron. As proved by Cook [5], every TDI system describing such a
polyhedron is actually box-TDL

In the last decade, several new box-TDI systems were exhibited. Chen, Ding, and Zang [ 1] characterized box-Mengerian
matroid ports. In [2], they provided a box-TDI system describing the 2-edge-connected spanning subgraph polyhedron
for series—-parallel graphs. Ding, Tan, and Zang [10] characterized the graphs for which the TDI system of Cunningam and
Marsh [9] describing the matching polytope is actually box-TDI. Ding, Zang, and Zhao [11] introduced new subclasses of
box-perfect graphs. Cornaz, Grappe, and Lacroix [8] provided several box-TDI systems in series-parallel graphs. Recently,
Chervet, Grappe, and Robert [3] gave new geometric characterizations of box-TDI polyhedra.

As mentioned by Pulleyblank [14], it is not uncommon that the minimal integer system and the Schrijver system of
a polyhedron coincide. This is the case of the matching polytope and matroid polyhedra. However, this does not hold
in general, as shown by Cook [4] and Pulleyblank [14] for the b-matching polyhedron, and by Seb6 [18] for the T-join
polyhedron.

In this paper, we are interested in TDI, box-TDI, and Schrijver systems for the flow cone of series—parallel graphs.
Given a graph G = (V, E), a flow of G is a couple (C, e) with C a circuit of G and e an edge of C. In a flow (C, e), the edge
e represents a demand and C \ e represents the path satisfying this demand. The incidence vector of a flow (C, e) is the
0/ % 1 vector x©\¢ — x°. The flow cone of G is the cone generated by the flows of G and the unit vectors x° of RE.

The cut §(W) is the set of edges having exactly one endpoint in a subset W of V. A bond is an inclusionwise minimal
nonempty cut. Note that a nonempty cut is the disjoint union of bonds. Given a partition {V1, ..., Vi} of V, the set of
edges having endpoints in two distinct V;’s is called multicut and is denoted by §(Vy, ..., V). The cut cone of G is the cone
generated by the incidence vectors of the cuts of G. Equivalently, it is the cone generated by the incidence vectors of the
bonds of G, or by those of the multicuts of G.

When G has no Ks-minor, the flow cone of G is the polar of the cut cone and is described by x(C) > 0, for all cuts C
of G [19]. Chervet, Grappe, and Robert [3] proved that the flow cone is a box-TDI polyhedron if and only if the graph is
series—parallel. Moreover they provided the following box-TDI system:

1
EX(B) >0 for all bonds B of G. (1)

Quoting them, they “leave open the question of finding a box-TDI system with integer coefficients, which exists by [16,
Theorem 22.6(i)] and [5, Corollary 2.5]".

Contribution. The goal of this paper is to answer the question of [3] mentioned above. Throughout, the main concept that
we use is that of Hilbert basis, whose definition and connection with TDIness are given at the end of the introduction.
We first prove that

x(M) > 0 for all multicuts M of G, (2)

is a TDI system describing the flow cone if and only if the graph is series—parallel. As the flow cone is a box-TDI polyhedron
for such graphs, this implies that System (2) is a box-TDI system if and only if the graph is series—parallel. We then refine
this result by providing the corresponding Schrijver system, which is composed of the so-called chordal multicuts—see
Corollary 3.4.

This completely answers the question of [3].

Outline. In the next paragraph, we provide definitions and notation. In Section 2, we first characterize the graphs for which
multicuts form a Hilbert basis. It follows that System (2) is box-TDI precisely for series—parallel graphs. In Section 3, we
provide a minimal integer Hilbert basis for multicuts in series—parallel graphs. This gives the Schrijver system for the flow
cone in series—parallel graphs.

Definitions. Given a finite set S and a subset T of S, we denote by xT € {0, 1}° the incidence vector of T, that is x! equals
1 if s belongs to T and O otherwise, for all s € S. Since there is a bijection between sets and their incidence vectors, we
will often use the same terminology for both.

Let G = (V, E) be a loopless undirected graph. Given U C V, the graph G[U] is obtained from G by removing all the
vertices not in U. A set of edges M is a multicut if and only if [M N C| # 1 for all circuits C of G—see e.g. [7]. The reduced
graph of a multicut M is the graph G, obtained by contracting all the edges of E \ M. Note that a multicut of Gy is also a
multicut of G. We denote respectively by M and Bg the set of multicuts and the set of bonds of G. A subset of edges of
G is called a circuit if it induces a connected graph in which every vertex has degree 2. Given a circuit C, an edge of G is
a chord of C if its endpoints are two nonadjacent vertices of C. A graph is 2-connected if it remains connected whenever
a vertex is removed.

A graph is series—parallel if its 2-connected components either consist of a single edge or can be constructed from the
circuit of length two C, by repeatedly adding edges parallel to an existing one, and subdividing edges, that is, replacing
an edge by a path of length two. Series—parallel graphs are those having no Ks;-minor [12]. A graph is chordal if every
circuit of length 4 or more has a chord.

The cone C generated by a set of vectors {vq, ..., vy} of R" is the set of nonnegative combinations of vy, ..., vy, that

is,C = {Z]’le AVt Aq, o Ak > 0}. A set of vectors {vq, ..., vy} is a Hilbert basis if each integer vector in their cone can



164 M. Barbato, R. Grappe, M. Lacroix et al. / Discrete Applied Mathematics 308 (2022) 162-167

Fig. 1. Edges in the figure represent sets of edges of G having endpoints in distinct V;'s. Solid lines depict ey, ..., eg given in the proof of Theorem 2.1.

be expressed as a nonnegative integer combination of vy, ..., vi. A Hilbert basis is integer if it is composed of integer
vectors, and it is a minimal integer Hilbert basis if it has the smallest number of vectors among all integer Hilbert basis
generating the same cone. Each pointed rational cone has a unique minimal integer Hilbert basis [ 15, Theorems 16.4]. The
link between Hilbert basis and TDIness is in the following result.

Theorem 1.1 (Corollary 22.5a of [16]). A system Ax > 0 is TDI if and only if the rows of A form a Hilbert basis.

2. When do multicuts form a Hilbert basis?
2.1. Characterization

The following result characterizes the graphs for which the multicuts form a Hilbert basis.
Theorem 2.1. The multicuts of a graph form a Hilbert basis if and only if the graph is series—parallel.

Proof. First, let us show that the incidence vectors of the multicuts of a non series-parallel graph do not form a Hilbert
basis. Suppose that G = (V, E) has K, as a minor. Without loss of generality, we may assume G connected. Then, V can
be partitioned into four sets {Vy, ..., V4} such that V; induces a connected subgraph and at least one edge connects each
pair V;, V; fori,j =1, ..., 4. We subdivide §(V1, V2, V3, V4) into E4, ..., Eg as in Fig. 1.

Let E = {e1,...,eg} wheree; e E;foralli=1,...,6, and let w € ZF be as follows:

2 ifeekE,
W, = 1 ifEGEz,...,Ee,
0 otherwise.

Since w = 5 V1) 4 2 x302) 4 25 3ViVa) 1 25 8ViVa) it belongs to the cut cone of G. Moreover, w' x* = 7. Any conic
combination of multicuts yielding w involves only multicuts contained in §(V, ..., V4). Each of these multicuts contains
between 3 and 6 edges of E. Hence, if w is an integer combination of such multicuts, it is the sum of two multicuts
containing 3 and 4 edges of E, respectively. This means that w is the sum of x*"? and x*"" for some i # j. Since
w,, = 2, we have i € {1, 2} and j € {3, 4}. But then §(V;) N 8(V;, V;) contains an edge among e, ..., es, a contradiction
With We, = W, = W, = W, = 1.

Therefore, w is not an integer combination of multicuts, implying that the set of multicuts of G is not a Hilbert basis.

For the other direction, remark that each multicut of a series—parallel graph is the disjoint union of multicuts of its
2-connected components. Since they belong to disjoint spaces, if the set of multicuts of each 2-connected component
forms a Hilbert basis, then so does their union. Hence, it is enough to prove that the multicuts of a 2-connected
series—parallel graph form a Hilbert basis. From now on, assume the graph to be 2-connected.

We prove the result by induction on the number of edges of G. When G = ({u, v}, {e, f}) is the circuit of length two,
the only nonempty multicut is {e, f}, and its incidence vector forms a Hilbert basis. Similarly, when G consists of a single
edge, its incidence vector forms a Hilbert basis.

Now, let G = (V, E) be obtained from a 2-connected series-parallel graph G = (V, E) by either adding a parallel edge
or subdividing an edge. By the induction hypothesis, Mg is a Hilbert basis.

Suppose first that G is obtained from G by adding an edge f parallel to an edge e of E. A subset of edges M of G
containing (respectively not containing) e is a multicut if and only if M U f (respectively M) is a multicut of G. Thus, the
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incidence vector of each multicut of G is obtained by copying the component associated with e in the component of f.
Since the incidence vectors of the multicuts of G are a Hilbert basis, so are the incidence vectors of the multicuts of G.
Suppose now that G is obtained from G by subdividing an edge e € E. We denote by u the new vertex and by f and g
the edges adjacent to it. A multicut M of G can be expressed as the half-sum of the bonds of G. Moreover, as each bond
is a multicut, bonds and multicuts of G generate the same cone: the cut cone. Since System (1) is TDI in series—parallel
graphs [3, end of Section 6.4], the set of vectors {%XB : B € Bz} forms a Hilbert basis.
Let v be an integer vector in the cut cone. There exist Ap € %Z+ for all B € B; such that v = ZBeB& Az x5. The vector

v is an integer combination of multicuts of G if and only if v — [Asu ) x*® is, thus we may assume that As) € {0, 3}.
Define w € ZF by:

_Jvr =+ Vg — 2)\5(1‘) if e=e,
W, = ;
Ve otherwise.

Remark that (B\ e) U f and (B \ ) U g are bonds of G whenever B is a bond of G containing e. Moreover, a bond B of G
which does not contain e is a bond of G. Since §(u) is the unique bond of G containing both f and g, we have:

w= Z (Aperr + Mmaugx” + Z hax®.
BeBg:eeB BeBg:e¢B

Thus, w belongs to the cut cone of G. Moreover, as Agq is half-integer, w is integer. By the induction hypothesis, M¢
is a Hilbert basis, hence there exist uy € Z, for all M € Mg such that w = ZMeMG wmx™. Consider the family A" of
multicuts of G where each multicut M of G appears ), times.

Suppose first that As,) = 0. Then, vf + v, multicuts of A" contain e. Let P be a family of vy multicuts of A containing
eand Q = {M € N : e € M} \ P. Then, we have

ve Y M 3 ey S e
MeN :e¢M MeP MeQ

hence v is a nonnegative integer combination of multicuts of G.

Suppose now that Asy) = 3. Then, vy + v, — 1 multicuts of A" contain e. Let P be a family of v; — 1 multicuts of A/
containing e, let Q be a family of v, — 1 multicuts in {M € N : e € M} \ P, and denote by N the unique multicut of A/
containing e which is not in 2 U Q. Then, we have

V= Z XM+ Z X(M\E)Uf+ Z X(M\E)Ug_i_XN\éU{f,g}.
MeN:e¢M MeP MeQ

Hence v is a nonnegative integer combination of multicuts of G. This proves that Mg is a Hilbert basis. O
2.2. An integer box-TDI system for the flow cone in series—parallel graphs

Combining the box-TDIness of the flow cone and Theorems 1.1 and 2.1 yields a box-TDI system for the flow cone of a
series—parallel graph with only integer coefficients. This provides a first answer to the question of [3].

Corollary 2.2. The following statements are equivalent:

i. G is a series-parallel graph,
ii. System (2) is TDI,
iii. System (2) is box-TDI.

Proof (i.<ii.). This equivalence follows by combining Theorems 1.1 and 2.1.

(ii.<iii.) If G is series—parallel, then System (1) is box-TDI [3, end of Section 6.4]. Hence, the flow cone of G is box-TDI.
Since a TDI system describing a box-TDI polyhedron is a box-TDI system [5], point ii. implies point iii.. A box-TDI system
being TDI by definition, point iii. implies point ii.. O
3. Which multicuts form Hilbert basis?

3.1. A minimal integer Hilbert basis

Theorem 2.1 provides the set of graphs whose multicuts form a Hilbert basis. The following theorem refines this result

by characterizing the multicuts which form the minimal Hilbert basis.

A multicut is chordal when its reduced graph is 2-connected and chordal. Note that bonds are chordal multicuts.

Theorem 3.1. The chordal multicuts of a series—parallel graph form a minimal integer Hilbert basis.
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Proof. Let G = (V, E) be a series—parallel graph. By Theorem 2.1, the multicuts of G form an integer Hilbert basis. Hence,
the minimal integer Hilbert basis is composed of the multicuts which are not disjoint union of other multicuts. These
multicuts are characterized in the following lemma, from which stems the desired theorem.

Lemma 3.2. A multicut of a series-parallel graph G is chordal if and only if it cannot be expressed as the disjoint union of
other nonempty multicuts.

Proof. Let M be a multicut of G. Recall that every multicut of Gy is a multicut of G. Besides, since the disjoint union of
multicuts is a multicut, a disjoint union of nonempty multicuts is actually the disjoint union of two nonempty multicuts.

We first prove that, if Gy is 2-connected and chordal, then M is not the disjoint union of two nonempty multicuts. By
contradiction, suppose that Gy, is 2-connected and chordal, and M = M; U M; where My, M, are disjoint multicuts of Gy.
If C is a circuit of length at most three in Gy, then C € M; for some i = 1, 2. Indeed, the edges of C are partitioned by
M, and M,, and a multicut and a circuit intersect in either none or at least two edges.

Since Gy, is 2-connected and M; is nonempty for i = 1, 2, there exists at least a circuit containing edges of both M;
and M,. Let C be such a circuit, of smallest length. Then, C has length at least 4, as otherwise it would be contained in
one of My and M,. Since Gy is chordal, there exists a chord c of C. Denote by P; and P, the two paths of C between the
endpoints of c. For i = 1, 2, the circuit P; U {c} is strictly shorter than C. Since C is the shortest circuit intersecting both
M, and M,, we get that P; U {c} C M; for i = 1, 2. But then ¢ € M; N M>, a contradiction.

To prove the other direction, first suppose that Gy, is not 2-connected. Then, the set of edges of each 2-connected
component of Gy is a multicut of G, and M is the disjoint union of these multicuts. Now, suppose that Gy, is not chordal,
that is, Gy contains a chordless circuit C of length at least 4. We will apply the following.

Claim 3.3. Let C be a circuit of length at least 4 in a series-parallel graph G. Then, there exists a pair of vertices nonadjacent
in G[V(C)] whose removal disconnects G.

Proof. We can assume that there are two nonadjacent vertices u and v of G[V(C)] such that there exists a path P between
u and v that has no internal vertex in C. Indeed, otherwise, removing any two nonadjacent vertices of G[V(C)] would
disconnect G.

Let us show that removing u and v disconnects G. Denote by Q and R the two paths of C between u and v. By
contradiction, suppose that G\ {u, v} is connected. Then, there exists a path containing neither u nor v between an internal
vertex of R and an internal vertex of either P or Q. Let S be a minimal path of this kind. Then, no internal vertex of S
belongs to P, Q, or R, and the subgraph composed of P, Q, R and S is a subdivision of K4. This contradicts the hypothesis
that G is series—parallel. O

By Claim 3.3 there exist two vertices u and v of C, nonadjacent in G[V(C)], whose removal disconnects G. Denote by
Vi, ..., Vi the sets of vertices of the connected components of G\ {u, v}. Let G; = G[V; U {u, v}] and denote by E(G;) the
set of edges of G;, fori = 1, ..., k. Note that, since u and v are not adjacent, E(G;) N E(G;) = @ for all distinct i and j. Thus,
M is the disjoint union of E(G), ..., E(Gy).

Let us prove that E(G;) is a multicut of Gy, fori = 1, ..., k. Consider a circuit D of Gy. If D is contained in one of the
Gi's, then [D N E(Gj)| # 1forj=1,..., k. Otherwise, D is the union of two paths from u to v, these paths being contained
in two different G;’s. Without loss of generality, let these paths be P; € G; and P, € G,. Then, we have D N E(G;) = P; if
i = 1,2, and ¥ otherwise. Since u and v are not adjacent, the shortest path from u to v in each G; is of length at least
two, hence |P;| > 2. Therefore D N E(G;)| # 1fori=1,...,k.

Therefore, E(G;) is a multicut of Gy, and hence of G, fori = 1, ..., k. Hence, M is the disjoint union of multicuts of G. O

O
3.2. The Schrijver system of the flow cone in series—parallel graphs

Corollary 2.2 provides an integer box-TDI description of the flow cone in series—parallel graphs. However, this box-TDI
description is not minimal: there are redundant inequalities whose removal preserves box-TDIness. Here, we provide the
minimal integer box-TDI system for this cone. This completely answers the question of [3, end of Section 6.4].

Corollary 3.4. The Schrijver system for the flow cone of a series-parallel graph G is the following:

x(M) > 0 for all chordal multicuts M of G. (3)
Moreover, this system is box-TDI.
Proof. By Theorems 1.1 and 3.1, System (3) is a minimal integer TDI system. Since every bond is a chordal multicut,

this system describes the flow cone for series—parallel graphs. Therefore, by [5, Corollary 2.5] and by the flow cone being
box-TDI for series-parallel graphs, System (3) is box-TDI. O

We mention that, by planar duality, Corollary 3.4 provides the Schrijver system for the cone of conservative func-
tions [17, Corollary 29.2h] in series-parallel graphs.
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Abstract

Given a graph G = (V, E) and an integer k > 1, the graph H = (V, F), where
F is a family of elements (with repetitions allowed) of E, is a k-edge-connected
spanning subgraph of G if H cannot be disconnected by deleting any k — 1 elements
of F. The convex hull of incidence vectors of the k-edge-connected subgraphs of a
graph G forms the k-edge-connected subgraph polyhedron of G. We prove that this
polyhedron is box-totally dual integral if and only if G is series—parallel. In this case,
we also provide an integer box-totally dual integral system describing this polyhedron.
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inequalities Ax > b is totally dual integral (TDI) if the maximization problem in the
linear programming duality

min{c'x : Ax > b} =max{b'y: ATy =c,y >0}

admits an integer optimal solution for each integer vector ¢ such that the optimum is
finite. Every rational polyhedron can be described by a TDI system [28]. For instance,
the polyhedron {x : Ax > b} can be described by TDI systems of the form éAx > %b
for certain positive g. However, a polyhedron is integer if and only if it can be described
by a TDI system with only integer coefficients [23,28]. Integer TDI systems yield min—
max results that may have combinatorial interpretation.

A stronger property is box-total dual integrality: a system Ax > b is box-totally
dual integral (box-TDI) if Ax > b, ¢ < x < u is TDI for all rational vectors £ and u
(possibly with infinite components). General properties of such systems can be found
in Cook [12] and Chapter 22.4 of Schrijver [34]. Note that, although every rational
polyhedron can be described by a TDI system, not every polyhedron can be described
by a box-TDI system. A polyhedron which can be described by a box-TDI system is
called a box-TDI polyhedron. As proved by Cook [12], every TDI system describing
such a polyhedron is actually box-TDI.

Recently, several new box-TDI systems have been exhibited. Chen et al. [6] char-
acterized box-Mengerian matroid ports. Ding et al. [18] characterized the graphs for
which the Edmonds’ system defining the matching polytope [21] is box-TDI. Ding et
al. [19] exhibited new subclasses of box-perfect graphs. Cornaz et al. [14] provided
several box-TDI systems in series—parallel graphs. Barbato et al. [3] gave the min-
imal box-TDI system with integer coefficients for the flow cone for series—parallel
graphs. For these graphs, Chen et al. [7] provided a box-TDI system describing the
2-edge-connected spanning subgraph polyhedron.

In this paper, we are interested in integrality properties of systems related to k-
edge-connected spanning subgraphs. A k-edge-connected spanning subgraph of a
graph G = (V, E) is a graph H = (V, F), with F being a collection of elements
of E where each element can appear several times, that remains connected after the
removal of any k — 1 edges.

These objects model a kind of failure resistance of telecommunication networks.
More precisely, they represent networks which remain connected when k — 1 links fail.
The underlying network design problem is the k-edge-connected spanning subgraph
problem (k-ECSSP): given a graph G and positive edge costs, find a k-edge-connected
spanning subgraph of G of minimum cost. Special cases of this problem are related to
classical combinatorial optimization problems. The 2-ECSSP is a well-studied relax-
ation of the traveling salesman problem [24] and the 1-ECSSP is nothing but the
well-known minimum spanning tree problem. While this latter is polynomial-time
solvable, the k-ECSSP is NP-hard for every fixed k > 2 [27].

Different algorithms have been devised in order to deal with the k-ECSSP, such
as branch-and-cut procedures [4,15], approximation algorithms [8,26], cutting plane
algorithms [30], and heuristics [11]. In [36], Winter introduced a linear-time algorithm
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solving the 2-ECSSP on series—parallel graphs. Most of these algorithms rely on
polyhedral considerations.

Given a graph G = (V, E), the convex hull of incidence vectors of all the families
of E inducing a k-edge-connected spanning subgraph of G forms a polyhedron, here-
after called the k-edge-connected spanning subgraph polyhedron of G and denoted
by P (G). Cornuéjols et al. [16] gave a system describing P>(G) when G is series—
parallel. Vandenbussche and Nemhauser [35] characterized in terms of forbidden
minors the graphs for which this system describes P>(G). Chopra [10] described
Py (G) for outerplanar graphs when & is odd. Didi Biha and Mahjoub [17] extended
these results to series—parallel graphs for all K > 2. By a result of Baiou et al. [1], the
inequalities in these descriptions can be separated in polynomial time, which implies
that the k-ECSSP is solvable in polynomial time for series—parallel graphs.

When studying k-edge-connected spanning subgraphs of a graph G, we can add the
constraint that each edge of G can be taken at most once. We denote the corresponding
polyhedron by Q(G). Barahona and Mahjoub [2] described Q> (G) for Halin graphs.
Further polyhedral results for the case k = 2 have been obtained by Boyd and Hao [5]
and Mahjoub [32,33]. Grotschel and Monma [29] described several classes of facets of
Q«(G). Moreover, Fonlupt and Mahjoub [25] extensively studied the extremal points
of Q(G) and characterized the class of graphs for which this polytope is described
by cut inequalities and 0 < x < 1.

The polyhedron P;(G) is known to be box-TDI for all graphs [31]. For series—
parallel graphs, the system given in [16] describing P>(G) is not TDI. Chen et al. [7]
showed that dividing it by 2 yields a TDI system for such graphs. Actually, they proved
that this system is box-TDI if and only if the graph is series—parallel.

Contributions. Our starting point is the result of Chen et al. [7]. First, their result
implies that P>(G) is a box-TDI polyhedron for series—parallel graphs. However, this
leaves open the question of the box-TDIness of P>(G) for non series—parallel graphs.
More generally, for which integers k and graphs G is Py (G) a box-TDI polyhedron?

We answer this question by proving that, for k > 2, P;(G) is abox-TDI polyhedron
if and only if G is series—parallel. Note that this work is one of the first ones that
proves the box-TDlIness of a polyhedron without giving a box-TDI system describing
it. Instead, our proof is based on the recent matricial characterization of box-TDI
polyhedra given by Chervet et al. [9].

By [34, Theorem 22.6], there exists a TDI system with integer coefficients describ-
ing Px(G). For series—parallel graphs, the system provided by Chen et al. [7] has
noninteger coefficients. Moreover, the system given by Didi Biha and Mahjoub [17]
describing P;(G) when k is even is not TDI. When & > 2 and G is series—parallel,
which combinatorial objects yield an integer TDI system describing Py (G)?

We answer this question by exhibiting integer TDI systems based on multicuts.
When £ is even, we use multicuts to provide an integer TDI system for P, (G) when
G is series—parallel. Our proof relies on the standard constructive characterization of
series—parallel graphs. When & is odd, we prove that the description of P (G) given
by Didi Biha and Mahjoub [17] based on multicuts is TDI if and only if the graph is
series—parallel. For this case, our proof relies on new properties of the set of degree 2
vertices in simple series—parallel graphs stated in Lemma 2.3.
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The box-totally dual integral characterization of Px(G) implies that these systems
are actually box-TDI if and only if G is series—parallel. By definition of box-TDIness,
adding x < 1 to these systems yields box-TDI systems for QO (G) for series—parallel
graphs.

Outline. In Sect. 2, we give the definitions and preliminary results used throughout the
paper. In Sect. 3, we prove that, for k > 2, Pr(G) is a box-TDI polyhedron if and only
if G is series—parallel. In Sect.4, we provide a TDI system with integer coefficients
describing P (G) when G is series—parallel and k > 2 is even. In Sect.5, we show
the TDIness of the system given by Didi Biha and Mahjoub [17] that describes Py (G)
for G series—parallel and k > 3 odd.

2 Definitions and preliminary results

This section is devoted to the definitions, notation, and preliminary results used
throughout the paper.

2.1 Graphs and combinatorial objects

Given a set E, a family of E is a collection of elements of E where each element can
appear multiple times. The incidence vector of a family F of E is the vector x of
Z_’i such that e’s coordinate is the multiplicity of e in F for all e in E. Since there is
a bijection between families and their incidence vectors, we will often use the same
terminology for both.

Given a graph G = (V, E) and the incidence vector z € Zf of a family F of E,
G (z) denotes the graph (V, F).

Let G = (V, E) be a loopless undirected graph. Two edges of G are parallel if
they share the same endpoints, and G is simple if it does not have parallel edges. A
graph is 2-connected if it cannot be disconnected by removing a vertex. The graph
obtained from two disjoint graphs by identifying two vertices, one of each graph, is
called a /-sum. A 2-connected graph is trivial if it is composed of a single edge. We
denote by K, the complete graph on n vertices, that is the simple graph with n vertices
and one edge between each pair of vertices. Given an edge e of G, we denote by
G \e (respectively G/e) the graph obtained by removing (respectively contracting) the
edge e, where contracting an edge uv consists in removing it and identifying u and
v. Similarly, we denote by G\v the graph obtained from G by removing the vertex
v, and by G[W] the graph induced by W, that is, the graph obtained by removing all
vertices not in the vertex subset W. Given a vector x € RY and a subgraph H of G,
we denote by x|y the vector obtained by restricting x to the components associated
with the edges of H.

A subset of edges of G is called a circuit if it induces a connected graph in which
every vertex has degree 2. Given a subset U of V, the cut §(U) is the set of edges
having exactly one endpointin U. A bond is a minimal nonempty cut. Given a partition
{Vi, ..., V,} of V, the set of edges having endpoints in two distinct V;’s is called a
multicut and is denoted by §(V1, ..., V,;). We denote respectively by M and Bg the
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set of multicuts and the set of bonds of G. For every multicut M, there exists a unique
partition { V1, ..., Vg, } of vertices of V such that M = §(V, ..., Vg,), and G[V;]is
connected forall i =1, ..., dy. We say that dy is the order of M and Vi, ..., Vy,,
are the classes of M. Multicuts are characterized in terms of circuits, as stated in the
following.

Lemma 2.1 [13] A set of edges M is a multicut if and only if |M N C| # 1 for all
circuits C of G.

We denote the symmetric difference of two sets S and T by SAT'. It is well-known
that the symmetric difference of two cuts is a cut. Moreover, the following result holds.

