

Local Community Computation

Rushed Kanawati LIPN, CNRS UMR 7030; USPC http://lipn.fr/~kanawati

rushed.kanawati@lipn.univ-paris13.fr

PLAN

Introduction

- 2 Community detection
 - Local community detection

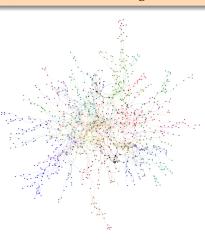
COMPLEX NETWORK

Definition

Graphs modeling (direct/indirect) interactions among actors.

Basic topological features

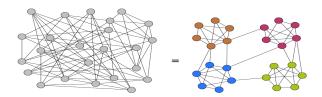
- ▶ Low Density
- ▶ Small Diameter
- ▶ Heterogeneous degree distribution.
- High Clustering coefficient
- ► Community structure



COMMUNITY?

Definitions

- ► A dense subgraph loosely coupled to other modules in the network
- A community is a set of nodes seen as one by nodes outside the community
- ► A subgraph where almost all nodes are linked to other nodes in the community.
- **...**



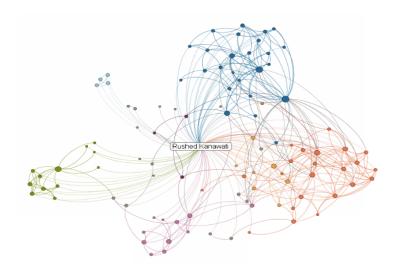
COMMUNITY DETECTION PROBLEM

▶ Local community identification (ego-centred).

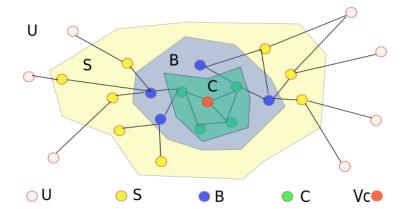
Network partition computing

Overlapping community detection

LOCAL COMMUNITY



LOCAL COMMUNITY



LOCAL COMMUNITY

- 1 $C \leftarrow \{\phi\}, B \leftarrow \{n_0\} S \leftarrow \Gamma(n_0)$
- $2 \quad Q \leftarrow 0 / *$ a community **quality function** */
- While *Q* can be enhanced Do
 - 1 $n \leftarrow argmax_{n \in S}Q$
 - $2 \quad S \leftarrow S \{n\}$
 - $D \leftarrow D + \{n\}$
 - 4 update B, S, C
- 4 Return D

QUALITY FUNCTIONS: EXEMPLES I

Local modularity R

[Cla05]

$$R = \frac{B_{in}}{B_{in} + B_{out}}$$

Local modularity M

[LWP08]

$$M = \frac{D_{in}}{D_{out}}$$

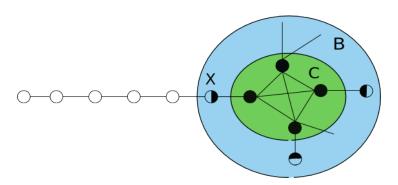
Local modularity L

[CZG09]

$$L = \frac{L_{in}}{L_{ex}}$$
 where : $L_{in} = \frac{\sum\limits_{i \in D} \|\Gamma(i) \cap D\|}{\|D\|}$, $L_{ex} = \frac{\sum\limits_{i \in B} \|\Gamma(i) \cap S\|}{\|B\|}$

And many many others ... [YL12]

LOCAL MODULARITY LIMITATIONS: AN EXEMPLE



- Blank nodes enhance B_{in} and D_{in} without affecting B_{out} and D_{out}
- Bank nodes will be added if M or R modularities are used
- Low precision computed communities
- Proposed solution: Ensemble approaches

MULTI-OBJECTIVE LOCAL COMMUNITY IDENTIFICATION

Three main approaches

Combine then Rank

Ensemble ranking

Ensemble clustering

COMBINE THEN RANK

Principle

Let $Q_i(s)$ be the local modularity value induced by node $s \in S$

$$\widetilde{Q_i(s)} = \begin{cases} \frac{Q_i(s) - \min_{u \in S} Q_i(u)}{\max_{u \in S} Q_i(u) - \min_{u \in S} Q_i(u)} & \text{if } \max_{u \in S} Q_i(u) \neq \min_{u \in S} Q_i(u) \\ 1 & \text{otherwise} \end{cases}$$

$$Q_{com}(s) = \frac{1}{k} \sum_{i=1}^{k} \widetilde{Q_i(s)}$$

Principle

- \triangleright Rank *S* in function of each local modularity Q_i
- ► Select the winner after applying **ensemble ranking** approach
- ▶ What stopping criteria to apply?

Stopping criteria

- ► *Strict policy* : All modularities should be enhanced
- ▶ Majority policy : Majority of local modularities are enhanced
- ▶ Least gain policy: At least one local modularity is enhanced.

ENSEMBLE RANKING

Problem

- ▶ Let *S* be a set of elements to rank by *n* rankers
- ▶ Let σ_i be the rank provided by ranker i
- ► Goal: Compute a consensus rank of *S*.

ENSEMBLE RANKING

Problem

- ▶ Let *S* be a set of elements to rank by *n* rankers
- ▶ Let σ_i be the rank provided by ranker i
- ► Goal: Compute a consensus rank of *S*.

Déjà Vu: Social choice algorithms, but ...

- Small number of voters and big number of candidates
- ▶ Algorithmic efficiency is required
- ▶ Output could be a complete rank

Jean-Charles de Borda [1733-1799]

Borda

- ▶ Borda's score of $i \in \sigma_k$: $B_{\sigma_k}(i) = \{count(j) | \sigma_k(j) < \sigma_k(i) ; j \in \sigma_k\}.$
 - ► Rank elements in function of $B(i) = \sum_{t=1}^{k} w_t \times B_{\sigma_t}(i)$.

Marquis de Condorcet [1743-1794]

Condorcet

- ➤ The winner is the candidate who defeats every other candidate in pairwise majority-rule election
- ► The winner may not exists

Marquis de Condorcet [1743-1