Observation 2.2 Let G be a graph, v be a degree 2 vertex of G, and M be a multicut
such that |M N §(v)| = 1. Then, M U §(v) and M AS(v) are multicuts. Moreover,

dMUS(v) = dM + 1, and dMA(S(v) = dM

A graph is series—parallel if its nontrivial 2-connected components can be con-
structed from a circuit of length 2 by repeatedly adding edges parallel to an existing
one, and subdividing edges, that is, replacing an edge by a path of length two. Equiv-
alently, series—parallel graphs are those having no K4-minor [20].

By construction, simple nontrivial 2-connected series—parallel graphs have at least
one degree 2 vertex. Moreover, these vertices satisfy the following.

Lemma 2.3 For a simple nontrivial 2-connected series—parallel graph, at least one of
the following holds:

(1) Two degree 2 vertices are adjacent,
(i1) A degree 2 vertex belongs to a circuit of length 3,
(i) Two degree 2 vertices belong to the same circuit of length 4.

Proof We proceed by induction, the base case is K3 for which (i) holds.

Let G be a simple 2-connected series—parallel graph. Since G is simple, it can be
built from a series—parallel graph H by subdividing an edge e into a path f, g. Let v
be the degree 2 vertex added with this operation. By the induction hypothesis, either
H is not simple, or one among (i), (i1), and (iii) holds for H. Hence, there are four
cases.

Case 1 H is not simple. Since G is simple, e is parallel to exactly one edge 4. Hence,
f» g, hisacircuit of G length 3 containing v, thus (i1) holds for G.

Case 2 (1) Holds for H. Then, it holds for G.

Case 3 (ii) Holds for H. Let C be a circuit of H of length 3 containing a degree 2
vertex, say w. If e ¢ C, then (ii) holds for G. Otherwise, by subdividing e, we obtain
a circuit of length 4 containing v and w, and hence (iii) holds for G.

Case 4 (iii) Holds for H. Let C be a circuit of H of length 4 containing two degree 2
vertices. If e ¢ C, then (ii1) holds for G. Otherwise, by subdividing e, we obtain a
circuit of length 5 containing three degree 2 vertices. Then, at least two of them are
adjacent, and so (i) holds for G. O
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2.2 Box-total dual integrality

Let A € R™*" be a full-row rank matrix. This matrix is equimodular if all its m x m
non-zero determinants have the same absolute value. The matrix A is face-defining for
a face F of a polyhedron P C R" if aff (F) = {x € R" : Ax = b} for some b € R™,
where aff (F) denotes the affine hull of F. Such matrices are the face-defining matrices
of P.
Theorem 2.4 [9, Theorem 1.4] Let P be a polyhedron. Then, the following statements
are equivalent:

(1) P is box-TDI.

(i) Every face-defining matrix of P is equimodular.
(iii) Each face of P has an equimodular face-defining matrix.

In Theorem 2.4, the equivalence of conditions (ii) and (iii) follows from the fol-

lowing observation.

Observation 2.5 ([9, Observation 4.10]) Let F be a face of a polyhedron. If a face-
defining matrix for F is equimodular, then so are all the face-defining matrices for
F.

We will also use the following.

Observation 2.6 Let A € R'*7 be a full row rank matrix and j € J. If A is equimod-
ular, then so are following two matrices:

. A | ... .
) |::|:Xj i| if it is full row-rank,

(ii) A 0
+x/ £1[
Observation 2.7 [9, Observation4.11] Let P C R" be a polyhedron and let F = {x €

P : Bx = b} be a face of P. If B has full-row rank and n — dim(F') rows, then B is
face-defining for F.

2.3 The k-edge-connected spanning subgraph polyhedron

Note that P, (G) is the dominant of the convex hull of incidence vectors of all the
families of E containing at most k copies of each edge and inducing a k-edge-connected
spanning subgraph of G. Since the dominant of a polyhedron is a polyhedron, P (G)
is a full-dimensional polyhedron even though it is the convex hull of an infinite number
of points.

From now on, we assume that £ > 2. Didi Biha and Mahjoub [17] gave a complete
description of Py (G) for all k, when G is series—parallel.

Theorem 2.8 ([17]) Let G be a series—parallel graph and h be a positive integer. Then,
P>, (G) is described by:

0 {x(D) > 2h forall cuts D of G, (1a)
x>0, (1b)
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and Pyj,+1(G) is described by:

@) {x(M) > (h+ V)dy — 1 for all multicuts M of G, (2a)

x >0. (2b)

Since the incidence vector of a multicut §(Vy, ..., Vp) of order £ is the half-sum of
the incidence vectors of the bonds § (V1), . . ., §(Vy), we can deduce another description

of ch (G)

Corollary 2.9 Let G be a series—parallel graph and h be a positive integer. Then,
P>, (G) is described by:

3) {x(M) > hdy;  for all multicuts M of G, (3a)
x >0. (3b)

We call constraints (2a) and (3a) partition constraints. A multicut M is tight for a
point of Pr(G) if this point satisfies with equality the partition constraint (2a) (respec-
tively (3a)) associated with M when k is odd (respectively even). Moreover, M is tight
for a face F of Py(G) if it is tight for all the points of F.

The following results give some insights on the structure of tight multicuts.

Theorem 2.10 [17, Theorem 2.3 and Lemma 3.1] Let x be a point of P>;4+1(G), and
let M =6(Vh, ..., Vy,) be a multicut tight for x. Then, the following hold:

(i) Ifdy >3, thenx (8(V;) N8(V})) <h+1foralli # j €{l,...,du}.
(1) G\V; is connected foralli =1, ...,dy.

Lemma2.11 Let v be a degree 2 vertex of G and M be a multicut of G strictly
containing §(v) = {uv, vw}. If M is tight for a point of Pr(G) with k > 2, then both
M\uv and M\vw are multicuts of G of order dp; — 1.

Proof 1t suffices to show that u and w belong to different classes of the multicut
M = 6, Va, ..., Vyg,). Suppose that u, w € V. Then M is the union of the two
multicuts §(v) and M' = 8(v U Va, ..., Vg,,). Since dsq) + dy = dy + 1, the sum
of the partition inequalities associated with §(v) and M’ implies that the partition
inequality associated with M is tight for no point of P (G) for every k > 2. O

Chopra [10] gave sufficient conditions for an inequality to be facet-defining for
Pr(G). The following proposition is a direct consequence of Theorems 2.4 and 2.6
of [10].

Lemma 2.12 Let G be a connected graph having a K4-minor. Then, there exist two
disjoint nonempty subsets of edges of G, E' and E", and a rational b such that

X(E") 4+ 2x(E") = b, 4)
is a facet-defining inequality of Pyp4+1(G).
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Chen et al. [7] provided a box-TDI system for P> (G) for series—parallel graphs.

Theorem 2.13 [7, Theorem 1.1] The system:
$x(D) = 1 forall cuts D of G,
220 (%)

is box-TDI if and only if G is a series—parallel graph.

This result proves that the polyhedron P>(G) is box-TDI for all series—parallel
graphs, and gives a TDI system describing this polyhedron in this case. However,
Theorem 2.13 is not sufficient to state that P, (G) is a box-TDI polyhedron if and only
if G is series—parallel.

3 Box-TDIness of P, (G)

In this section we show that, for k > 2, P, (G) is abox-TDI polyhedron for a connected
graph G if and only if G is series—parallel. Since Py (G) = ¥ when G is not connected,
we assume from now on that G is connected.

When k > 2, P¢(G) is not always box-TDI, as stated in Lemma 3.1. Indeed, by
Theorem 2.4, if a polyhedron has a nonequimodular face-defining matrix, then it is
not box-TDI. The proof of Lemma 3.1 exhibits such a matrix when G has a K4-minor.
This follows from the existence of a particular facet-defining inequality when & is odd,
as shown by Chopra [10]. When k is even, we build a nonequimodular face-defining
matrix based on the structure of cuts in a K4-minor.

Lemma3.1 Fork > 2,if G = (V, E) has a K4-minor, then Py(G) is not box-TDI.

Proof When k = 2h + 1 is odd, Lemma 2.12 shows that there exists a facet-defining
inequality that is described by a nonequimodular matrix as Py (G) is full-dimensional.
Thus, P, (G) is not box-TDI by Statement (ii) of Theorem 2.4.

We now prove the case when k is even. Since G has a K4-minor, there exists a
partition {Vy, ..., V4} of V such that G[V;] is connected and 8(V;, V;) # @ for all
i < jel{l,...,4}. We now prove that the matrix A whose three rows are %8V for
i =1, 2,3 is aface-defining matrix of P (G) which is not equimodular. This will end
the proof by Statement (ii) of Theorem 2.4.

Let ¢;; be an edge in §(V;, V;) forall i < j € {1,...,4}. The submatrix of A
formed by the columns associated with edges ¢;; is the following:

€12 €13 €23 €14 €24 €34
W rtr 1 0 1 0 0
@ 11 0 1 0 1 0
W l1o 1 1 0 0 1

The matrix A is not equimodular as the first three columns form a matrix of determinant
-2 whereas the last three ones give a matrix of determinant 1.

@ Springer



Box-total dual integrality and edge-connectivity 315

By Observation 2.7, to show that A is face-defining, it is enough to exhibit |E| — 2
affinely independent points of Py (G) satisfying x(§(V;)) =k fori =1, 2, 3.

Let D1 = {e12, €14, €23, €34}, D2 = {e12, e13, €24, €34}, D3 = {e13, e14, €23, €24}
and Dy = {e14, €4, e34}. First, we define the points §; = Z?:l kXE[V"] + ]%XDJ', for
j=1,2,3,and §4 = Z?:l kx EWVil 4 X D4 Note that they are affinely independent.

Now, for each edge e ¢ {e12, €13, €14, €23, €24, €34}, we construct the point S, as
follows. When e € E[V;] forsomei =1, ..., 4, we define S, = S4 + x¢. Adding the
point S, maintains affine independence as S, is the only point not satisfying x, = k.
When e € 6(V;, V;) for some i, j, we define S, = S¢ — x“U + x°, where Sy is Sy if
e € §(V1,Va) Ud(Va, V3) and S, otherwise. Affine independence comes because S,
is the only point involving e.

In total, we built 4 4 |E| — 6 = | E| — 2 affinely independent points. O

The following theorem characterizes the class of graphs for which Py (G) is box-
TDI. The case k even is obtained using the box-TDIness for k = 2 and the fact that
integer dilations maintain box-TDIness. For the case k odd, on the contrary to what is
generally done, the proof does not exhibit a box-TDI system describing Py (G). For
this case, the proof is by induction on the number of edges of G. We prove that series—
parallel operations preserve the box-TDIness of the polyhedron. The most technical
part of the proof is the subdivision of an edge uw into two edges uv and vw. We
proceed by contradiction: by Theorem 2.4, we suppose that there exists a face F' of
P (G) defined by a nonequimodular matrix. We study the structure of the inequalities
corresponding to this matrix. In particular, we show that they are all associated with
multicuts, and that these multicuts contain either both uv and vw, or none of them—
see Claims 3.1, 3.2, and 3.3. These last results allow us to build a nonequimodular
face-defining matrix for the smaller graph, which contradicts the induction hypothesis.

Theorem 3.2 For k > 2, P,(G) is a box-TDI polyhedron if and only if G is series—
parallel.

Proof Necessity follows from Lemma 3.1. Let us now prove sufficiency. When k = 2,
the box-TDIness of System (5) has been shown by Chen et al. [7]. This implies box-
TDIness for all even k: multiplying the right-hand side of a box-TDI system by a
positive rational preserves its box-TDIness [34, Section 22.5]. The system obtained
by multiplying by ’% the right-hand side of System (5) describes P (G) when k is even.
Hence, the latter is a box-TDI polyhedron.

The rest of the proof is devoted to the case where k = 2h + 1 for some 4 > 1. To
this end, we prove that for every face of P»j,41(G) there exists an equimodular face-
defining matrix. The characterization of box-TDIness given in Theorem 2.4 concludes.
We proceed by induction on the number of edges of G.

If G is trivial, then Py;4+1(G) = {x € Ry : x > 2h + 1} is box-TDL If G is the
circuit {e, f}, then P2, 11(G) = {x., xy € Ry : x, + x7 > 2h + 1} is also box-TDIL.

(1-sum) Let G be the 1-sum of two series—parallel graphs G’ = (W', E’) and G” =
(W”, E"). By induction, there exist two box-TDI systems A’y > b’ and A"z > b”
describing respectively Py, 1(G’) and Py 1(G”). If v is the vertex of G obtained by
the identification, G\v is not connected, hence, by Statement (ii) of Theorem 2.10,
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a multicut M of G is tight for a face of Py;4+1(G) onlyif M € E'or M C E". 1t
follows that for every face F of Pyj;11(G) there exist faces F’ and F” of Pyj,41(G")
and P11 (G”) respectively, such that F = F’ x F”. Then Py,1+1(G) = {(y,2) €
RE' x RE": A’y > b/, A"z > b"} and so it is box-TDL

(Parallelization) Let G = (V, E) be obtained from a series—parallel graph G’ by
adding an edge g parallel to an edge f of G’ and suppose that Py 1(G’) is box-
TDI. Let A’x > b be a box-TDI system describing P,y 1(G’). Note that Pj,11(G) is
described by Ax > b, xy > 0, x, > 0, where A is the matrix obtained by duplicating
f’s column. By Theorem 22.10 of [34], the system Ax > b is box-TDI, hence so is
Ax > b,xr > 0,xg > 0. Thus, P;,11(G) is a box-TDI polyhedron.

(Subdivision) Let G = (V, E) be obtained by subdividing an edge uw of a series—
parallel graph G’ = (V’, E’) into a path of length two uv, vw. By contradiction,
suppose there exists a nonempty face F' = {x € Py;11(G) : Arx = br} such that
AF is a face-defining matrix for F which is not equimodular. Take such a face with
maximum dimension. Then, every submatrix of A which is face-defining for a face
of Pr,+1(G) is equimodular. We may assume that A ¢ is defined by the partition con-
straints (2a) associated with the set of multicuts M r and the nonnegativity constraints
associated with the set of edges Ef.

Claim3.1 &F = 0.

Proof Suppose there exists an edge e € £r. Let H = G\e and let Ap,x = bp, be
the system obtained from A px = br by removing the column and the nonnegativity
constraint associated with e. Since the matrix Ag is of full row rank, so is Af,.
Since e € &, for all multicuts M tight for F not containing e, M U e is not a
multicut. Hence M \e is a multicut of H of order dj;, for all M in M . Hence, the set
Fy ={x € Pop+1(H) : Ap,x = bp, } 1s aface of Py;1(H). Moreover, deleting e’s
coordinate of aff (F') gives aff (Fy) so A, is face-defining for Fy. By the induction
hypothesis, A, is equimodular. Since maximal invertible square submatrices of A g
are in bijection with those of Af, and have the same determinant in absolute value,
AF is equimodular, a contradiction. O

Claim 3.2 Fore € {uv, vw}, atleast one multicut of M g different from § (v) contains e.

Proof By contradiction, suppose for instance that uv belongs to no multicut of Mg
different from §(v).

First, suppose that § (v) does not belong to M . Then, the column of A r associated
withuv is zero. Let A, be the matrix obtained from A r by removing this column. Every
multicut of G not containing uv is a multicut of G’ (relabelling vw by uw), so the rows
of A’ are associated with multicuts of G". Thus, F' = {x € Px(G') : Albx = br}isa
face of Pp,+1(G’). Removing uv’s coordinate from the points of F gives a set of points
of F’ of affine dimension at least dim(F) — 1. Since A’F has the same rank as Ar and
has one column fewer than A, then A’ is face-defining for F’ by Observation 2.7.
By the induction hypothesis, A’ is equimodular. Since adding a column of zeros
preserves equimodularity, A r is also equimodular.

Suppose now that § (v) belongs to M r. Then, the column of A r associated with uv
has zeros in each row but x°®) . Let A% x = b}, be the system obtained from Apx = bp
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by removing the equation associated with 6 (v). Then F* = {x € Py (G) : A%x = b}.}
is a face of Px(G) of dimension dim(F') + 1. Indeed, it contains F and z + ax"’ ¢ F
for every point z of F' and o > 0. Hence, A%, is face-defining for F*. This matrix is
equimodular by the maximality assumption on F, and so is Ar by Statement (ii) of
Observation 2.6. O

Claim3.3 |[M N&§(v)| # 1 for every multicut M € Mp.

Proof Suppose there exists a multicut M tight for F' such that |[M N §(v)| = 1.
Without loss of generality, suppose that M contains uv but not vw. Then, F C {x €
Poyp1+1(G) : xyw > xyu} because of the partition inequality (2a) associated with the
multicut M A§(v). Moreover, the partition inequality associated with §(v) and the
integrality of Pr;41(G) imply F € {x € Py4+1(G) : xyy > h + 1}. The proof is
divided into two cases.

Case 1 F C {x € Py,+1(G) : xyp = h + 1}. We prove this case by exhibiting an
equimodular face-defining matrix for F'. By Observation 2.5, this implies that Ar is
equimodular, which contradicts the assumption on F'.

Equality x,,, = h 4 1 can be expressed as a linear combination of equations of
Apx = bp. Let A%.x = b, denote the system obtained by replacing an equation of
AFrx = bf by xyy = h + 1 in such a way that the underlying affine space remains
unchanged. Denote by N the set of multicuts of Mg containing vw but not uv. If
N # @, then let N be in . We now modify the system A’,x = b’ by performing
the following operations.

1. For all M € MF strictly containing §(v), replace the equation associated with M
by the partition constraint (2a) associated with M\vw set to equality, that is,
x(M\vw) = (h + Ddp\pw — 1.

2. If §(v) € MF, then replace the equation associated with §(v) by the constraint

Xyp = h.

. If N # @, then replace the equation associated with N by the constraint x,,, = h+1.

4. For all M € N\N, replace the equation associated with M by the partition
constraint (2a) associated with M Ad(v) set to equality, that is, x(M AS(v)) =
(h + Ddmasw) — 1.

W

These operations do not change the underlying affine space. Indeed, for every multicut
M strictly containing §(v) and tight for F, the set M \vw is a multicut tight for F' by
Lemma 2.11 and F C {x € Py,+1(G) : xyp = h + 1}. If 6(v) is tight for F, then
F C{x € Pp4+1(G) : x4y = h} because F C {x € Py,+1(G) : xyyy = h + 1}. For
M € N, by Observation 2.2, the set M A8 (v) is amulticut of order dy; . The tightness of
the constraint (2a) associated with N and the constraint (2a) associated with M A§(v)
imply that F C {x € Pyp+1(G) : xpu < Xyp}. Since F C {x € Pop1(G) : Xy >
Xuv}, we have FF C {x € Py,+1(G) : xypy = h + 1} and M AS(v) is tight for F. It
follows that, if §(v) € M, then N' = (3. Therefore, at most one among Operations 2
and 3 is applied so the rank of the matrix remains unchanged.

Let A7.x = b7, be the system obtained by removing the equation x,,, = h + 1
from A’zx = b);. By construction, A%.x = b, is composed of constraints (2a) set to
equality and possibly x,, = & or x,, = h+ 1. Moreover, the column of A, associated
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with vw is zero. Let F” = {x € Py, 4+1(G) : ALx = b/.}. For every point z of F and
o > 0,z+ayx" belongs to F” because the column of A’ associated with vw is zero,
and z + ax "™ € Py;+1(G). This implies that dim(F”) > dim(F) + 1.

If F” is a face of P2;41(G), then A’ is face-defining for F” by Observation 2.7
and because A’; is face-defining for F. By the maximality assumption on F, A is
equimodular, and hence so is A’ by Statement (i) of Observation 2.6.

Otherwise, by construction, F” = F* N {x € RE : x,, = t} where F* is a
face of P»,41(G) strictly containing F and ¢ € {h, h + 1}. Therefore, there exists a
face-defining matrix for F” given by a face-defining matrix for F* and the row x“".
Such a matrix is equimodular by the maximality assumption of F' and Statement (i)
of Observation 2.6. Hence, A is equimodular by Observation 2.5, and so is A, by
Statement (i) of Observation 2.6.

Case 2 F ;(_ {x € Poyp41(G) : xyyy = h + 1}. Thus, there exists z € F such that
Zyw > h + 1. By Claim 3.2, there exists a multicut N # & (v) containing vw which is
tight for F'. By Statement (i) of Theorem 2.10, the existence of z implies that N is a
bond, hence it does not contain uv. The set L = N Ad(v) is a bond of G. The partition
inequality (2a) associated with L implies that FF C {x € P +1(G) : Xy = Xyp}
and L is tight for . Moreover, N is the unique multicut tight for F' containing vw.
Suppose indeed that there exists a multicut B containing vw tight for F. Then, B is
a bond by Statement (i) of Theorem 2.10 and the existence of z. Moreover, BAN is
a multicut not containing vw. This implies that no point x of F satisfies the partition
constraint associated with BAN because x(BAN) = x(B) +x(N) —2x(BNN) =
2Qh+1) —2x(BNN) <4h + 2 — 2xyy < 2h, a contradiction.

Consider the matrix A% obtained from Ay by removing the row associated with
N. Matrix A% is a face-defining matrix for a face F* 2 F of P;41(G) because
F* contains F and z + ax"’ for every point z of F and o« > 0. By the maximality
assumption, the matrix A% is equimodular. Let By be the matrix obtained from Az by
replacing the row x " by therow x ¥ — x L. Then, B is face-defining for F. Moreover,
BF is equimodular by Statement (ii) of Observation 2.6—a contradiction. O

Let A’zx = b/, be the system obtained from Arx = br by removing uv’s column
from Ar and subtracting & + 1 times this column to br. We now show that {x €
Poyy1(G) A’Fx = b;—} isaface of Pyy11(G")if §(v) ¢ Mp,and of Py, 41(G)N{x :
Xuw = h} otherwise. Indeed, consider a multicut M in Mpg. If M = §(v), then
the equation of A’,x = b’ induced by M is nothing but x,,, = h. Otherwise, by
Lemma 2.11 and Claim 3.3, the set M \uv is a multicut of G’ (relabelling vw by uw)
of order dy if uv ¢ M and dy; — 1 otherwise. Thus, the equation of Al,x = b
induced by M is the partition constraint (2a) associated with M\uv set to equality.

By construction and Claim 3.3, A’ has full row rank and one column less than
Ar. We prove that A’ is face-defining by exhibiting dim(F) affinely independent
points of Py, 1(G’) satisfying A%zx = b’,. Because of the integrality of Py, 1(G),
there exist n = dim(F) + 1 affinely independent integer points z!, ..., z" of F. By
Claims 3.2 and 3.3, there exists a multicut strictly containing § (v). Then, Statement (i)
of Theorem 2.10 implies that FF C {x € RE : x,p <h+1, xyp < h + 1}. Combined
with the partition inequality x,, + Xy > 2k + 1 associated with § (v), this implies that
at least one of sz and z{)w isequaltoh+1fori =1, ..., n. Since exchanging the uv
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and vw coordinates of any point of F gives a point of ' by Claim 3.3, the hypotheses on

b ..., Ftare preserved under the assumption that z,"w =h+1fori=1,...,n—1.Let
yl, R y”_1 be the points obtained from 2, ] by removing uv’s coordinate.
Since every multicut of G’ is a multicut of G with the same order, y!, ..., y"~! belong

to Py,4+1(G"). By construction, they satisfy A’,x = b, so they belong to a face of
P 1(G") or Popy1(G") N {x : xuw = h}. This implies that A, is a face-defining
matrix of Pyj,11(G’) if §(v) ¢ Mg, and of Py, 1(G') N {x : x,, = h} otherwise.

By induction, Pyj,1(G’) is a box-TDI polyhedron and hence so is Py, 1 (G)N{x :
x,w = h}. Hence, A’ is equimodular by Theorem 2.4. Since A is obtained from A’
by copying a column, then A is also equimodular—a contradiction. O

By definition of box-TDIness and Q¢ (G), Theorem 3.2 implies that Q¢ (G) is box-
TDI when G is series—parallel. The converse does not hold. Indeed, for instance, when
G = (V, E) is a minimal k-edge-connected graph, Q(G) is nothing but the single
point x £ so it is a box-TDI polyhedron.

4 An integer TDI system for P, (G)

Let G be a series—parallel graph. In this section we provide an integer TDI system for
P>, (G) with h positive and integer.

The proof of the main result of the section is based on the characterization of
TDIness by means of Hilbert bases. A set of vectors (', ..., v} is a Hilbert basis if
each integer vector that is a nonnegative combination of v', ..., v* can be expressed
as a nonnegative integer combination of them. The link between Hilbert basis and
TDlIness is stated in the following theorem.

Theorem 4.1 (Theorem 22.5 of [34]) A system Ax > b is TDI if and only if for every
face F of P = {x : Ax > b}, the rows of A associated with tight constraints for F
form a Hilbert basis.

In the previous theorem, we could restrict to minimal faces: indeed, the cone gen-
erated by the constraints tight for a face F is a face of the cone generated by the
constraints active for a face F/ C F [34].

Remark 4.2 A system Ax > b is TDI if and only if, for each minimal face F of
P = {x : Ax > b}, the rows of A associated with constraints tight for F' form a
Hilbert basis.

The rest of the section is devoted to prove that the system given by the partition
constraints and the nonnegativity constraints, which describes P, (G) when £ is even,
is TDI when G is series—parallel.

The proof is based on the TDIness of System (5) and the structure of inequali-
ties (3a). Their right-hand sides are proportional to k, hence it is enough to prove the
case k = 2. This allows us to use Theorem 2.13 to obtain a TDI system for P>(G).
In terms of Hilbert bases, the TDIness of this system implies that, given a face F' of
P>(G), the integer points of the associated cone are the half sum of the cuts tight for
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F. The technical part of the proof is to show that each integer point of this cone is also
the sum of incidence vectors of the multicuts tight for F'.

Theorem 4.3 For a series—parallel graph G and a positive integer h, System (3) is
DI

Proof We only prove the case 1 = 1 since multiplying the right hand side of a system
by a positive constant preserves its TDIness [34, Section 22.5].

The proof is done by induction on the number of edges of the graph G = (V, E).
When G consists of two vertices connected by a single edge ¢, System (3) is xy >
2, x¢ > 0 and is TDL If G is the circuit {e, f}, System (3)is x, +x7 > 2,x > 0 and
is TDI.

(Parallelization) Let now G be obtained from a series—parallel graph H by adding
an edge g parallel to an edge f of H. System (3) associated with G is obtained from
that associated with H by duplicating f’s column in constraints (3a) and adding the
nonnegativity constraint x, > 0. By Lemma 3.1 of [7], System (3) is TDI.

For the other cases, we prove the TDIness of System (3) associated with G using
Remark 4.2. More precisely, we prove that for any extreme point z of P»(G), the set
of vectors {xM : M € T} U{x° : e € E, z. = 0} is a Hilbert basis, where 7T is the
set of multicuts tight for z.

(1-sum) Let G be the 1-sum of two series—parallel graphs G' = (W', E") and
G? = (W2, E?) and let z be an extreme point of P>(G). By construction, we have
z = (z', z%) where ' € P,(G') fori = 1, 2. Moreover, for each multicut M € T,
the graph obtained from G(z) by contracting the edges of E\M is a circuit. Indeed,
it is 2-edge-connected since G (z) is, and it has z(M) = djs edges and dy, vertices.
Therefore M is either a multicut of G! tight for z!' or one of G? tight for z>.

By induction, Systems (3) associated with G! and G? are TDI. Thus, { MM e
T. N M(GH}YU {x€ : e € E', z, = 0} is a Hilbert basis for i = 1, 2 by Theorem 4.1.
Since they belong to disjoint spaces, their union is a Hilbert basis. By Theorem 4.1,
System (3) is TDI.

(Subdivision) Let G = (V, E) be obtained by subdividing an edge uw of a series—
parallel graph G’ = (V’, E’) into a path of length two uv, vw, and let z be an extreme
point of P>(G).

Without loss of generality, suppose z,, > Zyw. Define 7/ € ZE by z,,, = Zvw
and z,, = z, for all edges e in E’\uw. Note that z’ belongs to P»(G’) since G'(Z’) is
obtained by contracting the edge uv in G(z), and this contraction preserves 2-edge-
connectivity.

Note that forall e € E, z, € {0, 1, 2}. Indeed, since z is an extreme point of P»(G)
which is also described by System (1), if z, > 0, then e belongs to a cut D tight for
z. Moreover, as z,, > Zyw, the partition constraint (3a) associated with & (v) implies
that z,,, € {1, 2}. We now consider two different cases depending on the value of z,,,.

Case I z,,, = 2. We first show that every multicut of 7, containing uv is a bond. Indeed,
note thatevery multicut M withdy, = 2isabond. Ifamulticut M = §(Vy, ..., Vy,) €
T, satisfies dyy > 3 and uv € §(Vi, Vo), then M’ = §(Vi U Vo, V3, ..., Vy,) is a
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multicut and satisfies
(M) < z2(M) =2 <dy — 1 =dy.

Hence, the partition constraint (3a) associated with M’ is violated, a contradiction.

Moreover, there exists at most one bond of 7;, say N, containing uv. As otherwise
suppose there exist two bonds By and B; in 7, containing uv. Then, z(B1ABy) <
z(B1) 4+ z(By) — 2z, = 0, which contradicts the constraint (3a) associated with the
multicut B; A B;. For a multicut M not containing uv, M € T, if and only if M € T,.
This implies that 7, = 7 U N. By induction and Theorem 4.1, 7y U £, is a Hilbert
basis. As £ = &, (identifying uv and vw) and N is the only member of 7; U &,
containing uv, 7; U &, is also a Hilbert basis.

Case 2 z,, = 1. Let v be an integer point of the cone generated by 7, U &,. We prove
that v can be expressed as an integer nonnegative combination of the vectors of 7, UE,.
This implies that 7, U &, is a Hilbert basis.

Let B; be the set of bonds of 7. Since System (5) is a TDI system describing P> (G)
in series—parallel graphs, the set of vectors { % xB : B € B,}U&, forms a Hilbert basis
by Theorem 4.1. Then, there exist Ap € %Z+ for all B € B; and u, € Z for all
e €& suchthatv =} p rexB + Decs. Hex’

Since z,, > Zyw, the partition inequality (3a) associated with é(v) implies that
Zyw = land §(v) € T;. In particular, vw ¢ &,. The vector v is an integer combination
of vectors of T; U &, if and only if v — [As@]x?® is, thus we may assume that
Asw) € 10, %}. Define w € ZE' by:

{Vuv + Vow — 2Asr) ife =uw,
W, = .
Ve otherwise.
Note that (B\uw) U uv and (B\uw) U vw are bonds of 7, whenever B is a bond of
7. containing uw because z,,,, = Zyy = Zyw = 1. Moreover, a bond B of T, which

does not contain uw is a bond of 7. Since §(v) is the unique bond of G containing
both uv and vw and &, = £,/, we have:

W= Z By + ABumvn) X + Z rex” + Z Mex©.
BeB_:uweB BeB._:uw¢B ee&,

Thus, w belongs to the cone generated by 7, U &,/. By the induction hypothesis,
T U & is a Hilbert basis, hence there exist A',, € Z forall M € T, and u,, € Z
for all e € £,/ such that w = ZMeﬁ/ MVIXM + Zeegz/ woxe.

Consider the family A of multicuts of 7,y where each multicut M of T appears 1,
times. Suppose first that A5,y = 0. Then, v, + vy, multicuts of N contain uw. Let
P be a family of v,,, multicuts of A/ containing uw and Q@ = {F € N : uw € F}\P.
Then, we have

V= Z XM+ Z X(M\uw)qu+ Z X(M\uw)va+ Z //«/eXe- (6)

MeN uwg¢M MeP MeQ ec,
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Suppose now that As,) = % Then, W,y = Vup + Vyw — 1 multicuts of A/ contain
uw. Let P be a family of v,,, — 1 multicuts of A/ containing uw, let Q be a family of
Vyw — | multicuts in {F € N : uw € F}\'P, and denote by N the unique multicut of
N containing uw which is not in P U Q. Then, we have

V= Z XM+ Z X(M\uw)qu + Z X(M\uw)va +X(N\uw)u8(v)
MeN:uwg¢M MeP MeQ
+ D ux’ (7)
eeé’z/

Every M € 7T, notcontaining uw isin 7;. Forevery M € T containing uw, (M \uw)U
uv, (M\uw) U vw and (M\uw) U §(v) belong to 7 since z,,, = zyp = Zyw = 1.
Since £, = &,/, then v is a nonnegative integer combination of vectors of 7, U &; in
both (6) and (7). This proves that 7, U &, is a Hilbert basis. Therefore by Remark 4.2,
System (3) is TDI. O

The box-TDlIness of P (G) and the TDIness of System (3) give the following result.
Corollary 4.4 System (3) is box-TDI if and only if G is series—parallel.

Proof If G is series—parallel, then System (3) is box-TDI by Theorems 3.2 and 4.3,
since a TDI system describing a box-TDI polyhedron is box-TDI [12]. If G is not
series—parallel, Theorem 3.2 ensures that P (G) is not box-TDI, therefore System (3)
is not box-TDI. O

Theorem 4.3 leaves open the following problem:

Open Problem 4.5 Characterize the classes of graphs such that System (3) is TDI.

5 An integer TDI system for Py, 1 (G)

In this section, we prove that System (2) is TDI if and only if G 1is a series—parallel
graph—see Theorem 5.1. Proving the TDIness for k odd is considerably more involved
than for k£ even. The first difference with the even case is the lack of a known TDI
system describing P (G) when k is odd, even a noninteger one. Thus, no property
of the Hilbert bases associated with Px(G) is known, and the approach used to prove
Theorem 4.3 cannot be applied. Instead, following the definition of TDIness, we prove
the existence of an integer optimal solution to each feasible dual problem.

Another difference with the case k even follows from the structure of the partition
inequalities (2a). In particular, the presence of the constant “—1 in the right-hand
sides perturbs the structure of tight multicuts. Indeed, when & is odd, the tightness of
8(Vi, ..., V,) does not imply that of §(V7), ..., 8(V,). Consequently, it is not clear
how the contraction of an edge impacts the tightness of amulticut§(Vy, ..., V,): merg-
ing adjacent V;’s is not sufficient to obtain new tight multicuts. Due to the link between
tight multicuts and positive dual variables, the structure of the optimal solutions to the
dual problem is completely modified when subdividing an edge. Proving directly that
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subdivision preserves TDIness turned out to be challenging, and we overcome this
difficulty by deriving new properties of series—parallel graphs—see Lemma 2.3.

The proof of Theorem 5.1 focuses on properties of vertices of degree 2 in a min-
imal counterexample to the TDIness of System (2). In particular, we prove that no
two vertices of degree 2 are adjacent (Claim 5.9), or in the same circuit of length 4
(Claim 5.11). Moreover, no triangle contains vertices of degree 2 (Claim 5.10). By
Lemma 2.3, this implies that the graph is not series—parallel. To derive these proper-
ties, we study the interplay between cuts associated with degree 2 vertices and dual
optimal solutions—see Claims 5.3-5.8.

Theorem 5.1 For h positive and integer, System (2) is TDI if and only if G is series—
parallel.

Proof 1f G is not series—parallel, then System (2) is not TDI because every TDI system
with integer right-hand side describes an integer polyhedron [22], but when G has a
K4-minor, System (2) describes a noninteger polyhedron [10].

We now prove that, if G is series—parallel, then System (2) is TDI. We prove the
result by contradiction. Let G = (V, E) be a series—parallel graph such that System (2)
is not TDI. By definition of TDIness, there exists ¢ € ZZ such that D¢, ¢):

max Z byym

MeMg
S.t.
Y ym=ce foralle € E, (8a)
MeMg.eeM
ym =0 for all M € Mg, (8b)

is feasible, bounded, but admits no integer optimal solution, where by; = (h+1)dy—1
for all M € M. Without loss of generality, we assume that:

(i) G has a minimum number of edges,
(i) Y ,cg Ce is minimum with respect to (i).

By definition, DG, is feasible if and only if ¢ > 0. Hence, by minimality assump-
tion (ii), D(G..) has an optimal integer solution for every integer ¢ # ¢ such that
0<c <ec.

Let M be a multicut of G. We denote by &y, the vector of {0, I}MG whose only
nonzero coordinate is the one associated with M. We say that M is active for a solution
vy to DG,y if yu > 0. Note that, by complementary slackness, a multicut is active for
an optimal solution to DG ) only if it is tight for an optimal solution to the primal
problem. In particular, if a multicut is tight for no point of P>;,41(G), then it is active
for no optimal solution to D ). Thus, we will use Lemma 2.11 and Theorem 2.10
to deduce properties on the optimal solutions to DG ).

Claim 5.1 G is simple, 2-connected, and nontrivial.
Proof Suppose for a contradiction that there exist two parallel edges e; and e, and

Ce; < Ce,.Since amulticut contains either both e; and e, or none of them, the inequality
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(8a) associated with e; is redundant because ¢, < c,. This contradicts minimality
assumption (i), so G is simple.

Assume for a contradiction that G is not 2-connected. Then G is the 1-sum of two
distinct graphs G| = (V1, E1) and G» = (V», E3). By Statement (ii) of Theorem 2.10,
the multicuts of G thatintersect both £ and E» are not tight for the points of P +1(G),
by complementary slackness, these multicuts are not active for the optimal solutions
to D(G,¢). Hence, every optimal solution y to D¢ ) is of the form:

vy ifMe Mg,
Y = y12\4 itM e Mg,, forall M € Mg,

0 otherwise,

where y' is an optimal solution to DG, ¢ £) fori = 1, 2. By minimality assumption (i),
there exists an integer optimal solution y' to D(g, ¢ E) fori = 1,2, implying that
(3', ¥2) is an integer optimal solution to DG, ¢), a contradiction.

Finally, if G = K;, M contains only one multicut, say {e}, and the optimal
solution to DG ¢) 1s y{*e} = ¢, which is integer. O

Claim 5.2 Forall edges e € E, c, > 1.

Proof By hypothesis, ¢ > 0 is integer and D(g ) has an optimal solution, say y*.
Suppose for a contradiction that there exists an edge ¢ € E withc, = 0.SetG' = G /e
and ¢’ = c|(g\¢). The active multicuts for y* do not contain the edge e so they are
multicuts of G’ since Mg = {M € Mg : e ¢ M}. Hence, the point y' € RMor
defined by y), = y}, for all M € M is a solution to D¢/ ).

By minimality assumption (i), there exists an integer optimal solution y to D¢’ ).
Extending y to a point of zMa by setting to 0 the missing component gives an integer
solution to D ) with cost b'y >b"y = bTy* This is an integer optimal solution
to DG, since y* is optimal, a contradiction to the hypothesis that D ) has no
integer optimal solution. O

Claim 5.3 Every optimal solution y to DG ) satisfies 0 < yy < 1 forall M € Mg.

Proof By contradiction, suppose that y* is an optimal solution to D ) such that there
exists a multicut M such that y¥, > 1. Therefore, the point y’ defined by y' = y* — &y
is a solution to D ) where ¢’ = ¢ — x™. By minimality assumption (ii), DG,
admits an integer optimal solution y”. The point y defined by y = y” + &y is an
integer solution to D(g ) and we have:

ij‘} — bTy// +bM Z bTy/ +bM — bTy*
Therefore y is an integer optimal solution to D(g ), a contradiction. O

From the definition of series—parallel graphs, Claim 5.1 implies that G contains at
least one degree 2 vertex. Let V be the set of degree 2 vertices of G.
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Claim5.4 Letv € \7 3(v) = {ey, e2}, ¥ be an optimal solution to D), and M
be an active multicut for y such that M1 N §(v) = ey. If 6(v) is active for y, then no
multicut whose intersection with §(v) is e is active for y.

Proof We prove the result by contradiction. Assume that M and §(v) are active for
y and that there exists a M» active for y with M, N §(v) = e;. By Observation 2.2,
M = M; U §(v) is a multicut of G such that dM,-’ =dy, + 1 fori = 1,2. Let
0 <& <min{ym,, ym,, Ysw)}. Then, the point:

v =y e ()M M ) e (M4 1)

is a solution to D), and we have by =b"y + ¢, implying that y is not optimal,
a contradiction. O

Claim 5.5 For every optimal solution to DG ), the constraints (8a) associated with
the edges incident to a degree 2 vertex are tight.

Proof We prove the result by contradiction. Suppose that there exist an optimal solution
y*to DG, and a vertex v with 8 (v) = {ej, ez} such that the inequality (8a) associated
with eq is not tight. For i = 1, 2, let s; be the slack of the constraint associated with
e;, that is,

*
Sj = Ce; — Z Yum-

MeMg.e;eM

Inequality (8a) associated with e, is tight, as otherwise there exists 0 < n <
min{sy, 52}, such that y*+n&;(,) is asolutionto D(; ), a contradiction to the optimality
of y*. Hence, Claims 5.2 and 5.3 imply that there are at least two distinct multicuts M
and M, active for y* and containing e5. Let 0 < ¢ < min{y}f,[] , y;f,lz, si}.Fori =1,2,
e1 € M;, as otherwise y' = y* 4+ e(&p,0e, — Eu,) is a solution to D . This solution
is such that b7y’ = bTy* + e(h + 1) > b'y*, a contradiction to the optimality
of y*. Thus, both M| and M> contain §(v). Since they are distinct, at least one of
them, say M, strictly contains 8(v). Then, y” = y* + e(—&y, + Emp\e, + Esv)
is a solution to DG ) because Mj\ex belongs to Mg by Lemma 2.11. Then,
b'y" = bTy* + e(—by, + by, — (h + 1) +2h + 1) > b"y*, a contradiction.

O

Given a solution y to D ), we define for each vertex v € V the set A3 as the set
of multicuts active for y that strictly contain 8(v). Moreover we define the value ;)
as:

Claim 5.6 Every optimal solution y to DG ) satisfies 0 < oy < 1forallv e V.
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Proof Suppose for a contradiction that there exist an optimal solution y* to D¢ ) and

o~ * *
a vertex v of V such that either «; > 1 ore; = 0. Denote the two edges incident to

v by €1 and e, in such a way that ¢, < c,,.

Suppose first that & > 1. By Claim 5.3, there exist at least two multicuts in A2, .
Let .Aﬁ* = {Mi,...,M,}. By Lemma 2.11, foralli = 1,...,n, M = M;\e; is a
multicut of G with dMi/ =dy, —1.Letc’ = ¢ — x°'. By a,y,* > 1, there exist ¢; for
alli =1,...,n,suchthat0 <¢; < yj[,li and Z:’:l €; = 1. The point yl defined by:

n
=yt Z <_€i§Mi + éiSM;)

is a solution to D ). By definition of b, we have:
bTyl =bTy  —h—1. 9)

By minimality assumption (ii), DG . admits an integer optimal solution, say y2.
This solution satisfies with equality the constraint (8a) associated with e; as otherwise
y2 + &s(v) would be a solution to D¢, with cost bTy2 + bs) = bTy1 +2h + 1,
contradicting the assumption that y* is optimal by (9) and & > 1. Hence, there exists
a multicut M active for y? containing e> but not e; since Ce, + 1 = ¢, By definition,

M U ey is a multicut of G of order dy; + 1. Define y? e ZMa by:

)713\4 — y2 . XM + XMUel
By definition of ¢’ and y?, the point y? is an integer solution to DG,¢)- Therefore, by
(9), since y? is optimal in DG, and by definition of y3, we have:

by =b"y' +h+1<b"y?+h+1<b"y.

Thus, y3 is an integer optimal solution to D¢ ), a contradiction.

*

Suppose now that «y = 0. First, note that §(v) is not an active multicut for y*.
Otherwise by Claims 5.2, 5.3 and 5.5, there would be a multicut containing e and
not e, say N1, and a multicut containing e, and not e, say N>, which are both active

for y*. This contradicts Claim 5.4. Hence, by definition of oe5 *, no active multicut
contains §(v).

By Observation 2.2, if a multicut M contains e but not ey, then MA§(v) is a
multicut with the same order and by, = by as). Hence, we can define the point

y* e QMe:

0 ife; e M,
v = Yir + Virasy ifer ¢ Mander € M, forall M € Mg,
i otherwise,
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which is a solution to D¢ ¢, where ¢ is defined by:

Cey +Cep ife=e,
ce=10 ife =ey, foralle € E.
Ce otherwise,

By construction, we have:
bTy* =bTy* (10)
Using the argument given in the proof of Claim 5.2, we deduce that D s admits
an integer optimal solution, say y>. Let S be the family of active multicuts for y>
containing e, where each multicut M appears yZSu times in S. We have [S| > ¢, as
otherwise y> would be an integer optimal solution to D(G,¢), a contradiction.

We now construct from y> an integer solution y° to DG, with the same cost by
replacing e, by e in some active multicuts for y>. More formally, since |S| > c,,,
there exists S’ € S with |S'| = ¢,,. By Observation 2.2, M A§(v) is a multicut of G
forall M € 8’ and by = byas)- Let y6 € ZM6 be the point defined by:

W=y + Z (Emasw) — &m)

MeS’

By construction, we have:
bTyd =bTy5. (11)

Note that for each M € S’, adding &y, As(v) — &M to a point of RMG increases (resp.
decreases) by 1 the left-hand side of the inequality (8a) associated with e (resp. e2)
while not changing the left-hand side of the inequalities (8a) associated with the edges
of E\{e1, e2}. Therefore, by definition of ¢, y© is a solution to D,e)- By (11), the
optimality of y>, and we have:

bTy6 — bTyS Z bTy4 — bTy*
Therefore y% is an integer optimal solution to DG, c), a contradiction. O

Claim 5.6 implies that for each optimal solution y and for each v € V there exists
at least one multicut strictly containing §(v) that is active for y. For the following
claims we need to define a subset of optimal solutions to DG ): let ©, be the set of
optimal solutions to D¢ ) for which §(v) is not active. Note that if ©, is not empty,
then there exists a solution y in ®, maximizing o over all z € D,,.

The following claim presents the structure of a specific optimal solution to DG )
for which §(v) is not active.

Claim5.7 Let v € V with S5(v) = {e1, ez} and let y* € D, maximize o over all
7z € ®y. Then, there are exactly 3 multicuts active for y* intersecting §(v): two bonds
F Uey and F U ey and a multicut F U {e1, ez} of order 3, for some F C E.

Proof By Claim 5.6, there exists at least one multicut strictly containing §(v) which
is active for y*, say My. By definition of ©,, §(v) is not active for y*. Hence, by
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Claim 5.5, there exists at least one multicut active for y* which contains ¢; and not
d(v)\ej, fori = 1, 2. Let M; be such a multicut with maximum order.

First, we prove that dys, = 3. By definition, My = §(v, V2, V3, ..., VdMO). More-
over, by Lemma 2.11 and complementary slackness, the two vertices adjacent to v
belong to two different classes, say V> and V3. By contradiction, suppose that dy;, > 4.
Then, M(/) =5(vU VoUWV, ..., VdMO) is a multicut of order dy, — 2. Fori =1, 2,
Ml./ = M; U §(v) is a multicut of order dy;, + 1. Let 0 < ¢ < min{y}%, y]’fdl, y]’[dz}.
Then, let y’ € RMG be the point defined by:

y =y* —ekmy + e&yy + € Z <—€M,» + EM;) :

i=1,2

By construction, y’ is a solution to DGy with b7 y* = b y’. Hence y’ is an optimal

/ *
solution, but we have o; = «, + & because 8(v) C Ml./ fori = 1, 2. This contradicts

the maximality of a; " Therefore d My = 3.

Now, we show that M is a bond. The result for M; holds by symmetry. By contra-
diction, suppose that M1 = §(Vq, ..., VdM1 ) with dys, > 3. Without loss of generality,
we suppose that e € §(V1) N §(V2). Then, M{ =5ViuVvy, ..., VdMl) is a multicut
of order dy;, — 1. Moreover, Mé = M U §(v) is a multicut of order dy, + 1. Let
0 < & < min{ y;"‘/h, y;‘fb} and y' € RMG be the point defined by:

y = y* —eém, + 85M; — &y, + 8§M§~

By construction, y’ is a solution to DG, with bTy* = bTy’. Hence y’ is an opti-

*
mal solution, but we have «), = «; + ¢ because §(v) - Mé. This contradicts the

maximality of ). Therefore, d my, = dy, = 2.

We now prove that there exists a set F' such that My = F U§(v), and M; = F Ue;
fori = 1, 2. Note that M; U M3 is a multicut so y” = y* +e(Enyum, — Em, — Em,) 18
a solution to D(g ). The optimality of y* implies dp;,um, < 3. Since M| and M, are
distinct bonds, there exists F' C E\§(v) such that M; = F Ue;, fori = 1, 2. Finally,
let No = Mp\ez and N = M| U e,. Note that y = y* + eEny —Emy + 6N, — EMy)
is an optimal solution to D¢ ) for which §(v) is not active. Moreover, Ny and M>
are bonds active for y since dy,, = 3. This implies that Ny = F U ey, and hence
My = F US§S®).

This implies that My, M1, and M, are the only multicuts active for y* intersecting
8(v). Indeed, if M is a multicut active for y* strictly containing § (v), then repeating the
proof above with M, M}, and M, shows that there exists F’ such that M = F'U§(v),
and M; = F'Ue; fori = 1,2.Since M; = F Ue; fori = 1,2, we have F/ = F
and hence M = Mj. A similar argument holds for any multicut active for y* and
intersecting 6 (v). O

Claim 5.8 Let v € V and y* be an optimal solution to DG.c)- Then,

) Ify(’{(v) =0, thenc, = 1 forall e € §(v),
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(i1) Ify:{(v) > 0, then ag* + yg‘(v) = 1, and there exists e € §(v) such that c, = 1.

Proof (i) First suppose that yg‘(v) =0, then ®, # ¥. Let y’ € ©, maximize af over
all z € ©,. Then, by Claim 5.7, there exist exactly two active multicuts for y’
containing e; for i = 1, 2. Combining Claims 5.3 and 5.5, and the integrality of c,
we obtain that ¢,, = 1 fori =1, 2.

(i1) Let now y(’sk(v) > 0. By Claim 5.4, there exists an edge e € §(v) such that all
multicuts containing e that are active for y contain §(v). Hence, the constraint (8a)
associated with e is:

Ce = Z i = Vs T Z Vit = Vi T - (12)
M:eEM MGA;\;*

By Claim 5.5, the constraint (8a) associated with e is tight. Thus, y:;(v) +a - Ce.
By Claims 5.3 and 5.6 and since c, is integer, we have ¢, = 1. O

The last three claims of the proof give some structural property of the graph G. In
particular we focus our attention on the vertices of V.

Claim 5.9 Vertices of degree 2 are pairwise nonadjacent.

Proof Assume for a contradiction that there exist two adjacent vertices vy and v in
f/\, and denote §(v;) = {eg, ¢;} fori =1, 2.

We prove that §(vy) is active for all optimal solutions to DG ), the result for
8(v2) is obtained by symmetry. By contradiction, suppose that ©,, # @. Among all
the solutions y € ©,,, let y! be one having ay, maximum. Then, by Claim 5.7, the
three multicuts active for y1 intersecting §(vy) are My = F U §(vy), Bop = F U e,
and B = F U eq, where B; are bonds fori = 0,1, and F € E\é(vy) contains no
nonempty multicut. By Claim 5.6 on vy, there exists a multicut M active for y! strictly
containing §(v2). By §(v1) N §(v2) = eg, M intersects §(vy). Since dy; > 3, Claim
5.7 for v implies M = My, F = {e>}, and By = §(v2).

As ysl(vl) = 0, by Statement (i) of Claim 5.8, ¢,, = ¢,; = 1. By Claim 5.5, the

1
constraints associated with eg and e are tight. Since Aﬁl = {Mj} by Claim 5.7, we
have:

Coi =Yg, +yp, =1 fori =0, 1. (13)
Let{M,, ..., M,} be the set of active multicuts for y1 such that M; N{eg, e1, ex} = en,
fori = 1,...,n. By Claim 5.5, the constraint (8a) associated with e is tight, hence,
using (13):
n n
Cor = Yigo + VB T V8, + DV, =1+ Vg, + D Vi (14)

@ Springer



330 M. Barbato et al.

By Claim 5.3, B active for yl, and ¢, € Z, we have {M1, ..., M,} # ¥ and c,, > 2.
Thus, combining (13) and (14), we have:

n
D Vi =ce = 1=y = Yig (15)
i=1

Then, there exist €, ..., €, suchthat 0 < ¢; < y}w, fori =1,...,n,and

n

|
Zel = YMo-
i=1

Fori =1,...,n, M; Uegis a multicut with order dy, + 1, hence we can consider the
following solution to DG ¢):

n n
Y=y - (y}uosMo + ZeisMi) + (y}uosMo\eo + ZeisM,.er) .36
i=1

i=1

2
We have bTy1 = bTyz, but oegl = 0, a contradiction to Claim 5.6. Therefore ©, # ¢,
and by symmetry we deduce that both §(v) and §(vy) are active for all optimal
solutions to DG ¢).

By Claim 5.4, for every optimal solution y to D(¢, ) and every multicut M of G, if
M is active for y and contains e; for some i € {1, 2}, theneg € M.

Let y* be the optimal solution to DG, ) maximizing a51 over all y solutions to
D(G.c)- We have A}, C Ay, and all the multicuts in A, have order at most 3.
Otherwise, let M € A}, \ A}, (resp. M € A;, such that dy > 4),and 0 < & <
min{y},, y;‘(vl)}. The solution

¥ =y —e(Em + Esuy)) + €Emer + Es(v1)Uer)

3 *
is optimal, but oy, = a3, + ¢ by the choice of M, a contradiction to the maximality
* - *
of oeg1 . Thus, M = {eg, ey, ez} is the only multicut in .A%z.
Let{Ny, ..., N, }bethesetof active multicuts for y* such that N;N{eq, e1, e2} = eg
fori = 1,..., m. The constraint associated with e is tight by Claim 5.5, hence, by

Ay* C Ay* we have:
V) = (% .

m
Ceo :agl +y;<(v1) +y:3k(v2)+zy;/i' (17)
i=1
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By Statement (ii) of Claim 5.8 applied to vy, we have y;‘(vl) + agl* = 1, and so:

m
Ceo =14 Y50 + DYy (18)

i=1

By Aﬁ: = {M} and Statement (ii) of Claim 5.8 applied to v, we have yg‘( ot y;'[;l =1,
hence:

Cp=2—Y5+ Y Y- (19)
i=1

Since ¢, 1s integer and since y;“‘;[ < 1 by Claim 5.3, by (19), we have:

> i =k (20)

Hence,letAq, ..., A, besuchthat) < A; < y;t,i fori=1,..., m,ade;"=l A= y;"‘;[.
Note that §(v2) = M\ej. Then, the point

m m
Y=y - ()’Z}SM + ZMEN,-) + (y}ﬁswz) + ZkiSNiUel)

i=1 i=1

is a solution to D(G, ), and it is optimal by definition of . Moreover,

Y3 = Yig T Voan = 1
a contradiction to Claim 5.3. O
The following claim forbids a circuit of length 3 to contain a vertex of V.
Claim 5.10 No circuit of length 3 contains a vertex of degree 2.

Proof Assume for a contradiction that in G there exist a vertex v € V and a circuit
{e1, e2, €3} such that §(v) = {ey, ex}. By Lemma 2.1, a multicut contains e3 only if
it intersects §(v). On the other hand, by Lemma 2.11 and complementary slackness,
each multicut strictly containing §(v) and active for an optimal solution contains e3.
Thus, for every optimal solution y to D), we have:

Yowm= D> yu+ D ym—oi (1)

M:ezeM M:ereM,M#5(v) M:exeM ,M#8(v)

Let y* be an optimal solution to D(¢ ). By the constraint (8a) associated with e3, (21),
and Claim 5.5, we have:

Cey > Z Vi = Cey + Copy — 2)’:;(1)) —a) . (22)
M:ezeM
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By Claim 5.6 and Statement (ii) of Claim 5.8, we have 2y§(v) +a; ) Thus, by (22)
and c,, € Z, we have co; > o + Cep — 1.

Define G’ = G\e3 and ¢’ = ¢|(\¢;). Note that for each multicut M € Mg, M\e3
is a multicut of G’ with order at least dj;. Hence, y* induces a solution to D¢’ .
of cost at least b y*. By minimality assumption (i), there exists an integer optimal
solution y’ to D¢/ ¢, and we have b7y’ > b1 y*.

Let M (resp. M>) be the set of multicuts M = §(V1, ..., Vg, ) of G active for
y’ such that the endpoints of e3 belong (resp. do not belong) to a same V; for some
i €{l,...,dy}. Foreach M € M (resp. M € M3), M (resp. M U e3) is a multicut
of G with the same order. Hence,

Y=Y Vutm+ Y YiEmue

MeM; MeM,

is a point of ZflG withbTy” = b7y’ Thus, b y” > b y*, and y” is not a solution
to D(G.c)- By definition, y” respects every constraint of D) but the constraint (8a)
associated with e3.

By definition of y”, we have:

Yoovi= Y. vu+ > - (23)

M:ezeM M:e1eM,M#S5(v) M:e;eM,M#5(v)

Therefore, by y” violating the constraint (8a) associated with e3, (23), Statement (ii)
of Claim 5.8, and the inequalities (8a) associated with e; and e,, we have:

Cez < Z Y= Z Yt Z Y= =2Y5) < Coy e =0 —2¥5,).
M:ezeM M:e1eM M:epeM

(24)

Thus, by (22), we have o) + 2y(§/(v) <ay + Zy;"(v) < 2.By Cey = Cop + € — 1,

the integrality of y”, and (24), we have oeg” = yé’(v) =0, and 80 c¢; = ¢¢y + e, — 1.

Hence, by the integrality of y” and equation (23):

Cey +1 = i = i + Z Vi = Cey + Cey- (25)
M:ezeM M:e1eM M:ereM

For i = 1,2, since ¢,; > 1, there exists a multicut M; active for y” such that M; N
s(v) = e;.

We claim that the constraint (8a) associated with e3 is not tight for y*. By ¢., =
Ce; + Ce, — 1, (22), and Claim 5.6, §(v) is active for y*. Hence, by Statement (ii)
of Claim 5.8, we have: .

o) + y;‘(v) =1. (26)

Hence, by (21) and Claim 5.5, (26), (25), and §(v) active for y*, we have:

Z Vi =Cep +Cop — 1 — yg‘(v) = Cey — yg‘(v) < Cey- (27)
M:ezeM
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The point y” respects all the constraints of D ) except the one associated with e3,
and this constraint is not tight for y*. Therefore, there exists 0 < A < 1 such that

y=ry"+ 1 =2n)y"

is a solution to D(g ). Moreover, y is optimal because bTy* <bTy".

All multicuts active for at least one between y* and y” are active for y. Since §(v)
is active for y* and M, M, are active for y”, the three multicuts M1, M, and §(v)
are active for y, a contradiction to Claim 5.4. O

Claim 5.11 Each circuit of length 4 contains at most one vertex of degree 2.

Proof Assume for a contradiction that there exists a circuit C = {ey,...,e4} in G
covering two vertices of f/\, say v, v2. By Claim 5.9, v and v; are not adjacent, hence
we assume that § (v1) = {eq, e2} and §(v2) = {e3, e4}. Let v3 and v4 be the remaining
vertices of C.

We prove that § (vy) is active for all optimal solutions to DG ). Indeed, it D, # @,
then let y’ € ,, maximize o over all z € D,,. By Statement (ii) of Theorem 2.10,

for every multicut M in Aﬁ; we have M = §{vp, Vo, ..., Vg, }, with v3 and v4
belonging to different V;’s, hence M Né(vy) # ¥. However, M\§(v1) contains §(vy),
a contradiction to Claim 5.7 applied to vy . Exchanging the role of v| and vy, we deduce
that § (v2) is active for all optimal solutions to DG ).

Without loss of generality, there exists an optimal solution y such that ay,

>
ay,. Then, we can build from y an optimal solution y* to DG, such that Ay, C

A%r Indeed, suppose Agz\Aﬂl = {My, ..., M,}. Then, since ozgl > 0452, there exist
Ni, ..., Ny € Ay, \ Ay, such that:

n m
> v =) ;e (28)
i=1 j=1
Hence, there exist €1, ..., €, such that 0 < ¢; < YN forj=1,...,m,and
m n
D=2 M 29)
j=1 i=1

By Statement (ii) of Theorem 2.10 and complementary slackness, vz and v4 belong to
different classes of Nj foreach j = 1, ..., m,implying that N;N§(v2) # @. Moreover,

since N; ¢ Aﬁz, we have [N; N§(vy)| =1, forall j =1, ..., m. Furthermore, since
8(vyp) is active for y, by Claim 5.4, there exists an edge in §(vy), say e3, such that
N;Né(vy) =e3forall j =1,..., m. Therefore, the point

n n m m
yi=y- (Z ym;iEm; — ZyM,»%‘M,-\m) + ZejgNer4 - Zej%-Nj (30)
i=1 i=1 j=1 j=1
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is a solution to D(g.¢) with bTy* = b7y and A}, € A}, . Let A), = (M ..., M),

Fori = 1,..., p, since Ml./ IS Aﬁr, Statement (ii) of Theorem 2.10 implies Ml./ =
5(vy, vy, V3i , Vi e VéM/), where V3i and Vi contain respectively v3 and v4. Then,
Ml_// =d6(vy, v U V3i U Véf, el VéM{) is a multicut oforderdMlg —2fori=1,...,p.

l

Since §(v7) is active for y*, by Statement (ii) of Claim 5.8, we have oeﬁ: + yg‘(vz) = 1.
Then, the point y! € QM6 defined by:

p P
1
y =y - <y§(v2)§a(v2> + ZyL;SMl./) + (Z yL;SM;) ,
i=1 i=1
is a solution to D(g 1y, where ¢’ = ¢ — x8@2)
Bydy» =dy —2foralli =1,..., p,and oy, + Y3y = 1, we have:

by =bTy —ad, Qh+2) =y, Rh+ 1) =bTy = Qh+ 1) —a,. (1)

By minimality assumption (ii), D) admits an integer optimal solution, say y2. The
point y* € ZM6 defined by y3 = y? + &5,y is a solution to DG such that:

b'y =bTy2 + 20+ 1. (32)
Therefore, by (31), the optimality of y2, and (32), we have:
by =b"y' +2h+14a) <b'y?+2h+1+a) =0y +al,. (33)

By integrality of Py, 1(G) and duality, we have b y* € Z. Furthermore, y° is integer
by construction, so bTy3 € Z. Then, by (33) and Claim 5.6, we have bTy* < bTy3,
and so y? is an integer optimal solution to DG,¢)» a contradiction. O

Claims 5.1, 5.9, 5.10, 5.11 and Lemma 2.3 imply that G is not series—parallel, a
contradiction. O

The box-TDIness of P, (G) and the TDIness of System (2) give the following result.
Corollary 5.2 System (2) is box-TDI if and only if G is series—parallel.

Proof By Theorem 5.1, when G is not series—parallel, System (2) is not TDI. Whenever
G 1s series—parallel, P, (G) is box-TDI by Theorem 3.2 and System (2) is TDI by
Theorem 5.1. O
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Abstract

We present a novel dependency pars-
ing method which enforces two structural
properties on dependency trees: bounded
block degree and well-nestedness. These
properties are useful to better represent the
set of admissible dependency structures in
treebanks and connect dependency pars-
ing to context-sensitive grammatical for-
malisms. We cast this problem as an Inte-
ger Linear Program that we solve with La-
grangian Relaxation from which we derive
a heuristic and an exact method based on
a Branch-and-Bound search. Experimen-
tally, we see that these methods are effi-
cient and competitive compared to a base-
line unconstrained parser, while enforcing
structural properties in all cases.

1 Introduction

We address the problem of enforcing two struc-
tural properties on dependency trees, namely
bounded block degree and well-nestedness, with-
out sacrificing algorithmic efficiency. Intuitively,
bounded block degree constraints force each sub-
tree to have a yield decomposable into a lim-
ited number of blocks of contiguous words, while
well-nestedness asserts that every two distinct sub-
trees must not interleave: either the yield of one
subtree is entirely inside some gap of the other or
they are completely separated. These two types
of constraints generalize the notion of projectiv-
ity: projective trees actually have a block degree
bounded to one and are well-nested.

Our first motivation is the fact that most de-
pendency trees in NLP treebanks are well-nested
and have a low block degree which depends on
the language and the linguistic representation, as
shown in (Pitler et al., 2012). Unfortunately, al-
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though polynomial algorithms exist for this class
of trees (Gémez-Rodriguez et al., 2009), they are
not efficient enough to be of practical use in ap-
plications requiring syntactic structures. In ad-
dition, if either property is dropped, but not the
other, then the underlying decision problem be-
comes harder. That is why practical parsing algo-
rithms are either completely unconstrained (Mc-
Donald et al., 2005) or enforce strict projectivity
(Koo and Collins, 2010). This work is, to the
best of our knowledge, the first attempt to build
a discriminative dependency parser that enforces
well-nestedness and/or bounded block degree and
to use it on treebank data.

We base our method on the following obser-
vation: a non-projective dependency parser, thus
not requiring neither well-nestedness nor bounded
block degree, returns dependency trees satisfying
these constraints in the vast majority of sentences.
This would tend to indicate that the heavy machin-
ery involved to parse with these constraints is only
needed in very few cases.

We consider arc-factored dependency parsing
with well-nestedness and bounded block degree
constraints. We formulate this problem as an In-
teger Linear Program (ILP) and apply Lagrangian
Relaxation where the dualized constraints are
those associated with bounded block degree and
well-nestedness. The Lagrangian dual objective
then reduces to a maximum spanning arbores-
cence and can be solved very efficiently. This pro-
vides an efficient heuristic for our problem. An ex-
act method can be derived by embedding this La-
grangian Relaxation in a Branch-and-Bound pro-
cedure to solve the problem with an optimality cer-
tificate. Despite the exponential worst-time com-
plexity of the Branch-and-Bound procedure, it is
tractable in practice. Our formulation can enforce
both types of constraints or only one of them with-
out changing the resolution method.

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 355-366,
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As stated in (Bodirsky et al., 2009), well-nested
dependency trees with 2-bounded block degree are
structurally equivalent to derivations in Lexical-
ized Tree Adjoining Grammars (LTAGs) (Joshi
and Schabes, 1997).!2 While LTAGs can be
parsed in polynomial time, developing an efficient
parser for these grammars remains an open prob-
lem (Eisner and Satta, 2000) and we believe that
this work could be a useful step in that direction.

Related work is reviewed in Section 2. We de-
fine arc-factored dependency parsing with block
degree and well-nestedness constraints in Sec-
tion 3. We derive an ILP formulation of this prob-
lem in Section 4 and then present our method
based on Lagrangian Relaxation in Section 5 and
Branch-and-Bound in Section 6. Section 7 con-
tains experimental results on several languages.

2 Related Work

A dynamic programming algorithm has been pro-
posed for parsing well-nested and k-bounded
block degree dependency trees in (Gémez-
Rodriguez et al., 2009; Go6mez-Rodriguez et
al., 2011). Unfortunately, it has a prohibitive
O(n*+?%) time complexity, equivalent to Lexi-
calized TAG parsing when k£ = 2. Variants of
this algorithm have also been proposed for further
restricted classes of dependency trees: 1-inherit
(O(n%)) (Pitler et al., 2012), head-split (O(n%))
(Satta and Kuhlmann, 2014) and both 1-inherit
and head-split (O(n°)) (Satta and Kuhlmann,
2014). Although those restricted classes have
good empirical coverage, they do not cover the
exact search space of Lexicalized TAG deriva-
tion and their time complexity is still prohibitive.
Spinal TAGs, described as a dependency parsing
task in (Carreras et al., 2008), weaken even more
the empirical coverage in practice, restricted to
projective trees, but still remain hardly tractable
with a complexity of O(n?*). On the contrary, the
present work does not restrict the search space.
Parsing mildly context-sensitive languages with
dependencies has been explored in (Fernandez-
Gonzélez and Martins, 2015) but the resulting
parser cannot guarantee compliance with strict
structural properties. On the other hand, the

't is possible to express a wider class of dependencies
with LTAG if we allow dependencies direction to be different
from the derivation tree (Kallmeyer and Kuhlmann, 2012).

%In order to be fully compatible with LTAGs, we must
ensure that the root has only one child. For algorithmic issues
see (Fischetti and Toth, 1992) or (Gabow and Tarjan, 1984).
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present method enforces the well-nestedness and
bounded block degree of solutions.

The methods mentioned above all use the
graph-based approach and rely on dynamic pro-
gramming to achieve tractability. There is also
a line of of work in transition-based parsing for
various dependency classes. Systems have been
proposed for projective dependency trees (Nivre,
2003), non-projective, or even unknown classes
(Attardi, 2006). Pitler and McDonald (2015) pro-
pose a transition system for crossing interval trees,
a more general class than well-nested trees with
bounded block degree. In the case of spinal
TAGs, we can mention the work of Ballesteros
and Carreras (2015) and Shen and Joshi (2007).
Transition-based algorithms offer low space and
time complexity, typically linear in the length of
sentences usually by relying on local predictors
and beam strategies and thus do not provide any
optimality guarantee on the produced structures.
The present work follows the graph-based ap-
proach, but replaces dynamic programming with
a greedy algorithm and Lagrangian Relaxation.

The use of Lagrangian Relaxation to elaborate
sophisticated parsing models based on plain max-
imum spanning arborescence solutions originated
in (Koo et al., 2010) where this method was used
to parse with higher-order features. This technique
has been explored to parse CCG dependencies in
(Du et al., 2015) without a precise definition of
the class of trees. We can also draw connections
between our problem reduction procedure and the
use of Lagrangian Relaxation to speed up dynamic
programming and beam search with exact pruning
in (Rush et al., 2013).

In this work we rely on Non-Delayed Relax-
and-Cut for lazy constraint generation (Lucena,
2006). This can be linked to (Riedel, 2009) which
uses a cutting plane algorithm to solve MAP in-
ference in Markov Logic and (Riedel et al., 2012)
which uses column and row generation for higher-
order dependency parsing.

In NLP, the Branch-and-Bound framework
(Land and Doig, 1960) has previously been used
for dependency parsing with high order features
in (Qian and Liu, 2013), and Das et al. (2012)
combined Branch-and-Bound to Lagrangian Re-
laxation in order to retrieve integral solutions for
shallow semantic parsing.



3 Dependency Parsing

We model the dependency parsing problem using
a graph-based approach. Given a sentence s =
(80, .-, 8n) where sg is a dummy root symbol,
we consider the directed graph D = (V, A) with
V={0,...n)and A CV xV. Vertex i € V
corresponds to word s; and arc (i,j) € A models
a dependency from word s; to word s;. In the rest
of the paper, we denote V' \ {0} by V.

An arborescence is a set of arcs T inducing a
connected graph with no circuit such that every
vertex has at most one entering arc. The set of
vertices incident with any arc of 7" is denoted by
VIT). If V[T] = V, then T is a spanning arbores-
cence. Among the vertices of V[T, the one with
no entering arc is called the root of T. A vertex t
is reachable from a vertex s with respect to 7' if
there exists a path from s to ¢ using only arcs of T'.
The yield of a vertex v € V corresponds to the set
of vertices reachable from v with respect to 7.

It is well-known that there is a bijection be-
tween dependency trees for s and spanning ar-
borescences with root 0 (McDonald et al., 2005).
In what follows, the term dependency tree will re-
fer to both the dependency tree of s and its associ-
ated spanning arborescence of D with root 0.

In the dependency parsing problem, one has to
find a dependency tree with maximal score. Sev-
eral scores can be associated with each depen-
dency tree and different conditions can restrict the
set of valid dependency trees.

In this paper, we consider an arc-factored
model: each arc (¢,j) € A is assigned a score
wjj;; the score of a dependency tree is defined
as the sum of the scores of the arcs it con-
tains. This model can be computed in O(n?)
with Chu-Liu-Edmonds’ algorithm for Maximum
Spanning Arborescence (MSA) (McDonald et al.,
2005). Unfortunately, this algorithm forbids any
modification of the score function, for example
adding score contribution for combinations of arcs
(i.e. grand-parent or sibling models). Moreover,
adding score contribution for combinations of cou-
ple of arcs makes the problem NP-hard (McDon-
ald and Pereira, 2006), although several methods
have been developed to tackle this problem, for
instance dual decomposition (Koo et al., 2010).

Likewise, restrictions on the tree structure such
as the well-nestedness and bounded block degree
conditions are not permitted in the MSA algo-
rithm. We first give a precise definition of these
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Figure 1: (Left) A 2-BBD arborescence: the block degree of
vertex 1 is 2 (its yield is {1,4}) whereas the block degree
of all other vertices is 1. (Right) A not well-nested arbores-
cence: the yields of vertices 1 and 2 interleave.

structural properties, equivalent to (Bodirsky et al.,
2009), before we present a method to take them
into account. From now on, we suppose that in-
stances are equipped with a positive integer k£ and
we call valid dependency trees those satisfying the
k-bounded block degree and well-nestedness con-
ditions. A graph-theoretic definition of these two
conditions can be given as follows.

Block degree The block degree of a vertex set
W C V is the number of vertices of W without a
predecessor? inside 1. Given an arborescence T,
the block degree of a vertex is the block degree of
its yield and the block degree of T is the maximum
block degree of its incident vertices. An arbores-
cence satisfies the k-bounded block degree condi-
tion if its block degree is less than or equal to k.
We then say it is k-BBD for short. Figure 1 (left)
gives an example of a 2-BBD arborescence.

Well-nestedness Two disjoint subsets I1, [ C
VT interleave if there exist 4,5 € I and k,l €
I such that 7 < kK < j < l. An arborescence
is well-nested if it is not incident to two vertices
whose yields interleave. Figure 1 (right) shows an
arborescence which is not well-nested.

4 ILP Formulation

In this section we formulate the dependency pars-
ing problem described in Section 3 as an ILP. We
start with some notation and two theorems charac-
terizing k-BBD and well-nested dependency trees.

Given a subset W C V, the set of arcs en-
tering W is denoted by 6™ (WW) and the set of
arcs leaving W is denoted by §°"*(W). The set
S(W) = 6(W)Us°ut (W) is called the cut of W.
Given a positive integer I, let W= be the family
of vertex subsets of V' with block degree greater
than or equal to [. For instance, given any sen-
tence with more than 6 words, {1, 3,5,6} € W23,

3The predecessor of a vertex v € V is v — 1.



while {1,2,5,6} ¢ W=3. We also denote by Z
the family of couples of disjoint interleaving ver-
tex subsets of V. For instance, ({1,4},{2,3,5})
belongs to Z. Finally, given a vector z € R4 and
asubset B C A, z:(B) corresponds to ) . 5 Ta-

Theorem 1. A dependency tree T is not k-BBD iff
there exists a vertex subset W € W2kt whose
cut §(W') contains a unique arc of T.

Proof. By definition of block degree, a depen-
dency tree is not k-BBD iff it is incident with a
vertex whose yield W belongs to W2F+1 Tt is
equivalent to say that 7' contains a subarbores-
cence 1" such that V[1"] equals W. This holds
iff W has one entering arc (since 0 ¢ W) and no
leaving arc belonging to 7T'. O

Theorem 2. A dependency tree T is not well-
nested iff there exists (I1,I2) € 7 such that
0(In) NT and 6(I2) N'T are singletons.

Proof. (1) and §(I3) both intersect T only once
iff T contains two arborescences 77 and 75 such
that V[T1] = I; and V[I3] = I. This means
that T" is incident with two vertices whose yields
are I1 and I, respectively. Result follows from the
definition of 7 and well-nested arborescences. [

The dependency parsing problem can be formu-
lated as follows. A dependency tree will be repre-
sented by its incidence vector. Hence, we use vari-
ables z € R4 such that z, = 1 if arc a belongs to
the dependency tree and O otherwise.

max Z WaZa (1)
? acA

z(0™(v)) = YoeVt )

2(6™(W)) > 1 YW cvt 3)

VW e W @)
2(0(1)) +2(0(12)) =3 V(I1,I,) €T (5)
z€{0,1}" ©)

The objective function (1) maximizes the score of
the dependency tree. Inequalities (2) ensure that
all vertices but the root have one entering arc. In-
equalities (3) force the set of arcs associated with z
to induce a connected graph. Inequalities (2) and
(3), together with z > 0, give a linear descrip-
tion of the convex hull of the incidence vectors of
the spanning arborescences with root 0 — see e.g.,
(Schrijver, 2003). Inequalities (4) ensure that the
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dependency tree is k-BBD and inequalities (5) im-
pose well-nestedness. The validity of (4) and (5)
follows from Theorems 1 and 2, respectively.

Remark that (3) could be replaced by a polyno-
mial number of additional flow variables and con-
straints, see (Martins et al., 2009).*

5 Lagrangian Relaxation

Solving this ILP using an off-the-shelf solver is
ineffective due to the huge number of constraints.
We tackle this problem with Lagrangian Relax-
ation, which has become popular in the NLP com-
munity, see for instance (Rush and Collins, 2012).
Note that contrary to most previous work on La-
grangian Relaxation for NLP, we do not use it to
derive a decomposition method.

We note that optimizing objective (1) subject to
constraints (2), (3) and (6) amounts to finding a
MSA and can be solved combinatorially (McDon-
ald et al., 2005). Thus, since formulation (1)—(6)
is based only on arc variables, by relaxing con-
straints (4) and (5), one obtains a Lagrangian dual
objective which is nothing but a MSA problem
with reparameterized arc scores. Our Lagrangian
approach relies on a subgradient descent where a
MSA problem is solved at each iteration. We give
more details in the rest of the section.

5.1 Dual Problem

Let Z be the set of the incidence vectors of depen-
dency trees. Keeping tree shape constraints (2), (3)
and (6) while dualizing k-bounded block degree
constraints (4) and well-nestedness constraints (5),
we build the following Lagrangian (Lemaréchal,
2001):

L(z,u) = Z WaZq

a€A
+ > ul X (W) - 2)
Wewz=k
+ > up X (2(0(0) + 2(8(I)) — 3)
(I1,I2)eT

(7

“Based on this remark, we also developed a formulation
of this problem with a polynomial number of variables and
constraints. However it requires adding many more variables
than (Martins et al., 2009). This leads to a formulation which
is not tractable, see Section 7.2. Moreover, it cannot be tack-
led by our Lagrangian Relaxation approach.



with z € Z and u = (u1,u2) > 0 is a vector of
Lagrangian multipliers. We refactor to:

L(z,u) = Z Ouzq +

acA

®)

where 6 are modified scores and ¢ a constant term.

The dual objective is L*(u) max, L(z,u)
with z € Z. Note that computing L*(u) amounts
to solving the MSA problem with modified scores
0 and can be efficiently computed. The dual prob-
lem is min,>o L*(u). L* is a non-differentiable
convex piece-wise linear function and one can find
its minimum via subgradient descent. For any vec-
tor u, we use the following subgradient. Denote
Mz < b the set of constraints given by (4) and (5)
and z* = argmax, L(z,u). Let g = b — Mz*
be a subgradient at u, see (Lemaréchal, 2001) for
more details. From this subgradient, we compute
the descent direction following (Camerini et al.,
1975), which aggregates information during the it-
eration of the subgradient descent algorithm. Un-
fortunately, optimizing the dual is expensive with
so many relaxed constraints. We handle this prob-
lem in the next subsection.

5.2 Efficient Optimization with Many
Constraints

The Non Delayed Relax-and-Cut (NDRC) method
(Lucena, 2005) tackles the problem of optimiz-
ing a Lagrangian dual problem with exponentially
many relaxed constraints. In standard subgradient
descent, at each iteration p of the descent, the La-
grangian update can be formulated as:

uPtt = (uP — P x "), 9)
where s? > 0 is the stepsize’ and (), denotes
the projection onto R, which replaces each nega-
tive component by 0. If all Lagrangian multipliers
are initialized to 0, the compononent correspond-
ing to a constraint will not be changed until this
constraint is violated for the first time. Indeed, by
definition of g, we have [¢gP]; > 0 if constraint 4
is satisfied at iteration p: the projection on R* en-
sure that [uP*1]; stays at 0.° Thus we do not need
to know constraints that have not been violated yet
in order to correctly update the Lagrangian multi-
pliers: this is the main intuition behind the NDRC

5 As stated above, instead of the subgradient we follow an
improved descent direction which aggregates information of
previous iterations. However, this does not change the pro-
posal of this subsection.

®[x]; denotes the ith component of vector .
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method. However, s? may depend on the full sub-
gradient information. A common step size (Fisher,
1981) is:

L*(uP) — LBP

sP =af x
g

(10)

with oP a scalar and LBP the best known lower
bound. This is also the case with more recent ap-
proaches like AdaGrad (Duchi et al., 2011) and
AdaDelta (Zeiler, 2012). As reported in (Beasley,
1993; Lucena, 2006), when dealing with many re-
laxed constraints, the || g”||? term can result in each
Lagrangian update being almost equal to 0. There-
fore, a good practice is to modify the subgradient
such that if [¢P]; > 0 and [uP]; = 0, then we set
[¢P]; = 0O: this has the same effect on the multipli-
ers as the projection on R™ in (9), but it prevents
the stepsize from becoming too small. Hence, in-
stead of generating a full subgradient at each it-
eration, which is an expensive operation because
we would need to consider all multipliers associ-
ated with constraints, we process only a subpart,
namely the one associated with constraints that
have been violated.

Following (Lucena, 2005), at each iteration p of
the subgradient descent we define two sets: Cur-
rently Violated Active Constraints (CAP) and Pre-
viously Violated Active Constraints (PAP). CAP
and PAP are not necessarily disjoint. The subgra-
dient is computed only for constraints in CAP U
PAP. At each iteration p, we update PAP
PAP~1 J CAP~! and a violation detection step,
similar to the separation step in a cutting plane al-
gorithm, generates CAP. Two strategies are pos-
sible for the detection: (1) adding to CAP all the
constraints violated by the current dual solution;
(2) adding only a subset of them. The latter is jus-
tified by the fact that many constraints may over-
lap thus leading to exageration of modified scores
on some arcs. We found that strategy (2) gives bet-
ter convergence results.

Detection for violated block degree con-
straints (4) can be done with the algorithm de-
scribed in (M&hl, 2006) in O(n?). If no violated
block degree constraint is found, we search for
violated well-nestedness constraints (5) using the
O(n?) algorithm described in (Havelka, 2007).

5.3 Lagrangian Heuristic

We derive a heuristic from the Lagragian Relax-
ation. First, a dependency tree is computed with



the MSA algorithm. If it is valid, it then corre-
sponds to the optimal solution. Otherwise, we pro-
ceed as follows. The computation of the step size
in (10) in the subgradient descent needs a lower
bound which can be given by the score of any valid
dependency tree. In our experiments, we compute
the best projective spanning arborescence (Eisner,
2000). Each iteration of the subgradient descent
computes a spanning arborescence. Since violat-
ing (4) and (5) is penalized in the objective func-
tion, it tends to produce valid dependency trees.
The heuristic returns the highest scoring one.

6 Branch and Bound

Solving the Lagrangian dual problem may not al-
ways give an optimal solution to the original prob-
lem because of the potential duality gap. Still, we
always obtain an upper bound on the optimal so-
Iution and if a dual solution satisfies constraints
(4) and (9), its score with the original weights pro-
vides a lower bound.’

Moreover, the subgradient descent algorithm
theoretically converges but we have no guarantee
that this will happen in a realistic number of itera-
tions. Therefore, in order to retrieve an optimal
solution in all cases, we embed the Lagrangian
Relaxation of the problem within a Branch-and-
Bound procedure (Land and Doig, 1960).

The search space is recursively split according
to an arc variable, creating two subspaces, one
where it is fixed to 1 and the other to O (branching
step). The procedure returns a candidate solution
when all arc variables are fixed and constraints are
satisfied, and the optimal solution is the highest-
scoring candidate solution.

For each subspace, we estimate an upper bound
using the Lagrangian Relaxation (bounding step).
The recursive exploration of a subspace stops
(pruning step) if (1) we can prove that all candi-
date solutions it contains have a score lower than
the best found so far, or (2) we detect an unsastifi-
able constraint.

The branching strategy is built upon Lagrangian
multipliers: we branch on the variable z, with
highest value 6, — w,. Intuitively, if the branching
step sets z, = 1, it indicates that we add a hard
constraint on an arc which has been strongly pro-
moted by Lagrangian Relaxation. This strategy,
compared to other variants, gave the best parsing

"Because relaxed constraints are inequalities, constraint
satisfaction does not guarantee optimality (Beasley, 1993).
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time on development data.

6.1 Problem Reduction

The efficiency of the Branch-and-Bound proce-
dure crucially depends on the number of free vari-
ables. To prune the search space, we rely on prob-
lem reduction (Beasley, 1993), once again based
on duality and Lagrangian Relaxation, which pro-
vides certificates on optimal variable settings.

We fix a variable to 1 (resp. 0), and compute an
upper bound on the optimal score with this new
constraint. If it is lower than the score of the
best solution found so far without this constraint,
we can guarantee that this variable cannot (resp.
must) be in the optimal solution and safely set it
to 0 (resp. 1).

Problem reduction is performed at each node
of the Branch-and-Bound tree after computing the
upper bound with subgradient descent.

6.2 Fixing Variables to 1

Since a node in V' must have exactly one parent,
fixing z;; = 1 for an arc a = (¢, j) greatly reduces
the problem size, as it will also fix z,; = 0,Vh #
Among all arc variables that can be set to 1,
promising candidates are the arcs in a solution of
the unconstrained MSA and the arcs obtained in a
solution after the subgradient descent.

There are exactly n such arcs in each set of can-
didates, so we test fixation for less than 2n vari-
ables. In this case, we are ready to pay the price of
a quadratic computation for each of these arcs.

Hence, for each candidate arc we obtain an up-
per bound by seeking the (unconstrained) MSA on
the graph where this arc is removed. If this upper
bound is lower than the score of the best solution
found so far, we can safely say that this arc is in
the optimal solution.

1.

6.3 Fixing Variables to 0

We could apply the same strategy for fixing vari-
ables to 0. However, this reduction is less reward-
ing and there are many more variables set to O than
1 in a MSA solution. Instead, we solve an easier
problem, at the expense of a looser upper bound.
For each arc a which is not in the MSA, we
compute a maximum directed graph that contains
this arc and where all nodes but the root have one
parent. Remark that if this graph is connected then
it corresponds to a dependency tree. Therefore,
the score of this directed graph provides an upper
bound on a solution containing arc a. If this upper



bound is lower than the score of the best solution
found so far, we can fix the variable z, to 0.

Note that this whole fixing procedure can be
done in O(n?).

7 Experiments

We ran a series of experiments to test our method
in the case of unlabelled dependency parsing. Our
prototype has been developped in Python with
some parts in Cython and C++. We use the MSA
implementation available in the LEMON library.?

7.1 Datasets

We ran experiments on 5 different corpora:

English: Dependencies were extracted from the
WSJ part of the Penn Treebank (PTB) with addi-
tional NP bracketings (Vadas and Curran, 2007)
with the LTH converter® (default options). Sec-
tions 02-21 are used for training, 22 for devel-
opment and 23 for testing. POS tags were pre-
dicted by the Stanford tagger'® trained with 10-
jackkniffing.!!

German: We used dependencies from the
SPMRL dataset (Seddah et al., 2014), with pre-
dicted POS tags and the official split. We removed
sentences of length greater than 100 in the test set.

Dutch, Spanish and Portuguese: We used
the Universal Dependency Treebank 1.2 (Van der
Beek et al., 2002; McDonald et al., 2013; Afonso
et al., 2002) with gold POS tags and the official
split. We removed sentences of length greater than
100 in the test sets.

Those datasets contain different structure dis-
tributions as shown in Table 1. Fortunately, our
method allows us to easily change the bounded de-
gree constraint or toggle the well-nestedness one.
For each language, we decided to use the most
constrained combination of bounded block degree
constraints and well-nestedness which covers over
99% of the data. Therefore, we chose to enforce
2-BBD and well-nestedness for English and Span-
ish, 3-BBD and well-nestedness for Dutch and
Portuguese and 3-BBD only for German.

7.2 Decoding

In order to compare our methods with previous
approaches, we tested five decoding strategies.

8https ://lemon.cs.elte.hu/trac/lemon
http://nlp.cs.lth.se/software/treebank_converter/
http://nlp.stanford.edu/software/tagger.shtml
Uprediction precision: 97.40%
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(MS2) computes the best unconstrained depen-
dency tree. (Eisner) computes the best projec-
tive tree. (LR) and (B&B) are the heuristic and the
exact method presented in Sections 5.3 and 6 re-
spectively.!? Finally (MSA/Eisner) consists in
running the MSA algorithm and, if the solution is
invalid, returning the (Eisner) solution instead.
Our attempt to run the dynamic programming
algorithm of (Gémez-Rodriguez et al., 2009) was
unsuccessful. Even with heavy pruning we were
not able to run it on sentences above 20 words.
We also tried to use CPLEX on a compact ILP
formulation based on multi-commodity flows (see
footnote 4). Parsing time was also prohibitive: a
total of 3473 seconds on English data without the
well-nestedness constraint, 7298 for German.

We discuss the efficiency of our methods on
data for English and German. Other languages
give similar results. Optimality rate after the sub-
gradient descent are reported in Figure 2. We see
that Lagrangian Relaxation often returns optimal
solutions but fails to give a certificate of their op-
timality. Table 2 shows parsing times. We see that
(LR) and (B&B), while slower than (MSA), are fast
in the majority of cases, below the third quartile.
Inevitably, there are some rare cases where a large
portion of the search space is explored, and thus
their parsing time is high. Let us remark that these
algorithms are run only when (MSA2) returns an in-
valid structure, and so total time is very acceptable
compared to the baseline.

Finally, we stress the importance of problem re-
duction as a pre-processing step in B&B: after sub-
gradient descent is performed, it removes an aver-
age of 83.97% (resp. 76.59%) of arc variables in
the English test set (resp. German test set).

7.3 Training

Feature weights are trained using the averaged
structured perceptron (Collins, 2002) with 10 iter-
ations where the best iteration is selected on the
development set. We used the same feature set
as in TurboParser (Martins et al., 2010), including
features for lemma. For German, we additionally
use morpho-syntactic features.

The decoding algorithm used at training time
is the MSA. We experimented with Branch-and-
Bound and Lagrangian Relaxation decoding dur-

2In both methods, the subgradient descent is stopped af-
ter a fixed maximum number of iterations. We chose 100 for

English and 200 for other languages after tuning on the de-
velopment set.



English German Dutch Spanish Portuguese
WN IL WN IL ‘ WN IL WN IL ‘ WN IL
Block degree 1 92.26 - | 67.60 - | 69.13 - | 93.95 - | 81.56 0.05
Block degree 2 758 0.12 | 27.12 0.79 | 28.50 0.08 599 0.04 | 13.92 0.02
Block degree 3 0.12  0.01 3.86 0.30 224 0.01 0.02 - 3.76 -
Block degree 4 - - 0.19 <0.01 0.04 - - - 0.54 -
Block degree > 4 - - 0.11 <0.01 - - - - 0.14 -
Table 1: Distribution of dependency tree characteristics in datasets.
English (96 sentences) | German (59 sentences) 1 _
MSA LR B&B | MSA LR B&B 0.99 > .
Mean 0.02 0.26 053 | 0.04 0.51 0.71 098 -~~~ Tt TT T
Std. 0.01 0.20 086 | 0.02 041 1.39 0.97 ;/yf |
Med. 0.02 0.21 0.27 | 0.03 0.47 0.47 :
3rd 003 034 053|005 071 0.80 0.96 w w w =
Total 1.81 25.09 5052 | 2.18 30.19 42.20 50 100 150 200

Table 2: Timings for strategies (see Section 7.2) on test for solu-
tions which do not satisfy constraints after running MSA. We give
(in seconds) average time, standard deviation, median time, time

to parse up to the 3rd quartile and total time.

ing training. It did not significantly improve accu-
racy and made training and decoding slower.

7.4 Parsing Results

Table 3 shows attachment score (UAS), percent-
age of valid dependency trees and relative time to
(MsA) for different systems for our five decoding
strategies. We can see (B&B) is on a par with (LR)
on some corpora and more accurate on the others.
The former takes more time, and the improvement
is correlated with time difference for all corpora
but the PTB. Dividing the five corpora in three
cases, we can see that:

1. For English and Spanish, where projective
dependency trees represent more than 90%
of the data, (Eisner) outperforms (MSA).
Our methods lie between the two. Here it
is better to search for projective trees and
(LR) and (B&B) are not interesting in terms
of UAS. This is confirmed by the results of
(MSA/Eisner).

. For German and Dutch, where projective
dependency trees represent less than 70%
of the data, (MSA) outperforms (Eisner).
For German, where well-nestedness is not
required, our methods are as accurate as
(MSA)'3, while for Dutch our methods seem
to be useful, as (B&B) outperforms all sys-

BFor German, we notice a small regression which we at-
tribute to the representation of enumerations in the corpus:
for enumerations of k elements, k-bounded block-degree
subtrees must be generated.
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Figure 2: Optimality rate (y-axis) vs number of sub-
gradient iterations (x-axis) for English (thin blue)
and German (thick red). Solid line is the optimal
rate with certificate, dashed is without.

tems. Moreover, our two methods guarantee
validity.

For Portuguese, where projective dependency
trees represent around 80% of the data, (MS2)
is as accurate as (Eisner). In this case we
see that, while our heuristic is below, the ex-
act method is more accurate. This seems to
be an edge case where neither unconstrained
nor projective dependency trees seem to ad-
equately capture the solution space. We also
see that it is harder for our methods to give
solutions (longer computation times, which
tend to indicate that LR cannot guarantee op-
timality). Our methods are best fitted for this
case.

In order to see how much well-nested and
bounded block-degree structures are missed by
a state-of-the-art parser, we compare our results
with TurboParser.!* We run the parser with
three different feature sets: arc-factored, standard
(second-order features), and full (third-order fea-
tures). The results are shown in Table 4. Our
model, by enforcing strict compliance to structural
rules (100% wvalid dependency trees), is closer
to the empirical distribution than TurboParser in
arc-factored mode on all languages but German.
Higher-order scoring functions manage to get
more similar to the treebank data than our strict
thresholds for all languages but Portuguese, at the
expense of a significative computational burden.

“We used 2.1.0 and all defaults but the feature set.



MSA | Eisner LR B&B | MSA/Eisner
UAS 89.45 89.82 89.54 | 89.53 89.60
English 2-BBD/WN 96.02 - - - -
Relative Time 1 2.5 1.8 2.5 1.2
UAS 87.79 86.97 87.78 | 87.78 87.46
German 3-BBD 98.81 - - - -
Relative Time 1 2.1 1.5 1.7 1.3
UAS 77.30 76.62 76.96 | 77.40 76.79
Dutch 3-BBD/WN 94.82 - - - -
Relative Time 1 1.5 1.7 5 1.3
UAS 83.37 83.56 83.37 | 83.44 83.48
Spanish 2-BBD/WN 92.62 - - - -
Relative Time 1 2.8 2.7 3 1.5
UAS 83.13 83.14 82.99 | 83.21 82.90
Portuguese 3-BBD/WN 87.84 - - - -
Relative Time 1 2.7 5.7 19.7 1.7

Table 3: UAS, percentage of valid structure and decoding time for test data. Time is relative to MSA decoding. The percentage

of valid structure is always 100% except for MSA decoding.

English (99.84) German (99.27) Dutch (99.87) Spanish (99.94) Portuguese (99.24)
Order \ UAS VDT RT ‘ UAS VDT RT ‘ UAS VDT RT ‘ UAS VDT RT ‘ UAS VDT RT
Ist 89.29  94.87 1 87.97 98.74 1 76.10  93.26 1 83.11 9343 1 83.53  94.79 1
2nd 92.04  99.75 16 | 89.83  99.28 16 | 79.05 97.93 18 86.61  98.54 10 | 8735  98.96 15
3rd 9237 99.75 34 | 9035 99.24 36 | 79.68 9741 37 87.31 99.64 18 | 83.09 98.98 32

Table 4: UAS, percentage of valid dependency trees (VDT) and relative time (RT) obtained by Turboparser for different score
functions on test sets. For each language we give the percentage of valid dependency structures in the data, according to the

constraints postulated in Section 7.1.

We interpret this fact as an indication that
adding higher order features into our system
would make the relaxation method converge more
often and faster.

8 Conclusion

We presented a novel characterization of depen-
dency trees complying with two structural rules:
bounded block degree and well-nestedness from
which we derived two methods for arc-factored
dependency parsing. The first one is a heuris-
tic which relies on Lagrangian Relaxation and
the Chu-Liu-Edmonds efficient maximum span-
ning arborescence algorithm. The second one
is an exact Branch-and-Bound procedure where
bounds are provided by Lagrangian Relaxation.
We showed experimentally that these methods
give results comparable with state-of-the-art arc-
factored parsers, while enforcing constraints in all
cases.

In this paper we focused on arc-factor models,
but our method could be extended to higher order
models, following the dual decomposition method
presented in (Koo et al., 2010) in which the
maximum-weight spanning arborescence compo-
nent would be replaced by our constrained model.

Our method opens new perspectives for LTAG
parsing, in particular using decomposition tech-
niques where dependencies and templates are pre-

dicted separately. Moreover, while well-nested
dependencies with 2-bounded block degree can
represent LTAG derivations, toggling the well-
nestedness or setting the block degree bound al-
lows to express the whole range of derivations in
lexicalized LCFRS, whether well-nested or with a
bounded fan-out. Our algorithm can exactly repre-
sent these settings with a comparable complexity.
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Abstract

We present a new method for the joint
task of tagging and non-projective depen-
dency parsing. We demonstrate its use-
fulness with an application to discontinu-
ous phrase-structure parsing where decod-
ing lexicalized spines and syntactic deriva-
tions is performed jointly. The main con-
tributions of this paper are (1) a reduction
from joint tagging and non-projective de-
pendency parsing to the Generalized Max-
imum Spanning Arborescence problem,
and (2) a novel decoding algorithm for
this problem through Lagrangian relax-
ation. We evaluate this model and obtain
state-of-the-art results despite strong inde-
pendence assumptions.

1 Introduction

Discontinuous phrase-structure parsing relies ei-
ther on formal grammars such as LCFRS, which
suffer from a high complexity, or on reductions to
non-projective dependency parsing with complex
labels to encode phrase combinations. We pro-
pose an alternative approach based on a variant of
spinal TAGs, which allows parses with disconti-
nuity while grounding this work on a lexicalized
phrase-structure grammar. Contrarily to previous
approaches, (Hall and Nivre, 2008; Versley, 2014;
Fernandez-Gonzalez and Martins, 2015), we do
not model supertagging nor spine interactions with
a complex label scheme. We follow Carreras et al.
(2008) but drop projectivity.

We first show that our discontinuous variant
of spinal TAG reduces to the Generalized Max-
imum Spanning Arborescence (GMSA) problem
(Myung et al., 1995). In a graph where vertices
are partitioned into clusters, GMSA consists in
finding the arborescence of maximum weight in-

cident to exactly one vertex per cluster. This prob-
lem is NP-complete even for arc-factored models.
In order to bypass complexity, we resort to La-
grangian relaxation and propose an efficient res-
olution based on dual decomposition which com-
bines a simple non-projective dependency parser
on a contracted graph and a local search on each
cluster to find a global consensus.

We evaluated our model on the discontinuous
PTB (Evang and Kallmeyer, 2011) and the Tiger
(Brants et al., 2004) corpora. Moreover, we show
that our algorithm is able to quickly parse the
whole test sets.

Section 2 presents the parsing problem. Sec-
tion 3 introduces GMSA from which we derive an
effective resolution method in Section 4. In Sec-
tion 5 we define a parameterization of the parser
which uses neural networks to model local prob-
abilities and present experimental results in Sec-
tion 6. We discuss related work in Section 7.

2 Joint Supertagging and Spine Parsing

In this section we introduce our problem and set
notation. The goal of phrase-structure parsing
is to produce a derived tree by means of a se-
quence of operations called a derivation. For in-
stance in context-free grammars the derived tree
is built from a sequence of substitutions of a non-
terminal symbol with a string of symbols, whereas
in tree adjoining grammars (TAGs) a derivation is
a sequence of substitutions and adjunctions over
elementary trees. We are especially interested
in building discontinuous phrase-structure trees
which may contain constituents with gaps.!

We follow Shen (2006) and build derived trees
from adjunctions performed on spines. Spines are
lexicalized unary trees where each level represents

! Although we will borrow concepts from TAGs, we do not

require derivations to be TAG compatible (i.e. well-nested
dependencies with a bounded number of gaps).
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What 4 1 said should I do ?

Figure 1: A derivation with spines and adjunc-
tions (dashed arrows). The induced dependency
tree is non-projective. Each color corresponds to a
spine. We omit punctuation to simplify figures.

a lexical projection of the anchor. Carreras et al.
(2008) showed how spine-based parsing could be
reduced to dependency parsing: since spines are
attached to words, equivalent derivations can be
represented as a dependency tree where arcs are la-
beled by spine operations, an adjunction together
with information about the adjunction site. How-
ever, we depart from previous approaches (Shen
and Joshi, 2008; Carreras et al., 2008) by relaxing
the projectivity constraint to represent all discon-
tinuous phrase-structure trees (see Figure 1).

We assume a finite set of spines S. A spine s
can be defined as a sequence of grammatical cat-
egories, beginning at root. For a sentence w =
(wg, w1, . . ., wy) Where wy, is the word at position
k and wq is a dummy root symbol, a derivation
is a triplet (d,s,1) defined as follows. Adjunc-
tions are described by a dependency tree rooted at
0 written as a sequence of arcs d. If (h,m) € d
with h € {0,...,n} and m € {1,...,n}, then
the derivation contains an adjunction of the root of
the spine at position m to a node from the spine
at position h. Supertagging, the assignment of a
spine to each word, is represented by a sequence
s = (80,51,-,8,) of n + 1 spines, each spine
si being assigned to word wy. Finally, labeling
1=(l,...,1,) is a sequence where I, is the label
of the k™ arc (h, m) of d. The label consists of a
couple (op, ) where op is the type of adjunction,
here sister or regular’, and i is the index of the
adjunction node in sy,.

Each derivation is assigned an arc-factored
score o which is given by:

o(d,s,w) = Z Q(h,m, Shy Sy lhm; W)
(h,m)ed

For instance, following score functions de-

2The distinction is not crucial for the exposition. We refer
readers to (Shen and Joshi, 2008; Carreras et al., 2008).

veloped in (Carreras et al., 2008), this func-
tion could read sp[i], sp[é + 1] and s,,[0], where
s[i] denotes the i-th grammatical category of the
spine s. The score of the derivation in Fig-
ure 1 could then reflect that the spine WHNP-WP
associated with What is adjoined on the spine
SBARQ-SQ-VP-VB associated with do on a site
with the grammatical triple [VP WHNP VB].

We assume that €2 accounts for the contribution
of arcs, spines and labels to the score. The de-
tails of the contribution depend on the model. We
choose the following:

o(d,s, L;w) = Z (a(h,m;w)

(h,m)ed
+v(8m; by m, w)

+7(lhma h7 m, Sh, W))

where « is the score related to the dependency
tree, v is the supertagging score and v the label-
ing score. Note that functions «, v and v have
access to the entire input string w. Score func-
tion o can be parameterized in many ways and
we discuss our implementation in Section 5. In
this setting, parsing a sentence w amounts to find-
ing the highest-scoring derivation (d*,s*,1*) =
arg maxqg ) o(d, s,y w).

Recovering the derived tree from a derivation is
performed by recursively mapping each spine and
its dependencies to a possibly gappy constituent.
Given a spine s;, and site index 4, we look for
the leftmost s; and rightmost s, dependents at-
tached with regular adjunction. If any, we insert
a new node between s[i] and s,[i + 1] with the
same grammatical category as the first one. This
new node fills the role of the foot node in TAGs.
Every dependent of sp,[i] with anchor in interval
[l + 1,7 — 1] is moved to the newly created node.
Remaining sister and regular adjunctions are sim-
ply attached to sp|[é].

The complexity of the parsing problem depends
on the type of dependency trees. In the case of
projective trees, it has been shown (Eisner, 2000;
Carreras et al., 2008; Li et al., 2011) that this could
be performed in cubic worst-case time complex-
ity with dynamic programming, whether supertags
are fixed beforehand or not. However, the mod-
ification of the original Eisner algorithm requires
that chart cells must be indexed not only by spans,
or pairs of positions, but also by pairs of supertags.
In practice the problem is intractable unless heavy
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pruning is performed first in order to select a sub-
set of spines at each position.

In the case of non-projective dependency trees,
the problem has quadratic worst-case time com-
plexity when supertags are fixed, since the prob-
lem then amounts to non-projective parsing and
reduces to the Maximum Spanning Arborescence
problem (MSA) as in (McDonald et al., 2005).
Unfortunately, the efficient algorithm for MSA is
greedy and does not sfore potential substructure
candidates. Hence, when supertags are not fixed
beforehand, a new arborescence must be recom-
puted for each choice of supertags. This problem
can be seen as instance of the Generalized Max-
imum Spanning Arborescence problem, an NP-
complete problem, which we review in the next
section. Note that arc labels do not impact the
asymptotic complexity of an arc-factored model.
Indeed, only the labeled arc with maximum weight
between two vertices is considered when parsing.

3 The Generalized Maximum Spanning
Arborescence

In this section, we first define GMSA introduced
by Myung et al. (1995). We formulate this prob-
lem as an integer linear program. We then ex-
plain the reduction from the joint supertagging and
spine parsing task to this problem.>

3.1 Problem definition

Let D = (V, A) be a directed graph. Given a sub-
set T' C A of arcs, V[T denotes the set of ver-
tices of V which are the tail or the head of at least
one arc of T'. These vertices are said to be cov-
ered by T. A subset T C A of arcs is called an
arborescence if the graph (V[T],T) is connected,
acyclic and each vertex has at most one entering
arc. The vertex with no entering arc is called the
root of T'. An arborescence covering all vertices is
called a spanning arborescence.

Let 7 = {Vp,...,V,}, n € N be a partition
of V. Each element of 7 is called a cluster. An
arborescence 1" of D covering exactly one vertex
per cluster of 7 is called a generalized spanning
arborescence (GSA). Figure 2 gives an example
of a GSA. The partition of V' is composed of a
cluster having one vertex and six clusters having
four vertices. Each cluster is depicted by a hatched
area. The GSA is depicted by the dashed arcs.

3A similar reduction can be obtained in the reverse direc-
tion, thus proving the NP-completeness of our problem.

Let W be a vertex subset of V. We denote
6~ (W) (resp. 6T (W)) the set of arcs entering
(resp. leaving) W and §(W) = 6= (W)ust(W).4
Contracting W consists in replacing in D all ver-
tices in W by a new vertex w, replacing each
arc wv € 6 (W) by the arc ww and each arc
vu € 6T (W) by wu. Let D™ be the graph ob-
tained by contracting each cluster of 7 in D. Note
that a GSA of D and 7 induces a spanning arbores-
cence of D™, For instance, contracting each clus-
ter in the graph given by Figure 2 leads to a graph
D™ having 7 vertices and the set of dashed arcs
corresponds to a spanning arborescence of D™.

Given arc weights ¢ € R4, the weight of an ar-
borescence 1" is ), .r ¢a. Given (D, m,¢), the
Generalized Maximum Spanning Arborescence
problem (GMSA) consists in finding a GSA of D
and 7 of maximum weight whose root is in Vj.

3.2 Integer linear program

Given a set S, z € RS is a vector indexed by ele-
ments in S. For $" C S, 2(5") = > s 2.

A GSA T C A is represented by variables x €
{0,1}V and y € {0, 1} such that 2, (resp. y,) is
equal to 1 iff v € V[T (resp. a € T)).

Since a GSA of D and 7 induces a spanning
arborescence of D™, the arc-incidence vector y €
{0,1}4 of a GSA with root in Vj satisfies the fol-
lowing, adapted from MSA (Schrijver, 2003):

y(0~ (Vo)) =0 (1)

y(6~ (Vi) =1 V1<k<n, 2

9(5_(VU Vi) >1 Vo' Ca\{Vo}. )
LET!

Let ) denote all the arc-incidence vectors on D

corresponding to a spanning arborescence in D™
whose root is the contraction of Vj. Then,

Y = {y € {0,1}|y satisfies (1)-(3)}.

GMSA can be formulated with the following in-
teger linear program:

max ¢ -y 4)
Ty

st. ye)y 5)

Ty > Ya Yo € Via€d(v), (6)

2o(Vi) =1 YO<k<n, )

x, €{0,1} YveV. (8)

*By an abuse of notation, we identify any singleton {v}
with its element v.

>The converse does not hold: an arc subset of A corre-
sponding to a spanning arborescence of D" may not be a
GSA of D and 7 since it may not induce a connected graph.
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Let W and T be the vertex and arc sets given by
Ty = 1 and y, = 1 respectively. Since 7T is a
spanning arborescence of D™ by (5), (V[T],T) is
an acyclic directed graph with n arcs such that Vj
has no entering arc and V;, i € {1,...,n}, has
one entering arc. By constraints (7), W contains
one vertex per cluster of . Moreover, by inequal-
ities (6), V[T'] € W. Since |[W| = n + 1 and
|T| =n, W = V[T] and (V[T],T) is connected,
so it is a GSA. Because its root is in Vj by (5), it
is an optimal solution for GMSA by (4).

3.3 Reduction from joint parsing to GMSA

Given an instance of the joint parsing problem, we
construct an instance of GMSA as follows. With
every spine s of every word wy, different from wy,
we associate a vertex v. For k = 1,...,n, we
denote by V. the set of vertices associated with
the spines of wy. We associate with wqg a set Vj
containing only one vertex and V{ will now refer
both the cluster and the vertex it contains depend-
ing on the context. Let # = {Vp,...,V,} and
V = Up_,Vk. For every couple u, v of vertices
such thatw € Vi and v € V,,,, h # m and m # 0,
we associate an arc uv corresponding to the best
adjunction of the root of spine s,,, associated with
v of V,,, to spine s, associated with vertex u of Vj,.
The weight of this arc is given by

duy = a(h,m; w) + v(spm; h, m, w)

+ nlriax Y by M, S, W)
which is the score of the best adjunction of s, to
sp. This ends the construction of (D, 7, ¢).

There is a 1-to-1 correspondence between the
solutions to GMSA and those to the joint supertag-
ging and spine parsing task in which each adjunc-
tion is performed with the label maximizing the
score of the adjunction. Indeed, the vertices cov-
ered by a GSA T with root Vj correspond to the
spines on which the derivation is performed. By
definition of GSAs, one spine per word is chosen.
Each arc of T corresponds to an adjunction. The
score of the arborescence is the sum of the scores
of the selected spines plus the sum of the scores of
the best adjunctions with respect to 7'. Hence, one
can solve GMSA to perform joint parsing.

As an illustration, the GSA depicted in Figure 2
represents the derivation tree of Figure 1: the ver-
tices of V' \ Vj covered by the GSA are those as-
sociated with the spines of Figure 1 and the arcs
represent the different adjunctions. For instance

e~ e Lce a7 o« Ix
Vo e P -
(ROOT) & - . “«-"" o s

d
o . . . & o
. . . . . .
Wi Va V3 Vi Vs Vs
(What) [€)) (said) (should) 1) (do)

Figure 2: The generalized spanning arborescence
inducing the derivation tree in Figure 1.

the arc from V3 to V5 represents the adjunction of
spine NP-PRP to spine S—VP-VB at index 0.

4 Efficient Decoding

Lagrangian relaxation has been successfully ap-
plied to various NLP tasks (Koo et al., 2010;
Le Roux et al., 2013; Almeida and Martins, 2013;
Das et al., 2012; Corro et al., 2016). Intuitively,
given an integer linear program, it consists in re-
laxing some linear constraints which make the
program difficult to solve and penalizing their vi-
olation in the objective function.

We propose a new decoding method for GMSA
based on dual decomposition, a special flavor of
Lagrangian relaxation where the problem is de-
composed in several independent subproblems.

4.1 Dual decomposition

To perform the dual decomposition, we first refor-
mulate the integer linear program (4)-(8) before
relaxing linear constraints. For this purpose, we
replace the variables y by three copies {y'} =
{°,y", y%}, v € {0,1}4. We also consider vari-
ables z € R4, Let ¢°, ¢' and ¢ be arc weight
vectors such that ), @' = $.° GMSA can then be
reformulated as:

max -y 9)
z,{y'},2 ; Y
st. ey (10)

Ty > ys Yo e V,ae€d (v), (11)
Ty > Y2 Yo € V,a€dt(v), (12)
2,(Vg) =1 YO<k<n, (13)
z, €{0,1} Yw eV, (14)
z=1 Vi. (15)

®In our implementation, we choose ¢° = ¢! = ¢* = %qﬁ.
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Note that variables z only appear in equa-
tions (15). Their goal is to ensure equality be-
tween copies 4/°, ' and 2. Variables 2 are usually
called witness variables (Komodakis et al., 2007).
Equality between 3°, 4! and y? implies that (10)-
(12) are equivalent to (5) and (6).

We now relax constraints (15) and build the dual
objective (Lemaréchal, 2001) £*({\¢}):

oyt > N (z—y)

i i€{0,1,2}
st (10) — (14)

max
z,{y'},z

where {\'} = {A0, AL A2 N € RA fori =
0,1,2, is the set of Lagrangian multipliers. The
dual problem is then:

min £*({\*
iy £°((\')

Note that, as there is no constraint on z, if ZZ Al #*
0 then £*({\*}) = +oc. Therefore, we can re-
strict the domain of {\'} in the dual problem to
the set A = {{\"}| >_, A" = 0}. This implies that
z may be removed in the dual objective. This latter
can be rewritten as:

E* )\z _ x YA |
() = max 375

s.t. (10) — (14)
where ¢' = ¢' — X fori = 0,1, 2.

4.2 Computing the dual objective

Given {\'} € A, computing the dual objective
L*({\*}) can be done by solving the two follow-
ing distinct subproblems:

PU() —max g0 - 0
Y
s.t. yo cy
Py(¢',¢?) = max ¢! -y + ¢2 -y
z,yl,y>
st (1) —(14)

yie{0,1} VaecAi=1,2.

Subproblem P; can be solved by simply running
the MSA algorithm on the contracted graph D™.
Subproblem P can be solved in a combinato-
rial way. Indeed, observe that each value of y1
and g is only constrained by a single value of x.
The problem amounts to selecting for each cluster

a vertex as well as all the arcs with positive weight
covering it. More precisely, for each vertex v € V,
compute the local weight c, defined by:

Z max{0, ¢!} + Z max{0, ¢2}.

a€d—(v) a€dt(v)

Let V™ be the set of vertices defined as fol-
lows. For k = 0,...,n, add in V™2 the ver-
tex v € Vj with the maximum weight c,. Let A!
and A2 be the sets of arcs such that A! (resp. A?)
contains all the arcs with positive weights entering
(resp. leaving) a vertex of V™2%_ The vectors x, y'
and 32 corresponding respectively to the incidence
vectors of V™2 Al and A2 form an optimal so-
lution to Ps.

Hence, both supbroblems can be be solved with
a O(|n|?) time complexity, that is quadratic w.r.t.
the length of the input sentence.’

4.3 Decoding algorithm

Our algorithm seeks for a solution to GMSA by
solving the dual problem since its solution is opti-
mal to GMSA whenever it is a GSA. If not, a so-
lution is constructed by returning the highest GSA
on the spines computed during the resolution of
the dual problem.

We solve the dual problem using a projected
subgradient descent which consists in iteratively
updating {\*} in order to reduce the distance to the
optimal assignment. Let {\%!} denotes the value
of {\'} atiteration t. {\**} is initially set to 0. At
each iteration, the value of {\***1} is computed
from the value of {\%!} thanks to a subgradient of
the dual objective. More precisely, we have

{/\i,t+1} — {)\i,t} _ 77t % Vﬁ*({)\z’t})}

where VL*({\"'}) is a subgradient of £*({\"'})
and ' € R is the stepsize at iteration t. We use
the projected subgradient from Komodakis et al.
(2007). Hence, at iteration ¢, we must solve repa-
rameterized subproblems P; and P to obtain the
current solution (z¢, g%, g, 4%) of the dual ob-
jective. Then each multiplier is updated following

2

. . . TS
NG it _ ot s | it Y
Ui Y E 3

§=0
Note that for any value of {\¢}, £*({\}) gives
an upper bound for GMSA. So, whenever the

"In the general case, the time complexity is O(|V|?). But
in our problem, the number of vertices per cluster is bounded
by the grammar size: O(|V|?) = O(|S7|?) = O(|=|?).

1648



optimal solution z', {77!} to the dual objective
L*({\#'1) at iteration ¢ is a primal feasible solu-
tion, that is g/ = gt = >, it is an optimal
solution to GMSA and the algorithm ends. Other-
wise, we construct a pipeline solution by perform-
ing a MSA on the vertices given by z°.

If after a fixed number of iterations we have not
found an optimal solution to GMSA, we return the
pipeline solution with maximum weight.

4.4 Lagrangian enhancement

The previsouly defined Lagrangian dual is valid
but may lead to slow convergence. Thus, we
propose three additional techniques which empir-
ically improve the decoding time and the conver-
gence rate: constraint tightening, arc reweighing
and problem reduction.

Constraint tightening: In subproblem P, we
consider a vertex and all of its adjacent arcs of pos-
itive weight. However, we know that our optimal
solution must satisfy tree-shape constraints (5).
Thus, every cluster except the root must have ex-
actly one incoming arc and there is at most one arc
between two clusters. Both constraints are added
to P, without hurting its time complexity.

Reweighing: By modifying weights such that
less incoming arcs have a positive weight, the so-
lution of P, tends to be an arborescence. For each
cluster Vi, € 7\ W, let flk be the set of incoming
arcs with the highest weight ¢§k Then, let ~; be
a value such that ¢, — . is positive only for arcs
in Ak. Subtracting v, from the weight ¢, of each
arc of 6~ (V};) and adding ~y, to the objective score
does not modify the weight of the solution because
only one entering arc per cluster is selected.

Problem reduction: We use the pipeline solu-
tions computed at each iteration to set the value of
some variables. Let Z, {#'} be the optimal solu-
tion of £*({\*}) computed at any iteration of the
subgradient algorithm. For & = 1,... n, let v
be the vertex of V such that xy; = 1. Using the
local weights (Section 4.2), for all v € Vi \ {v},
L*({\*})+c, —cp is an upper bound on the weight
of any solution (x,y) to GMSA with z, = 1.
Hence, if it is lower than the weight of the best
pipeline solution found so far, we can guarantee
that z,, = 0 in any optimal solution. We can check
the whole graph in linear time if we keep local
weights ¢ in memory.

5 Neural Parameterization

We present a probabilistic model for our frame-
work. We implement our probability distributions
with neural networks, more specifically we build
a neural architecture on top of bidirectional recur-
rent networks that compute context sensitive rep-
resentations of words. At each step, the recurrent
architecture is given as input a concatenation of
word and part-of-speech embeddings. We refer the
reader to (Kiperwasser and Goldberg, 2016; Dozat
and Manning) for further explanations about bidi-
rectional LSTMs (Hochreiter and Schmidhuber,
1997). In the rest of this section, b,,, denotes the
context sensitive representation of word wy,,.

We now describe the neural network models
used to learn and assign weight functions «, v and
~ under a probabilistic model. Given a sentence
w of length n, we assume a derivation (d,s,1)
is generated by three distinct tasks. By chain
rule, P(d,s,ljlw) = P,(d|w) x P,(s|d,w) X
P,(1/d,s,w). We follow a common approach in
dependency parsing and assign labels 1 in a post-
processing step, although our model is able to in-
corporate label scores directly. Thus, we are left
with jointly decoding a dependency structure and
assigning a sequence of spines. We note s; the i
spine:®

P,(d|w) x P,(s|d,w)

= [] Pa(hlm,w) x Py(sm|m,d,w)
(h,m)ed

= [] Pa(hlm,w) x Py(sm|m,h, w)
(h,m)ed

We suppose that adjunctions are generated by an
arc-factored model, and that a spine prediction de-
pends on both current position and head position.
Then parsing amounts to finding the most prob-
able derivation and can be realized in the log
space, which gives following weight functions:

a(h,m;w) = log P, (h|lm, w)

V(8m; h,m,w) =log P,(sm|m, h, w)

where o represents the arc contribution and v the
spine contribution (cf. Section 2).

Word embeddings b, are first passed through
specific feed-forward networks depending on the

8We assume that the spine for the root wy is unique.
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distribution and role. The result of the feed-
forward transformation parameterized by set of
parameters p of a word embedding b, is a vector
denoted bgp ). We first define a biaffine attention
networks weighting dependency relations (Dozat
and Manning):

(a) _ b£g1)TW(a)b§la2) _’_V(a)bg‘lQ)

Oh,m

where (@) and V() are trainable parameters.
Moreover, we define a biaffine attention classifier
networks for class c as:

()
Oc,h,m

= bgl)'rw(fc)b;ﬁ)

+ V) (5 @ b))
+ U(Tu)

where @ is the concatenation. W(TC), V(7e) and
u(™) are trainable parameters. Then, we define the
weight of assigning spine s to word at position m
with head h as ogy}z -

Distributions I:’a’ and P, are parameterized by
these biaffine attention networks followed by a
softmax layer:

(a)

exp oy,
Po(hlm.w) =
Zh/ exp Oh/,m
eXP O\
P, (s|h,m,w) = ¢

Zs’ exp Og’j,)h,m
Now we move on to the post-processing step
predicting arc labels. For each adjunction of spine
s at position m to spine ¢ at position h, instead
of predicting a site index ¢, we predict the non-
terminal nt at ¢[7] with a biaffine attention classi-
fier.” The probability of the adjunction of spine s
at position m to a site labeled with nt on spine ¢ at
position h with type a € {regular, sister} is:
P, (nt,alh,m) = Py (nt|h,m, w)
X Pyu(alh, mw)
P, and P, are again defined as distributions
from the exponential family using biaffine atten-

tion classifiers:
")

exp o

Py (nt|h,m,t) = "”Ej)
Znt’ exp Ont,h,m
(")
exp o
P(alh,m,t) = Lhm

=)
Za’ eXp Oa’,h,m

°If a spine contains repeated non-terminal sequences, we
select the lowest match.

We use embeddings of size 100 for words and
size 50 for parts-of-speech tags. We stack two
bidirectional LSTMs with a hidden layer of size
300, resulting in a context sensitive embedding of
size 600. Embeddings are shared across distribu-
tions. All feed-forward networks have a unique
elu-activated hidden layer of size 100 (Clevert
et al,, 2016). We regularize parameters with a
dropout ratio of 0.5 on LSTM input. We es-
timate parameters by maximizing the likelihood
of the training data through stochastic subgradi-
ent descent using Adam (Kingma and Ba, 2015).
Our implementation uses the Dynet library (Neu-
big et al., 2017) with default parameters.

6 Experiments

We ran a series of experiments on two corpora an-
notated with discontinuous constituents.

English We used an updated version of the Wall
Street Journal part of the Penn Treebank corpus
(Marcus et al., 1994) which introduces discontinu-
ity (Evang and Kallmeyer, 2011). Sections 2-21
are used for training, 22 for developpement and
23 for testing. We used gold and predicted POS
tags by the Stanford tagger,'® trained with 10-
jackknifing. Dependencies are extracted following
the head-percolation table of Collins (1997).

German We used the Tiger corpus (Brants
et al., 2004) with the split defined for the SPMRL
2014 shared task (Maier, 2015; Seddah et al.,
2013). Following Maier (2015) and Coavoux
and Crabbé (2017), we removed sentences num-
ber 46234 and 50224 as they contain anno-
tation errors. We only used the given gold
POS tags. Dependencies are extracted following
the head-percolation table distributed with Tulipa
(Kallmeyer et al., 2008).

We emphasize that long sentences are not fil-
tered out. Our derivation extraction algorithm
is similar to the one proposed in Carreras et al.
(2008). Regarding decoding, we use a beam
of size 10 for spines w.rt. P,(sp|m,w) =
> n Po(smlh,m,w) x Py(h|m,w) but allow ev-
ery possible adjunction. The maximum number of
iterations of the subgradient descent is set to 500
and the stepsize 7' is fixed following the rule of
Polyak (1987).

Parsing results and timing on short sentences
only (< 40 words) and full test set using the de-

1Ohttp://nlp. stanford.edu/software/tagger.shtml
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fault discodop!! eval script are reported on Table 1
and Table 2.'> We report labeled recall (LR), pre-
cision (LP), F-measure (LF) and time measured
in minutes. We also report results published by
van Cranenburgh et al. (2016) for the discontin-
uous PTB and Coavoux and Crabbé (2017) for
Tiger. Moreover, dependency unlabeled attach-
ment scores (UAS) and tagging accuracies (Spine
acc.) are given on Table 3. We achieve signif-
icantly better results on the discontinuous PTB,
while being roughly 36 times faster together with a
low memory footprint.!* On the Tiger corpus, we
achieve on par results. Note however that Coavoux
and Crabbé (2017) rely on a greedy parser com-
bined with beam search.

Fast and efficient parsing of discontinuous con-
stituent is a challenging task. Our method can
quickly parse the whole test set, without any par-
allelization or GPU, obtaining an optimality cer-
tificate for more than 99% of the sentences in
less than 500 iterations of the subgradient descent.
When using a non exact decoding algorithm, such
as a greedy transition based method, we may not
be able to deduce the best opportunity for improv-
ing scores on benchmarks, such as the parameter-
ization method or the decoding algorithm. Here
the behavior may be easier to interpret and direc-
tions for future improvement easier to see. We
stress that our method is able to produce an op-
timality certificate on more than 99% of the test
examples thanks to the enhancement presented in
Section 4.4.

7 Related Work

Spine-based parsing has been investigated in
(Shen and Joshi, 2005) for Lexicalized TAGs with
a left-to-right shift-reduce parser which was sub-
sequently extended to a bidirectional version in
(Shen and Joshi, 2008). A graph-based algorithm
was proposed in (Carreras et al., 2008) for second-
order projective dependencies, and for a form of
non-projectivity occurring in machine translation
(i.e. projective parses of permutated input sen-
tences) in (Carreras and Collins, 2009).
Discontinuous phrase-structure parsing through
dependencies in contexts other that TAGs have

11https ://github.com/andreasvc/disco-dop/

122017 processing time is 137.338 seconds plus approxi-
matively 30 seconds for model and corpus loading (personnal
communication).

BExecution times are not directly comparable because we
report our experimental conditions and published results.

LR LP LF Time
Short sentences only

This work  90.63 91.01 90.82 =~4
This work! 89.57 90.13 89.85 ~4
VC20167 87.00 ~ 180
Full test set
This work  89.89 90.29 90.09 =~6.5
This work? 88.90 89.45 89.17 ~5.5
Table 1:  Parsing results and processing time

on the english discontinuous PTB corpus. Re-
sults marked with T use predicted part-of-speech
tags. VC2016 indicates results of van Cranen-
burgh et al. (2016).

LR LP LF  Time
Short sentences only

This work 82.69 84.68 83.67 = 7.5
Full test set

This work 80.66 82.63 81.63 =11

C2017 81.60 =~2.5

Table 2: Parsing results and processing time on
the german Tiger corpus. C2017 indicates results
of Coavoux and Crabbé (2017).

been explored in (Hall and Nivre, 2008; Versley,
2014; Fernandez-Gonzalez and Martins, 2015).
The first two encode spine information as arc la-
bels while the third one relaxes spine information
by keeping only the root and height of the adjunc-
tion, thus avoiding combinatorial explosion. La-
beling is performed as a post-processing step in
these approaches, since the number of labels can
be very high. Our model also performs labeling
after structure construction, but it could be per-
formed jointly without major issue. This is one
way our model could be improved.

GMSA has been studied mostly as a way to
solve the non directed version (i.e. with symet-
ric arc weights) (Myung et al., 1995), see (Pop,
2009; Feremans et al., 1999) for surveys on res-
olution methods. Myung et al. (1995) proposed
an exact decoding algorithm through branch-and-
bound using a dual ascent algorithm to compute
bounds. Pop (2002) also used Lagrangian relax-
ation — in the non directed case — where a single
subproblem is solved in polynomial time. How-
ever, the relaxed constraints are inequalities: if the
dual objective returns a valid primal solution, it is
not a sufficient condition in order to guarantee that
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UAS  Spine acc.
English  93.70 97.32
English 93.04  96.81
German 92.25 96.49

Table 3: Dependency parsing and tagging re-
sults. Results marked with T use predicted part-
of-speech tags.

it is the optimal solution (Beasley, 1993), and thus
the stopping criterion for the subgradient descent
is usually slow to obtain. To our knowledge, our
system is the first time that GMSA is used to solve
a NLP problem.

Dual decomposition has been used to derive ef-
ficient practical resolution methods in NLP, mostly
for machine translation and parsing, see (Rush
et al., 2010) for an overview and (Koo et al., 2010)
for an application to dependency parsing.

To accelerate the resolution, our method re-
lies heavily on problem reduction (Beasley, 1993),
which uses the primal/dual bounds to filter out
suboptimal assignments. Exact pruning based on
duality has already been studied in parsing, with
branch and bound (Corro et al., 2016) or column
generation (Riedel et al., 2012) and in machine
translation with beam search (Rush et al., 2013).

8 Conclusion

We presented a novel framework for the joint
task of supertagging and parsing by a reduction
to GMSA. Within this framework we developed a
model able to produce discontinuous constituents.
The scoring model can be decomposed into tag-
ging and dependency parsing and thus may rely
on advances in those active fields.

This work could benefit from several exten-
sions. Bigram scores on spines could be added
at the expense of a third subproblem in the dual
objective. High-order scores on arcs like grand-
parent or siblings can be handled in subproblem
P, with the algorithms described in (Koo et al.,
2010). In this work, the parameters are learned as
separate models. Joint learning in the max-margin
framework (Komodakis, 2011; Komodakis et al.,
2015) may model interactions between vertex and
arc weights better and lead to improved accuracy.
Finally, we restricted our grammar to spinal trees
but it could be possible to allow full lexicalized
TAG-like trees, with substitution nodes and even
obligatory adjunction sites. Derivations compat-

ible with the TAG formalism (or more generally
LCFRS) could be recovered by the use of a con-
strained version of MSA (Corro et al., 2016).

Acknowledgements

We thank the anonymous reviewers for their in-
sightful comments. We thank Laura Kallmeyer
and Kilian Evang for providing us with the script
for the discontinuous PTB. First author is sup-
ported by a public grant overseen by the French
National Research Agency (ANR) as part of
the Investissements d’Avenir program (ANR-10-
LABX-0083). Second author, supported by a pub-
lic grant overseen by the French ANR (ANR-16-
CE33-0021), completed this work during a CNRS
research leave at LIMSI, CNRS / Université Paris
Saclay.

References

Miguel Almeida and Andre Martins. 2013. Fast and ro-
bust compressive summarization with dual decom-
position and multi-task learning. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers), pages 196-206, Sofia, Bulgaria. Association
for Computational Linguistics.

John Beasley. 1993. Modern heuristic techniques for
combinatorial problems, chapter Lagrangian relax-
ation. John Wiley & Sons, Inc.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther Konig, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszkor-
eit. 2004. Tiger: Linguistic interpretation of a ger-
man corpus. Research on language and computa-
tion, 2(4):597-620.

Xavier Carreras and Michael Collins. 2009. Non-
projective parsing for statistical machine translation.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
200-209, Singapore. Association for Computational
Linguistics.

Xavier Carreras, Michael Collins, and Terry Koo. 2008.
TAG, dynamic programming, and the perceptron
for efficient, feature-rich parsing. In CoNLL 2008:
Proceedings of the Twelfth Conference on Com-
putational Natural Language Learning, pages 9—
16, Manchester, England. Coling 2008 Organizing
Committee.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2016. Fast and accurate deep network
learning by exponential linear units (ELUs). In Pro-
ceedings of the 2016 International Conference on
Learning Representations.

1652



Maximin Coavoux and Benoit Crabbé. 2017. Incre-
mental discontinuous phrase structure parsing with
the gap transition. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 1259—-1270. Association for Computa-
tional Linguistics.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proceedings of the
35th Annual Meeting of the Association for Com-
putational Linguistics, pages 16-23, Madrid, Spain.
Association for Computational Linguistics.

Caio Corro, Joseph Le Roux, Mathieu Lacroix, An-
toine Rozenknop, and Roberto Wolfler Calvo. 2016.
Dependency parsing with bounded block degree
and well-nestedness via lagrangian relaxation and
branch-and-bound. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 355—
366, Berlin, Germany. Association for Computa-
tional Linguistics.

Andreas van Cranenburgh, Remko Scha, and Rens
Bod. 2016. Data-oriented parsing with discontinu-
ous constituents and function tags. Journal of Lan-
guage Modelling, 4(1):57-111.

Dipanjan Das, André F. T. Martins, and Noah A.
Smith. 2012. An exact dual decomposition algo-
rithm for shallow semantic parsing with constraints.
In The First Joint Conference on Lexical and Com-
putational Semantics, pages 209-217, Montréal,
Canada. Association for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. Deep bi-
affine attention for neural dependency parsing. Pro-
ceedings of the 2017 International Conference on
Learning Representations.

Jason Eisner. 2000. Bilexical grammars and their
cubic-time parsing algorithms. In New Develop-
ments in Natural Language Parsing, pages 29-62.
Kluwer Academic Publishers.

Kilian Evang and Laura Kallmeyer. 2011. PLCFRS
parsing of english discontinuous constituents. In
Proceedings of the 12th International Conference on
Parsing Technologies, pages 104—116, Dublin, Ire-
land. Association for Computational Linguistics.

Corinne Feremans, Martine Labbé, and Gilbert La-
porte. 1999. The generalized minimum spanning
tree: Polyhedra and branch-and-cut.  Electronic
Notes in Discrete Mathematics, 3:45-50.

Daniel Fernandez-Gonzélez and André F. T. Martins.
2015. Parsing as reduction. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1523-1533, Beijing,
China. Association for Computational Linguistics.

Johan Hall and Joakim Nivre. 2008. Parsing discon-
tinuous phrase structure with grammatical functions.
In Advances in Natural Language Processing: 6th
International Conference, GOTAL 2008 Gothenburg,
Sweden, August 25-27, 2008 Proceedings, pages
169-180, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Laura Kallmeyer, Timm Lichte, Wolfgang Maier,
Yannick Parmentier, Johannes Dellert, and Kilian
Evang. 2008. Tulipa: Towards a multi-formalism
parsing environment for grammar engineering. In
Coling 2008: Proceedings of the workshop on
Grammar Engineering Across Frameworks, pages
1-8, Manchester, England. Coling 2008 Organizing
Committee.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings

of The International Conference on Learning Repre-
sentations (ICLR).

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional Istm feature representations. Transactions
of the Association for Computational Linguistics,
4:313-327.

Nikos Komodakis. 2011. Efficient training for pair-
wise or higher order crfs via dual decomposition. In
Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 1841-1848. IEEE.

Nikos Komodakis, Nikos Paragios, and Georgios Tzir-
itas. 2007. MRF optimization via dual decompo-
sition: Message-passing revisited. In 2007 IEEE
11th International Conference on Computer Vision,
pages 1-8. IEEE.

Nikos Komodakis, Bo Xiang, and Nikos Paragios.
2015. A framework for efficient structured max-
margin learning of high-order mrf models. IEEE
transactions on pattern analysis and machine intel-
ligence, 37(7):1425-1441.

Terry Koo, Alexander M. Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head
automata. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1288-1298, Cambridge, MA. Associa-
tion for Computational Linguistics.

Joseph Le Roux, Antoine Rozenknop, and Jennifer
Foster. 2013. Combining PCFG-LA models with
dual decomposition: A case study with function la-
bels and binarization. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1158-1169, Seattle, Wash-
ington, USA. Association for Computational Lin-
guistics.

1653



Claude Lemaréchal. 2001. Lagrangian relaxation. In
Computational combinatorial optimization, pages
112—-156. Springer.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu,
Wenliang Chen, and Haizhou Li. 2011. Joint mod-
els for chinese pos tagging and dependency parsing.
In Proceedings of the 2011 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1180-1191, Edinburgh, Scotland, UK. Association
for Computational Linguistics.

Wolfgang Maier. 2015. Discontinuous incremental
shift-reduce parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1202-1212. Association for
Computational Linguistics.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schas-
berger. 1994. The penn treebank: annotating
predicate argument structure. In HLT’94: Pro-
ceedings of the workshop on Human Language
Technology, pages 114—119, Morristown, NJ, USA.
Association for Computational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 523-530, Vancouver,
British Columbia, Canada. Association for Compu-
tational Linguistics.

Young-Soo Myung, Chang-Ho Lee, and Dong-Wan
Tcha. 1995. On the generalized minimum spanning
tree problem. Networks, 26(4):231-241.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980.

Boris T Polyak. 1987. Introduction to optimization.
Optimization Software.

Petrica Claudiu Pop. 2002. The generalized minimum
spanning tree problem. Twente University Press.

Petrica Claudiu Pop. 2009. A survey of different in-
teger programming formulations of the generalized
minimum spanning tree problem. Carpathian Jour-
nal of Mathematics, 25(1):104-118.

Sebastian Riedel, David Smith, and Andrew McCal-
lum. 2012. Parse, price and cut—delayed column
and row generation for graph based parsers. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 732—
743, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Alexander Rush, Yin-Wen Chang, and Michael
Collins. 2013. Optimal beam search for machine
translation. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 210-221, Seattle, Washington, USA.
Association for Computational Linguistics.

Alexander M Rush, David Sontag, Michael Collins,
and Tommi Jaakkola. 2010. On dual decomposition
and linear programming relaxations for natural lan-
guage processing. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1-11, Cambridge, MA. Associa-
tion for Computational Linguistics.

A. Schrijver. 2003.  Combinatorial Optimization -
Polyhedra and Efficiency. Springer.

Djamé Seddah, Reut Tsarfaty, Sandra Kiibler, Marie
Candito, D. Jinho Choi, Richard Farkas, Jen-
nifer Foster, lakes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim
Nivre, Adam Przepiérkowski, Ryan Roth, Wolf-
gang Seeker, Yannick Versley, Veronika Vincze,
Marcin Woliniski, Alina Wréblewska, and Ville-
monte Eric de la Clergerie. 2013. Proceed-
ings of the Fourth Workshop on Statistical Pars-
ing of Morphologically-Rich Languages, chapter
Overview of the SPMRL 2013 Shared Task: A
Cross-Framework Evaluation of Parsing Morpho-
logically Rich Languages. Association for Compu-
tational Linguistics.

Libin Shen. 2006. Statistical LTAG Parsing. Ph.D. the-
sis, University of Pennsylvania.

Libin Shen and Aravind Joshi. 2005. Incremental
Itag parsing. In Proceedings of Human Language
Technology Conference and Conference on Empiri-
cal Methods in Natural Language Processing, pages
811-818, Vancouver, British Columbia, Canada.
Association for Computational Linguistics.

Libin Shen and Aravind Joshi. 2008. LTAG depen-
dency parsing with bidirectional incremental con-
struction. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Process-
ing, pages 495-504, Honolulu, Hawaii. Association
for Computational Linguistics.

Yannick Versley. 2014. Experiments with easy-first
nonprojective constituent parsing. In Proceedings
of the First Joint Workshop on Statistical Parsing
of Morphologically Rich Languages and Syntactic
Analysis of Non-Canonical Languages, pages 39—
53, Dublin, Ireland. Dublin City University.

1654



Predicting Lagrangian Multipliers for Mixed Integer Linear Programs

Francesco Demelas ! Joseph Le Roux
Abstract

Lagrangian Relaxation stands among the most ef-
ficient approaches for solving Mixed Integer Lin-
ear Programs (MILPs) with difficult constraints.
Given any duals for these constraints, called La-
grangian Multipliers (LMs), it returns a bound on
the optimal value of the MILP, and Lagrangian
methods seek the LMs giving the best such bound.
But these methods generally rely on iterative al-
gorithms resembling gradient descent to maxi-
mize the concave piecewise linear dual function:
the computational burden grows quickly with the
number of relaxed constraints. We introduce
a deep learning approach that bypasses the de-
scent, effectively amortizing per instance opti-
mization. A probabilistic encoder based on a
graph neural network computes, given a MILP
instance and its Continuous Relaxation (CR) solu-
tion, high-dimensional representations of relaxed
constraints, which are turned into LMs by a de-
coder. We train the encoder and the decoder
jointly by directly optimizing the bound obtained
from the predicted multipliers. Our method is ap-
plicable to any problem with a compact MILP for-
mulation, and to any Lagrangian Relaxation pro-
viding a tighter bound than CR. Experiments on
two widely known problems, Multi-Commodity
Network Design and Generalized Assignment,
show that our approach closes up to 85 % of
the gap between the continuous relaxation and
the best Lagrangian bound, and provides a high-
quality warm-start for descent-based Lagrangian
methods.
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1. Introduction

Mixed Integer Linear Programs (MILPs) (Wolsey, 2021)
have two main strengths that make them ubiquitous in com-
binatorial optimization (Korte & Vygen, 2012). First, they
can model many combinatorial optimization problems. Sec-
ond, extremely efficient solvers can now handle MILPs with
millions of constraints and variables. They therefore have
a wide variety of applications in logistics, telecommunica-
tions and beyond. MILP algorithms are exact: they return an
optimal solution, or an optimality gap between the returned
solution and an optimal one.

MILPs are sometimes hard to solve due to a collection of dif-
ficult constraints. Typically, a small number of constraints
link together otherwise independent subproblems. For in-
stance, in vehicle routing problems (Golden et al., 2008),
there is one independent problem for each vehicle, except
for the linking constraints that ensure that exactly one ve-
hicle operates each task of interest. Lagrangian relaxation
approaches are popular in such settings as they allow to
unlink the different subproblems.

More formally (Conforti et al., 2014, Chap. 8), let P be a
MILP of the form:

(P) min w' (1a)
Ax >b (1b)
Czx>d (Ic)
x € R” x NP (1d)

While CR amounts to simply removing the integrity con-
straints (i.e. (1d) becomes x € RT+F ), the relaxed La-
grangian problem is obtained by dualizing difficult con-
straints (1b) and penalizing their violation with Lagrangian
multipliers (LMs) @ > 0:

(LR(w)) rricin w'z+7"(b— Ax)

Cx>d
x € R} x NP

Standard weak Lagrangian duality ensures that LR(7r) is a
lower bound on P. The Lagrangian dual problem aims at
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finding the best such bound:

(LD) max LR(7).

>0

Geoffrion’s theorem (1974) ensures that LD is a lower
bound at least as tight as the continuous relaxation. It is
strictly better on most applications. Beyond this bound,
Lagrangian approaches are also useful to find good primal
solutions. Indeed, Lagrangian heuristics (Beasley, 1990)
exploit the dual solution 7 and the variable assignment for
x of LR(7r) to compute good quality solutions of (1a)-(1d).
Note that both the bound and the heuristic hold even in the
case of non-optimal duals w. We define good Lagrangian
duals 7r as those that lead to a bound LR () better than the
CR solution, and thus closer to LD.

Since w — LR(7r) is piecewise linear and concave, it is
generally optimized using a subgradient algorithm. Unfor-
tunately, the number of iterations required to obtain good
duals quickly increases with the dimension of 7r, which
makes the approach extremely intensive computationally.

In this work! we introduce a state-of-the-art encoder-
decoder neural network that computes good duals 7 from
the CR solution. The probabilistic encoder g4(z|¢), based
on a graph neural network (GNN), takes as input a MILP
instance ¢ as well as the primal and dual CR solutions, and
returns an embedding of the instance, where each dualized
constraint is mapped to a high-dimensional dense vector.
The deterministic decoder fg(z) reconstructs single dimen-
sional duals from constraint vectors. The learning objective
is unsupervised since the Lagrangian dual function LR(7r)
leads to a natural loss function that does not require gold ref-
erences. Experiments on two standard and widely used prob-
lems from the Combinatorial Optimization literature, Multi-
Commodity Network Design and General Assignment, show
that the predicted duals close up to 85% of the gap between
the CR and LD solutions. Finally, when optimal duals are
the target, we show that predicted duals provide an excellent
warm-start for state-of-the-art descent-based algorithms for
objective (1). Our approach is restricted to compact MILPs
and Lagrangian Relaxations admitting a tighter bound than
CR since primal and dual CR solutions are part of the GNN
input.

2. Learning Framework

2.1. Overall Architecture

Iterative algorithms for setting LMs to optimality such as
the subgradient method (SM) (Polyak, 1987, Chap 5.3) or
the Bundle method (BM) (Hiriart-Urruty & Lemaréchal,
1996; Le et al., 2007) start by initializing LMs. They can

'Code in JULIA at https://github.com/FDemelas/
Learning_Lagrangian_Multipliers.jl

be set to zero but a solution considered as better in practice
by the Combinatorial Optimization community is to take
advantage of the bound given by CR and its dual solution,
often computationally cheap for compact MILPs. Specifi-
cally, optimal values of the CR dual variables identified with
the constraints dualized in the Lagrangian relaxation can
be understood as LMs. In many problems of interest these
LMs are not optimal and can be improved by SM or BM.
We leverage this observation by trying to predict a deviation
from the LMs corresponding to the CR dual solution.

The architecture is depicted in Figure 1. We start from an
input instance ¢ of MILP P with a set of constraints for
which the Lagrangian relaxed problem is easy to compute,
then solve C'R and obtain the corresponding primal and
dual solutions. The input enriched with C'R solutions is
then passed through a probabilistic encoder, composed of
three parts: (i) the input is encoded as a bipartite graph
in a way similar to (Gasse et al., 2019), also known as a
factor graph in probabilistic modelling, and initial graph
node feature extraction is performed, (ii) this graph is fed
to a GNN in charge of refining the node features by taking
into account the structure of the MILP, (iii) the last layer of
the GNN is used to parameterize a distribution from which
vectors z. can be sampled for each dualized constraint c.

The decoder then translates z. to a positive LM 7, = A\, +
0. by predicting a deviation 4. from the CR dual solution
variable A.. Finally, the predicted LMs can be used in
several ways, in particular to compute a Lagrangian bound
or to warm-start an iterative solver.

2.2. Objective

We train the network’s parameters in an end-to-end fashion
by maximizing the average Lagrangian bound LR(7) ob-
tained from the predicted LMs 7 over a training set. This
can be cast as an empirical risk optimization, or an Energy-
Based Model (Le Cun et al., 2006) with latent variables,
where the Lagrangian bound is the (negative) energy cor-
responding to the coupling of the instance with the sub-
problem solutions, and the LMs — or more precisely their
high-dimensional representations — the latent variables.
For our problem, a natural measure of the quality of the
prediction is provided by the value L R that we want to max-
imize to tighten the duality gap. Given an instance ¢ we
want to learn to predict the latent representations z of the
LMs for which the Lagrangian bound is the highest:

max Eang, () [LR(A A+ fo(2)]+0)]

where g4 is the probabilistic encoder, mapping each du-
alized constraint ¢ in ¢ to a latent vector z. computed by
independent Gaussian distributions, fg is the decoder map-
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Figure 1. Overall Architecture. From the bipartite graph representation of a MILP and its CR solution, the model computes a Lagrangian
dual solution. First the MILP is encoded by a GNN, from which we parameterize a sampler for constraint representations. These
representations are then passed through a decoder to compute Lagrangian Multipliers.

ping each? z, to its corresponding LM deviation 6. from
the CR dual value A, and [-] is the component-wise soft-
plus function. We can observe that this objective has the
following properties amenable to gradient-based learning:

1. LR() is bounded from above: optimal LMs 7* maxi-
mize LR() over all possible LMs, that is LR(7*) >
LR(r) for any m = XA + fo(z). Moreover, LR(7r) is
a concave piece-wise linear function, in other words
all optimal solutions will give the same bound.

2. It is straightforward to compute a subgradient w.r.t. to
parameters 0: Vo LR([X + fo(2)]+;¢) is equal to:

(5'[>\ + fo(2)]+

.
20 ) VaLR(m;1)

The Jacobian on the left is computed via backpropa-
gation, while LR(7r; ¢) is simple enough for a subgra-
dient to be given analytically. Provided that & is an
optimal solution of the relaxed Lagrangian problem of
¢ associated with 7, we derive:

VzLR(mw;1) =b— Az

This means that in order to compute a subgradient for
0, we first need to solve each subproblem. Since sub-
problems are independent, this can be done in parallel.

3. For parameters ¢, we again leverage function compo-
sition and the fact that q¢ is a Gaussian distribution, so
we can approximate the expectation by sampling and
use the reparameterization trick (Kingma & Welling,
2014; Schulman et al., 2015) to perform standard back-
propagation. We implement g4 as a neural network,
described in details in the following section, returning
a mean vector and a variance vector for each dualized
constraint ¢, from which a sampler returns a represen-
tation vector z.. For numerical stability, the variance
is clipped to a safe interval (Rybkin et al., 2021).

2With a slight abuse of notation, we use function f : R™ — R"
on batches of size p to become R *? — R"*P,

2.3. Encoding and Decoding Instances

Encoder One of the challenges in Machine Learning ap-
plications to Combinatorial Optimization is that instances
have different input sizes, and so the encoder must be able to
cope with these variations to produce high-quality features.
Of course this is also the case in many other applications,
for instance NLP where texts may differ in size, but there
is no general consensus as to what a good feature extractor
for MILP instances looks like, contrarily to other domains
where variants of RNNs or Transformers have become the
de facto standard encoders.

We depart from previous approaches to Lagrangian predic-
tion (Sugishita et al., 2024) restricted to instances of the
same size, and follow more generic approaches to MILP en-
coding such as (Gasse et al., 2019; Nair et al., 2020; Khalil
et al., 2017) where each instance is converted into a bipartite
graph and further encoded by GNNs to compute meaningful
feature vectors associated with dualized constraints. Each
MILP is converted to a bipartite graph composed of one
node for each variable and one node for each constraint.
There is an edge between a variable node n, and a con-
straint node n, if and only if v appears in c. Each node
(variable or constraint) is represented by an initial feature
vector e,,. We use features similar to ones given in (Gasse
etal., 2019).2 Following Nair et al. (2020), variables and
constraints are encoded as the concatenation of variable fea-
tures followed by constraint features, of which only one is
non-zero, depending on the type of nodes.

To design our stack of GNNs, we take inspiration from
structured prediction models for images and texts, where
Transformers (Vaswani et al., 2017) are ubiquitous. How-
ever, since our input has a bipartite graph structure, we
replace the multihead self-attention layers with simple lin-
ear graph convolutions* (Kipf & Welling, 2017). Closer
to our work, we follow Nair et al. (2020) which showed

3See Appendix A for more details.
4 Alternatively, this can be seen as a masked attention, where
the mask is derived from the input graph adjacency matrix.



Predicting Lagrangian Multipliers for MILPs

that residual connections (He et al., 2016), dropout (Srivas-
tava et al., 2014) and layer normalization (Ba et al., 2016)
are important for the successful implementation of feature
extractors for MILP bipartite graphs.

Before the actual GNNG, initial feature vectors {e, }, are
passed through a MLP F' to find feature combinations and
extend node representations to high-dimensional spaces:
hY = F(e,),Vn. Then interactions between nodes are
taken into account by passing vectors through blocks, repre-
sented in Figure 2, consisting of two sublayers.

* The first sublayer connects its input via a residual con-
nection to a layer normalization LN followed by a
linear graph convolution CONV of length 1, followed
by a dropout regularization DO:

h!, = h, + DO(CONV (LN (h,,)))

The graph convolution passes messages between nodes.
In our context, it passes information from variables to
constraints, and conversely.

* The second sublayer takes as input the result of first
one, and connects it with a residual connection to a
sequence made of a layer normalization LN, a MLP
transformation and a dropout regularization DO:

h, = h!, + DO(MLP(LN(h.)))

The MLP is in charge of finding non-linear interactions
in the information collected in the previous sublayer.

This block structure, depicted in Figure 2, is repeated sev-
eral times, typically 5 times in our experiments, in order
to extend the domain of locality. The learnable parame-
ters of a block are the parameters of the convolution in the
first sublayer and the parameters of the MLP in the second
one. Remark that we start each sublayer with normalization,
as it has become the standard approach in Transformer re-
cently (Chen et al., 2018). We note in passing that this has
also been experimented with by Gasse et al. (2019) in the
context of MILP, although only once before the GNN input,
whereas we normalize twice per block, at each block.

Finally, the GNN returns the vectors associated with du-
alized constraints {h.}.. Each vector h. is interpreted as
the concatenation of two vectors [2,,; z,] from which we
compute 2. = z, + exp(z,) - € where elements of € are
sampled from the normal distribution. This concludes the
implementation of the probabilistic encoder qg.

Decoder Recall that, in our architecture, from each latent
vector representation z. of dualized constraint ¢ we want
to compute the scalar deviation J. to the CR dual value A,
so that the sum of the two improves the Lagrangian bound

given by the CR dual solution. In other words, we want to
compute & such as w = [A + 8] gives a good Lagrangian
bound LR(m). Its exact computation is of combinatorial
nature and problem specific.’

The probabilistic nature of the encoder-decoder can be ex-
ploited further: during evaluation, when computing a La-
grangian Relaxation, we sample constraint representations
5 times from the probabilistic encoder and return the best
LR(m) value from the decoder.

Link with Energy Based Models in Structured Predic-
tion The relaxed Lagrangian problem usually decomposes
into independent subproblems due to the dualization of the
linking constraints. In this case, for each independent La-
grangian subproblem we want to find its optimal variable
assignment, usually with local combinatory constraints, for
its objective reparameterized with 7r. This approach is typi-
cal of structured prediction: we leverage neural networks to
extract features in order to compute local energies (scalars),
which are used by a combinatorial algorithm outputting
a structure whose objective value can be interpreted as a
global energy. For instance, this is reminiscent of how graph-
based syntactic parsing models in NLP compute parse scores
(global energies) as sums of arc scores (local energies) com-
puted by RNNs followed by MLPs, where the choice of
arcs is guided by well-formedness constraints enforced by
a maximum spanning tree solver, see for instance (Kiper-
wasser & Goldberg, 2016). Thus, the decoder is local to
each dualized constraint, and we leverage subproblems to
interconnect predictions:

1. We compute LMs (local energies) m. = [Ac+ fo(2c)]+
for all dualized constraints ¢, where fg is implemented
as a feed-forward network computing the deviation.

2. For parameter learning or if the subproblem solutions
or the Lagrangian bound are the desired output, vector
7 is then passed to the Lagrangian subproblems which
compute independently and in parallel their local solu-
tions « and the corresponding values are summed to
give (global energy) LR(m).

3. Related Work

There is growing interest in leveraging Machine Learn-
ing (ML) alongside optimization algorithms (Bengio et al.,
2021), in particular with the goal of improving MILP
solvers’s efficiency (Zhang et al., 2023). Indeed, even
though MILP solvers solve problems in an exact way, they
make many heuristic decisions which can be based on data-
driven ML systems. For instance, classifiers have been

>LR() is described in Appendices B and C for the two prob-
lems on which we evaluate our method.
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Figure 2. The Graph Neural Network block. The first part is graph message-passing: we apply layer normalization to node features,
then convolution over the instance’s bipartite graph representation and finally dropout. The second phase consists of normalization, a
Multi-Layer perceptron in parallel over all the nodes of the bipartite graph, then dropout. Both sublayers use residual connection between
input and output. We apply this block several times to improve feature representations.

designed for Branch and Bound (B&B) algorithms (Lodi
& Zarpellon, 2017) in order to choose which variables to
branch on (Alvarez et al., 2017; Khalil et al., 2016; He et al.,
2014; Etheve et al., 2020), which B&B node to process (Yil-
maz & Yorke-Smith, 2021; Labassi et al., 2022), to decide
when to perform heuristics (Hottung et al., 2020; Khalil
et al., 2017) or how to schedule them (Chmiela et al., 2021).

In this work, we depart from this main trend and predict a
dual bound for MILP instances sharing common features,
which can in turn be used to improve solvers. Several propo-
sitions have tackled the prediction of high quality primal and
dual bounds. For instance, Nair et al. (2020) predict partial
variable assignments, resulting in small MILPs which can
be solved to optimality. Another way to provide primal solu-
tions is to transform a MILP into an easier one, solve it and
apply a procedure to recover primal feasibility (Dalle et al.,
2022; Parmentier, 2022). Many works use Reinforcement
Learning and guided greedy decoding to find high-quality
approximate solutions for NP-hard problems, e.g. (Kool
et al., 2019). For dual bounds, ML has been employed for
cut selection in cutting planes algorithms (Baltean-Lugojan
et al., 2018; Wang et al., 2023; Balcan et al., 2021; Berthold
et al., 2022; Tang et al., 2020; Huang et al., 2022; Afia
& Kabbaj, 2017, Tetouan Morocco; Morabit et al., 2021),
an essential feature of MILP solvers which must balance
strengthened linear relaxations with increased computations
due to added cuts (Dey & Molinaro, 2018).

Regarding specifically prediction for Lagrangian dual solu-
tions, Nair et al. (2018) consider 2-stage stochastic MILPs,
approached by a Lagrangian decomposition for which they
learn to predict LMs compliant with any second-stage sce-
nario to give a good bound on average. Lange & Swoboda
(2021) propose a heuristic to solve binary ILPs based on a
specific LD where the relaxed LR problem is decomposed
into many subproblems, one per constraint, solved using bi-
nary decision diagrams. This method is modified by Abbas
& Swoboda (2022) to be run on GPU. The block coordinate
method used to heuristically solve LD is improved by learn-

ing parameters used for initializing and updating Lagrangian
multipliers (Abbas & Swoboda, 2024). In contrast to our
generic method, other previous attempts at Lagrangian dual
solution prediction for deterministic MILPs focus on a spe-
cific combinatorial optimization problem, such as the cutting
stock problem (Kraul et al., 2023), where a MLP predicts
the dual Lagrangian value for each constraint (i.e. stock)
separately, or the unit commitment problem (Sugishita et al.,
2024), where the same problem is solved daily but with
different demand forecasts with either a MLP or a random
forest which predicts dual solutions used to warm-start BM.

In our work, we assume that the set of dualized constraints
is given, but predicting such a set is also an active avenue
of research where solutions must find a good compromise
between the quality of the Lagrangian dual bound and the
running time to compute this bound (Kruber et al., 2017;
Basso et al., 2020).

Regarding our use of GNNs, this has become a common
MILP feature extractor in recent works, either on the factor
bipartite graph (Gasse et al., 2019; Nair et al., 2020) or di-
rectly on the underlying graph in routing problems (Sun &
Yang, 2023). While these works use GNNs to extract fea-
tures for variable predictions, we use GNNs to extract fea-
tures for constraints, which are then decoded to Lagrangian
Multipliers. Our specific GNN architecture is based on the
block structure of Transformers (Vaswani et al., 2017) where
attention is replaced by a linear graph convolution.

Our method predicts a deviation from an initial solution,
and can also be understood as predicting a gradient or sub-
gradient step. We can thus relate our approach to works
on gradient descent (Andrychowicz et al., 2016; Ba et al.,
2022) and unrolling of iterative methods for structured pre-
diction (Yang et al., 2016; Belanger et al., 2017). This
is also related to amortization especially in relation with
subgradient methods already studied in the ML commu-
nity (Komodakis et al., 2014; Meshi et al., 2010). However,
in previous works amortization was performed only during
training, and iterative methods were used at testing time.
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In the case of semi-amortization, our method can be used
as an informed starting point for a descent algorithm ap-
plied to quadratic optimization (Sambharya et al., 2022), or
probabilistic inference (Kim et al., 2018).

4. Evaluation

We evaluate our approach® on two standard problems of Op-
erations Research, namely Multi-Commodity Fixed-Charge
Network Design and Generalized Assignment.

4.1. Problems and Datasets

We review briefly the two problems and the data genera-
tion process. More details on MILP formulations and La-
grangian relaxations can be found in Appendices B and C
and a thorough description of dataset generation is given in
Appendix D.

Multi-Commodity Fixed-Charge Network Design (MC)
Given a network with arc capacities and a set of commodi-
ties, MC consists in activating a subset of arcs and routing
each commodity from its origin to its destination, possibly
fractioned on several paths, using only the activated arcs.
The objective is to minimize the total cost induced by the
activation of arcs and the routing of commodities. This
problem has been used in many real-world applications for
a long time, see for instance (Magnanti & Wong, 1984) for
telecommunications. It is NP-hard and its continuous re-
laxation provides poor bounds when arc capacities are high.
Hence, it is usually tackled with Lagrangian relaxation-
based methods (Akhavan Kazemzadeh et al., 2022).

While the Canad dataset is the standard and well-established
dataset of instances for evaluating MC solvers (Crainic et al.,
2001), it is too small to be used as a training set for Machine
Learning where large collections of instances sharing com-
mon features are required. Thus, we generate new instances
from a subset of instances of the Canad dataset (Crainic
et al., 2001), that we divide into four datasets of increasing
difficulty. The first two datasets, Mc-SML-40 and McC-SML-
VAR, contain instances that all share the same network (20
nodes and 230 edges) and the same arc capacities and fixed
costs, but with different values for origins, destinations, vol-
umes, and routing costs. Instances of the former all involve
the same number of commodities (40), while for the latter
the number of commodities varies from 40 to 200. Dataset
Mc-Bi1G-40 is generated similarly to Mc-SML-40 but upon
a bigger graph containing 30 nodes and 520 arcs. Finally,
Mc-BIG- VAR contains examples generated using either the
network of Mc-SML-40 or the one of Mc-B1G-40, with the
number of commodities varying between 40 and 200.

6See Appendix E for hyperparameter values used in our experi-
ments.

Generalized Assignment (GA) GA consists, given a set
of items and a set of capacitated bins, in assigning items to
bins without exceeding their capacity in order to maximize
the profit of the assignment. GA is a well-known problem in
Operations Research and has numerous applications such as
job-scheduling in Computer Science (Balachandran, 1976),
distributed caching (Fleischer et al., 2011) or even parking
allocation (Mladenovi¢ et al., 2020).

We generated two datasets, namely GA-10-100 and GA-20-
400, containing respectively instances with 10 bins and 100
items, and with 20 bins and 400 items. Weights, profits and
bin capacities are sampled using a distribution determined
from values of standard instances (Yagiura et al., 1999).

4.2. Numerical Results

We want to evaluate how our Lagrangian bound prediction
compares to an iterative model based on subgradient, and
how useful the former is as an initial point to warm-start the
latter. For that purpose, we choose a state-of-the-art prox-
imal bundle solver provided by SMS++ (Frangioni et al.,
2023) which allows writing a MILP in a block structure
fashion and using decomposition techniques to solve sub-
problems efficiently. We also compare our approach with
CR computed using the CPLEX’ optimizer.

All MILP instances for which we want to evaluate our model
are first solved by SMS++. For an instance ¢ we denote 7
the LMs returned by SMS++.

Metrics We use the percentage gap as metrics to evaluate
the quality of the bounds computed by the different systems,
averaged over a dataset of instances Z. For a system re-
turning a bound B, for an instance ¢ the percentage GAP
is:

1 < LR(x*) - B,
100 x — _t
72 LR

GAP measures the quality of the bound B,, and is zero when
B, equals the optimal Lagrangian bound.

Data for Evaluation We divide each dataset of 2000 in-
stances in train (80%), validation (10%) and test (10%).
Parameters are learned on the train set, model selection is
performed on validation set, and test proxies for unseen data.
Results are averaged over 3 random initializations.

Bound Accuracy Table 1 reports the performance of dif-
ferent systems on our 6 datasets. We compare the bound
returned by CR, and the bound of the Lagrangian relaxed

"https://www.ibm.com/products/
ilog-cplex—-optimization-studio
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problem obtained with LMs computed by different methods:

* LR(0) is the LR value computed with LMs set to zero.

e LR(CR) is the LR value computed with LMs set to CR
dual solution.

¢ LR(k-NN) is the LR value computed with LMs set to
the average value of LMs from the train set returned
by a k-NN regressor.?

¢ LR(MLP) is the LR value computed with LMs returned
by a MLP? instead of the GNN-based encoder-decoder.

* Qurs, that is the LR value computed with LMs set
the output of our encoder-decoder. As written in the
previous section we sample 5 LM assignments per
instance and return the best LR value.

For all datasets, our method outperforms other approaches.
Our model can reach 2% difference with BM on Mc-SML-
40, the easiest corpus with a small fixed network and a fixed
number of commodities. This means that one pass through
our network can save numerous iterations if we can accept
about 2% bound error on average. The margin with other
methods is quite large for MC datasets where the CR bound
is far from the optimum, with a gap reduction ranging from
77% (Mc-B1G-VAR) to 84% (Mc-SML-40) depending on the
dataset. For GA, where CR is closer to the optimum, our
model still manages to find better solutions. Even though the
gap absolute difference may seem small, the gap reduction
from the second-best model LR(CR) ranges from 30% (Ga-
10-100) to 44% (GA-20-400), a significant error reduction.

Compared to simpler ML approaches, we see (i) that re-
trieving LM values from k-NN clustering is not a viable
solution, even when the validation instances are close to
the training instances (Mc-SML-40), clustering cannot find
meaningful neighbors, and (ii) the graph feature extractor
(GNN) is paramount: the LR(MLP) architecture seems un-
able to deviate LMs consistently from CR solutions and can
even perform worse than CR or LR(CR) (GA-20-400).

Regarding speed, LR(0) is the fastest since it simply
amounts to solving the relaxed Lagrangian problem with
the original costs. Then CR and LR(CR) are second, the
difference being that for the latter after solving CR, the
dual solution A is used to compute the LR(A). Slowness
for LR(MLP) and LR(%k-NN) is mainly caused by feature
extraction (c¢f. Appendix G).

8See Appendices F and G for more information about the im-
plemented k-NN method.

° Additional initial features that the ones used in our model are
used, see Appendix G for more details.

Table 1. Bound accuracies of different methods on test sets aver-
aged by instance.

Dataset Methods GAP % time (ms)
CR 12.99 90.63
LR(0) 100.00 0.35
Mc-SML-40 LR(CR) 12.97 90.98
LR(k-NN) 38.80 219.42
LR(MLP) 10.70 142.48
ours 2.09 120.96
CR 22.29 283.63
LR(0) 100.00 1.32
Mc-SML-VAR LR(CR) 22.29 285.03
LR(k-NN) 44.12 371.51
LR(MLP) 16.71 369.61
ours 4.42 374.20
CR 15.94 22091
LR(0) 100.00 0.75
Mc-BI1G-40 LR(CR) 15.85 229.57
LR(k-NN) 54.57 334.99
LR(MLP) 13.67 556.89
ours 4.20 283.40
CR 20.66 287.20
LR(0) 100.00 1.37
Mc-BIG-VAR LR(CR) 20.63 288.55
LR(k-NN) 49.74 886.91
LR(MLP) 16.14 515.60
ours 4.77 374.78
CR 1.91 9.59
LR(0) 3.13 0.44
GA-10-100 LR(CR) 0.79 10.15
LR(k-NN) 1.07 11.70
LR(MLP) 0.78 51.71
ours 0.55 16.19
CR 0.44 71.40
LR(0) 2.70 7.51
GA-20-400 LR(CR) 0.27 78.80
LR(k-NN) 0.43 89.68
LR(MLP) 0.28 114.41
ours 0.15 124.96

Warm-starting Iterative Solvers We want to test whether
the Lagrangian Multipliers predicted by our model can be
used as an informed starting point for an iterative solver
for the Lagrangian Dual LD, namely the bundle method as
implemented by SMS++ and the subgradient method. While
the latter is simple to implement and only requires solving
LR(w), it has a non-smooth objective and the subgradient
does not always give a descent direction, resulting in un-
stable updates. In contrast, the bundle method is stabilized
with a quadratic penalty assuring a smooth objective, at the
expense of longer computation times. We hope that our
model can produce good starting points for both methods
and thus avoid many early iterations.

In Table 2 we compare different initial LM vectors on the
validation set of Mc-B1G-VAR for the bundle method. We
run our bundle solver until the difference between LR(7*)
and the current bound is smaller than the threshold . We
average resolution times and numbers of iterations over
instances, and compute standard deviation. We compare
three initialization methods: zero, using CR dual solutions,
and our model’s predictions.
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Table 2. Impact of initialization for a Bundle solver on MC-B1G-VAR. We consider initializations from the null vector (zero), the
continuous relaxation duals (CR), and our model (Ours).

zero

CR

Ours

time (s)

# iter.

time (s)

# iter.

time (s)

# iter.

le-1

34.34 (£81.22)

90.12 (£52.41)

31.67 (£75.12)

83.00 (£50.73)

16.09 (£ 42.79)

60.39 (£ 41.37)

le-2 68.80 (+£188.21) 141.43 (£112.72) 62.09 (£171.71) 133.26 (£109.60 ) 36.10 (£ 106.22) 105.93( + 97.04)
le-3 100.71 (£288.16) 188.14 (£167.33) 89.26 (£251.15) 179.40 (£170.15) 57.23 (£ 177.24) 143.36 (£ 142.58)
le-4 105.03 (£298.53)  207.90 (£198.92) 101.14 (£283.52)  200.42 (£197.60) 63.25 (£ 19047)  159.42 ( £+ 162.32)

We can see that CR is not competitive with the null initial-
ization, since the small gain in the number of iterations is
absorbed by the supplementary computation. However, our
model’s predictions give a significant improvement over
the other two initialization methods, despite the additional
prediction time. Resolution time is roughly halved for the
coarsest threshold, and above one-third faster for the finest
one. This is expected, as gradient-based methods naturally
slow down as they approach convergence. In appendix I
we perform the same experiments as in Table 2 for the sub-
gradient method.

Ablation Study In Table 3 we compare three variants
of our original model, denoted ours, on Mc-SML-40 and
Mc-BI1G-VAR. Results are averaged over 3 runs.

In the first variant —-max, instead of sampling multiple LMs
for each dualized constraint and keeping the best, we take
one sample only per constraint. We can see that this has a
minor incidence on the quality of the returned solution. In
—sum, the dual solution values are passed as constraint node
features but are not added to the output of the decoder to
produce LMs, i.e. the network must transport these values
from its input layer to its output. This has a sensible nega-
tive impact of GAP scores. In the third variant, —cr the CR
solution is not given as input features to the network (nor
added to the network’s output). This is challenging because
the network does not have access to a good starting point,
this is equivalent to initializing LMs to zero. The last variant,
—-sample, uses CR as ours but does not sample represen-
tations z. in the latent domain. We interpret the vector h,
associated with dualized constraint ¢ after the GNN stack
directly as vector z., making the encoder deterministic.

We can see that the performance of —sum just below ours,
while —cr cannot return competitive bounds. This indicates
that the CR solution passed as input features is essential
for our architecture to get good performance, whereas the
computation of the deviation instead of the full LM directly
is not an important trait. Still, we note that performances
of —cr should be compared with LR(0) in Table 1 rather
than LR(CR). In that case, we see that the GAP reduction
is around 80%, making it clear that our model is not simply
repeating CR solutions. This means that our model could be

Table 3. Ablation studies comparing the prediction of our model
with, predicting LMs on rather than deviation from CR (-sum),
not using CR features at all (—cr), or replacing the probabilistic
encoder by a deterministic one (-sample).

| GAP %
model ‘ Mc-SML-40  MC-BIG-VAR
ours ‘ 2.09 4.77
-max ‘ 2.10 4.79
—sum 2.63 6.77
-cr 20.26 23.78
—-sample ‘ 2.18 5.86

Table 4. Generalization results over bigger instances.

GAP % time (s)
# commodities Ours LR(CR) Ours LR(CR)
160 6.51 27.85 1.533 0.8915
200 7.62 30.18 1.4328 1.0889

used without the CR solution information as input, opening
our methods to a wider range of problems, and paving the
way for faster models.

Finally, ~sample is a system trained without sampling at
training time, i.e. the encoder-decoder is deterministic. We
see that sampling gives a slight performance increase on
small and bigger instances.

In Appendix H we compare the architecture we introduce
in this work with the architecture proposed by Nair et al.
in (Nair et al., 2018) and the one presented in (Gasse et al.,
2019), for several layers from 1 to 10.

Generalization Properties We test the model trained on
Mc-BIG-VAR on a dataset composed of 1000 bigger in-
stances. They are created using the biggest graph used
to generate the Mc-B1G-VAR dataset but contain 160 or 200
commodities whereas the instances of Mc-BI1G-VAR with
the same graphs only contain up to 120 commodities. In
Table 4 we can see that our model still performs well in
these instances dividing by 4 the gap provided by LR(CR).
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5. Conclusion

We have presented a novel method to compute good La-
grangian dual solutions for MILPs sharing common at-
tributes, by predicting Lagrangian multipliers. We cast
this problem as an encoder-decoder prediction, where the
probabilistic encoder outputs one distribution per dualized
constraint from which we sample constraint vector represen-
tation. Then a decoder transforms these representations into
Lagrangian multipliers.

We experimentally showed that this method gives bounds
significantly better than the commonly used heuristics on
two standard combinatorial problems: it reduces the con-
tinuous relaxation gap to the optimal bound up to 85%,
and when used to warm-start an iterative solver, the points
predicted by our models reduce solving times by a large
margin.

Our predictions could be exploited in primal heuristics, pos-
sibly with auxiliary losses predicting values from variable
nodes, or to efficiently guide a Branch-and-Bound exact
search. Predictions could be stacked to act as an unrolled
iterative solver. Finally, we can see our model as performing
denoising from a previous solution and could be adapted to
fit in a diffusion model.
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A. Initial Features

To extract useful features, we define a network based on
graph convolutions presented in Figure 1 in the line of the
work of (Gasse et al., 2019) on MILP encoding. We de-
tail the initial node features {e,, },, of the MILP-encoding
bipartite graph presented in Section 2.3.

Given an instance of the form:

T

(P) minw ' x (2a)
Az (i) b (2b)
z € R x NP (2¢)

we consider the following initial features for a variable x;:

* its coefficient w; in the objective function;
¢ its value in the primal solution of CR;

« its reduced cost ¢; = w; — AT A; in CR where A; is
the 5% column of A and X is the dual solution of CR;

* a binary value indicating whether z; is integral or con-
tinuous.

>
For constraint a ' « (_) b of (2b), we consider:

* the right-hand side b of the constraint;
* the value of the associated dual solution in CR;

* one binary value indicating whether the constraint is
an equality or an inequality;

* one binary value stating whether c is dualized in the
relaxed Lagrangian problem.

We use for each node n of the bipartite graph a feature vector
e, € R®. The first four components are used to encode the
initial features if n corresponds to a variable and are set to 0
otherwise, whereas the next four components are used only
if n is associated with a constraint and are set to O otherwise.

B. Multi Commodity Capacitated Network
Design Problem

A MC instance is given by a directed simple graph D =
(N, A), a set of commodities K, an arc-capacity vector c,
and two cost vectors r and f. Each commodity £k € K
corresponds to a triplet (o*,d*, ¢*) where 0¥ € N and
d*¥ € N are the nodes corresponding to the origin and the
destination of commodity k, and qk € N* is its volume. For
each arc, (7, j) € A, ¢;; > 0 corresponds to the maximum
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amount of flow that can be routed through (7, j) and f;; > 0
corresponds to the fixed cost of using arc (4, j) to route
commodities. For each arc (4, j) € A and each commodity
ke K, rfj > 0 corresponds to the cost of routing one unit
of commodity k through arc (i, j).

A MC solution consists of an arc subset A’ C A and, for
each commodity k € K, in a flow of value ¢* from its origin
o" to its destination d* with the following requirements: all
commodities are only routed through arcs of A’, and the
total amount of flow routed through each arc (i,j) € A’
does not exceed its capacity c;;. The solution cost is the sum
of the fixed costs over the arcs of A’ plus the routing cost,
the latter being the sum over all arcs (7, j) € A and all com-
modities £ € K of the unitary routing cost rfj multiplied
by the amount of flow of k routed through (3, 7).

B.1. MILP formulation

A standard model for the MC problem (Gendron et al.,
1999) introduces two sets of variables: the continuous flow
variables a:fj representing the amount of commodity & that
is routed through arc (i, j) and the binary design variables
y;; representing whether or not arc (i, ) is used to route
commodities. Denoting respectively by NZ* ={jeN|
(i,j) € Ayand N; = {j € N | (j,i) € A} the sets of
forward and backward neighbors of a vertex ¢ € IV, the MC
problem can be modeled as follows:

r;lin Z <fijyij + Z TZx@) (3a)
Y (e rew
Z mfj_ Z xfizbf Vie N,Vk e K (3b)
JENT JENT
> al < ciyiy V(i,j) € A (3¢)
keK
- Vk € K,V(i,j) € A
k = ) )
zj; =0 sti=dforj=oF (3d)
0<aj; <q* V(i,j) € AVE€ K  (3e)
yij € {0, 1}, Y(i,j) € A (3f)
where
¢ ifi=o",
=1 b ifi=d,
0 otherwise.

The objective function (3a) minimizes the sum of the rout-
ing and fixed costs. Equations (3b) are the flow conservation
constraints that properly define the flow of each commod-
ity through the graph. Constraints (3c) are the capacity
constraints ensuring that the total amount of flow routed
through each arc does not exceed its capacity or is zero if
the arc is not used to route commodities. Equations (3d)
ensure that a commodity is not routed on an arc entering
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its origin or leaving its destination. Finally inequalities (3e)
are the bounds for the x variables and inequalities (3f) are
the integer constraints for the design variables.

B.2. Lagrangian Knapsack Relaxation

A standard way to obtain good bounds for the MC problem

is to solve the Lagrangian relaxation obtained by dualiz-

ing the flow conservation constraints (3b) in formulation

(3a)-(3f). Let ﬂ'f be the Lagrangian multiplier associated

with node ¢ € N and commodity k¥ € K. Dualizing the

flow conservation constraints gives the following relaxed
(z,y) iamhes (3¢)—(3f) Z

Lagrangian problem LR ()
(fijylj )
(i,5)€A
2.2

l:k k k
keK ieN

JEN; JEN;

Z TijTi;

keK

Rearranging the terms in the objective function and observ-
ing that the relaxed Lagrangian problem is decomposed by
arcs, we obtain a subproblem for each arc (i, j) € A of the
form:

(LRqj(m))  min fijy;; + > whak (4a)
kEK;
> @l <y (4b)
keK;;
0<Z‘ <q V]{JEKU‘ (4¢)
Yij € {0, 1} (4d)
wherewk:rk ik —|—7r and K;; = {k e K | j #

o and i ;é d*} is the set of commodmes that may be routed
through arc (i, j).

For each (i,j) € A, LR;;(x) is a MILP with only one
binary variable. If y;; = 0, then, by (4b) and (4c), chj
0 for all k& € K;;. If y;; = 1, the problem reduces to
a continuous knapsack problem. An optimal solution is
obtained by ordering the commodities of K;; with respect
to decreasing values w - and setting for each variable x
the value max{min{¢* cw D oker(k) 4 *1,0} where K(k;)
denotes the set of commodities that preceded & in the order.
This step can be done in O(|K;;|) if one computes xfj
following the computed order. Hence, the complexity of the
continuous knapsack problem is O(| K;;|log(| K;;|)). The
solution of LR;;(7) is the minimum between the cost of
the continuous knapsack problem and O.

19Since the dualized constraints are equations, 7 have no sign
constraints.
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Lagrangian duality implies that

> LRij(=

(1,7)€A

Jrz Z ROk

1EN k€K

is a lower bound for the MC problem and the best one is
obtained by solving the following Lagrangian dual problem:

(LD) max LR(w)

ﬂ.e]RNxK

C. Generalized Assignment Problem

A GA instance is defined by a set I of items and a set .J
of bins. Each bin j is associated with a certain capacity c;.
For each item ¢ € I and each bin j € J, p;; is the profit
of assigning item ¢ to bin j, and w;; is the weight of item ¢
inside bin j.

Considering a binary variable z;; for each item and each
bin that is equal to one if and only if item ¢ is assigned to
bin j, the GA problem can be formulated as:

mgxz Zpijl‘ij (53.)
icl jEJ

Z% <1 Viel (5b)

JjeJ

Zwijxij < Cj Vield (5¢)

el

vy € {0,1} Viel,Vjied  (5d)

The objective function (5a) maximizes the total profit. In-
equalities (5b) assert that each item is contained in no more
than one bin. Inequalities (5c) ensure that the sum of the
weights of the items assigned to a bin does not exceed its
capacity. Finally, constraints (5d) assure the integrality of
the variables.

C.1. Lagrangian Relaxation

A Lagrangian relaxation of the GA problem is obtained by
dualizing (5b). For ¢ € I, let m; > 0 be the Lagrangian
multiplier of inequality (5b) associated with item 7. For
each bin j the subproblem becomes:

(LR maXZ Z pz] xlj
el jed
Zwijxij S Cj
i€l
Tij € {O7 1} Viel

It corresponds to an integer knapsack with |I| binary vari-
ables. For 7t > 0, the Lagrangian bound LR(7) is:

™) = ZLRj(TI’) + Zm.

jeJ iel
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The Lagrangian dual can be then written as:

min LR()

WER‘;(‘)

D. Dataset collection details

In this appendix, we provide further details on the dataset
construction.

Multi-Commodity Fixed-Charge Network Design We
generate four datasets of 2000 instances each (1600 for
training, 200 for validation and 200 for test) based on Canad
instances (Crainic et al., 2001). These canad instances have
been chosen such that the Lagrangian dual bound can be
solved in nearly one second for the easiest instances and in
approximately one hour for the hardest ones.

The first two datasets Mc-SML-40 and McC-SML-VAR con-
sider the same graph with 20 nodes and 230 edges, and the
same capacity and fixed cost vectors. The first dataset has
only instances with 40 commodities whereas the second one
has instances with 40, 80, 120, 160 or 200 commodities.

Origins and destinations are randomly chosen using a uni-
form distribution. Volumes and routing costs are randomly
sampled using a Gaussian distribution. Sampling uses four
different means g and variances o2 which are determined
from the four canad instances p33, p34, p35 and p36 (having
the same graph and fixed costs as the datasets) in order to
generate four different types of instances: whether the fixed
costs are high with respect to routing costs, and whether
capacities are high with respect to commodity volumes.

The third dataset Mc-B1G-40 is generated similarly as the
first one except that it is based on a graph with 30 nodes
and 520 edges. The means and variances used to sample
the fixed costs and the volumes are determined from the
four canad instances p49, p50, pS1 and p52. The number of
commodities is equal to 40 in each instance.

Finally, the last dataset MC-BIG- VAR contains instances with
either the graph, capacities and fixed costs of the first two
datasets or the ones of the third dataset. Sampling uses
either the canad instances p33, p34, p35 and p36 or the
canad instances p49, p50, p51 and p52 for determining the
mean and variance, depending on the size of the graph. The
number of commodities varies from 40 to 200 if the graph
is the one of the first two datasets, and from 40 to 120
otherwise.

Generalized Assignment We create two datasets of GA
instances containing 2000 instances each (1600 for training,
200 for validation and 200 for test). The first one contains
instances with 10 bins and 100 items whereas the second
one contains instances with 20 bins and 400 items. For each
dataset, all instances are generated by randomly sampling
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capacities, weights and profits using a Gaussian distribution
of mean y and variance o2 and the values are clipped to
an interval [a, b]. The values u, 02, a and b are determined
from the instance e10100 for the first dataset, and from the
instance 20400 for the second one ''. More specifically,
for each type of data (capacities, weights and profits), © and
o2 are given by the average and variance of the values of
the instance, and a and b are fixed to 0.8 times the minimum
value and 1.2 times the maximum value, respectively.

E. Hyperparameters

Model Architecture For all datasets, the MLP F' from
initial features to high-dimensional is implemented as a
linear transformation (8 to 250) followed by a non-linear
activation. Then, we consider a linear transformation to the
size of the internal representation of nodes for the GNN.

For MC we use 5 blocks, while for GA we use only 3. The
fact that for GA are sufficient fewer layers can be explained
by looking at the bipartite-graph representation of the in-
stance that is denser for GA than for MC. For instance, in
MC, a variable xfj appears in three constraints involving
several variables while in GA, each variable x;; appears in
|I| + |J| constraints so the propagation needs fewer convo-
lutions for the information to be propagated.

The hidden layer of the MLP in the second sub-layer of each
block has a size of 1000.

The decoder is an MLP with one hidden layer of 250 nodes.

All non-linear activations are implemented as ReLU. Only
the one for the output of the GA is a softplus.

The dropout rate is set to 0.25.

Optimiser Specifications We use as optimizer RAdam,
with learning rate 0.0001 for MC and 0.00001 for GA,
a Clip Norm (to 5) and exponential decay 0.9, step size
100000 and minimum learning rate 10~ 10,

GPU specifics For the training on the datasets MCc-SML-
40, Mc-B1G-40, GA-10-100 and Ga-20-400 we use GPUs
Nvidia Quadro RTX 5000 with 16 GB of RAM. To train the
datasets Mc-SML-VAR and Mc-BI1G-VAR we use Nvidia A40
GPUs accelerators with 48Gb of RAM. To test the perfor-
mance we use Nvidia A40 GPUs accelerators with 48Gb of
RAM for all models and all the datasets on validation and
test.

CPU specifics The warm starting of the proximal Bundle
in SMS++ needs only CPU, the experiments are done on

"nstances 10100 and €20400 are GA instances generated
by (Yagiura et al., 1999) and available at http://www.al.cm.
is.nagoya-u.ac.jp/~yagiura/gap/.
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Intel Core 17-8565U CPU @ 1.80GHz x 8.

F. k-NN

We consider the same features as for MLP (see Appendix G)
and independently select for each dualized constraint c the
20 nearest neighbors with respect to the Euclidean distance.
The LM predicted for c is the mean of the LMs associated
with its neighbors. It is important to note that it is a super-
vised learning method while ours is an unsupervised one.
We tried different values of k from 1 to 20 and we find that
the best choice is 20. For the implementation we use the
julia package NearestNeighbors.jl 2.

G. Features used for MLP and k-NN

Since MLP and k-NN do not use a mechanism such as
convolution to propagate the information between the repre-
sentations of the dualized constraints, we consider for initial
features of each dualized constraint all the information pro-
vided to our model (see Appendix A for details), as well as
a weighted linear combination of variable feature vectors.
The weights are the variable coefficients in that constraint
and each feature vector contains the initial features provided
to our model for the variable and the following additional
information:

¢ the mean values and deviations of the coefficients of
that variable on the dualized constraints, and on the
non dualized ones,

* its lower and upper bounds.

H. Ablation Study - Number of Layers

In Tables 5 and 6, we present the gaps of three different
architectures with varying numbers of layers. The columns
represent three different architectures: ”Ours,” the archi-
tecture we introduce in this work; ”Nair,” the architecture
proposed by Nair et al. in (Nair et al., 2020); and ’Gasse,”
the one presented in (Gasse et al., 2019). The rows indicate
an incremental number of layers from one to ten.

From Table 6, we observe that for GA, using more than
four layers seems to be counterproductive. This can be
explained by examining the bipartite graph representation
of the instance. In the Generalized Assignment problem, the
shortest path between two different nodes associated with
the relaxed constraints always consists of four edges. For
the Multi-commodity problem, there is no similar bound,
as the shortest path between two relaxed nodes depends on
the specific structure of the instance. From Table 5, we
see that adding more than six layers leads to diminishing

Pnttps://juliapackages.com/p/
nearestneighbors
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Table 5. Test set 1 sample - MC-SML-40 - GAP

#Layers | Ours Nair Gasse
1| 756 7.63 9.59
21527 523 10.11
31 318 330 947
41 262 306 272
51229 247 2.59
6| 190 223 2.76
7] 1.80 191 2.80
8| 1.69 176  2.68
91 164 170 284

10 | 1.56 1.56  3.16

Table 6. Test set 1 sample - GA-10-100 - GAP (s)

#Layers | Ours Nair Gasse
1] 0553 0.557 0.70
210543 0.546  0.699
310533 0524 0.695
410509 0524 0.690
510512 0517 0.682
6 | 0513 0.518 0.720
7 | 0510 0.511 0.785
810512 0517 0.752
910511 0515 0.785

10 | 0.512 0.516 0.722

improvements, though we can still enhance solution quality
by increasing the number of layers.

Gasse’s architecture is also more unstable, which could re-
sult in significantly higher gaps with some layers compared
to fewer layers. This instability may be due to the absence of
Layer Normalization, leading to very high gradient values.

Notice that the results in Table 5 and Table 6 show small
differences compared to the ones on the main part for 5
layers, as they correspond to other runs of the training.

I. Subgradient Method Initialization

In Table 7 we perform the same experiments as Table 2
with a solver implementing the subgradient method. We see
that subgradient method requires much more time than the
bundle method, even for low precision levels. The initializa-
tion yields more or less the same results. This is likely due
to the step size scheduler, which always starts with a step
size of one. Then, at a given iteration ¢, the learning rate
is ﬁ, where m is the total number of iterations where
the predicted value is worse than the previous iteration. An
accurate choice of step size can lead to better results, par-
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Table 7. Impact of initialization for a Sub-Gradient solver on MC-BIG-VAR. We consider initialization from the null vector (zero), the
continuous relaxation duals (CR), and our model (Ours). We set the maximum iterations to 100000.

zero

CR

Ours

time (s)

# iter.

time (s)

# iter.

time (s)

# iter.

275.09 (£ 166.59 )

86755.53 (£ 28222.26)

284.74 (£ 184.58)

85899.10 (£ 29126.65)

271.73 (£ 168.97)

84882.55 (£ 29704.22)

281.00 (£ 168.63 )

88175.07 ( £ 27438.57)

291.40 (£ 186.65)

87513.27 (£ 28093.75)

278.55 (£ 171.83)

86526.59 (£ 29003.66 )

281.00 (£ 168.64 )

88176.12 ( £ 27439.02)

291.66 (£ 186.67)

87605.24 (£ 28110.87)

278.58 (4 171.82)

86540.76 (£ 29003.68 )

281.00 (£ 168.64 )

88176.12 ( £ 27439.02)

291.66 (£ 186.67)

87605.24 (£ 28110.87)

278.58 (4 171.82)

86540.76 (£ 29003.68 )

ticularly for non-zero initialization. However, this should
be done specifically for each initialization (and possibly for
each instance), which is beyond the scope of this work.
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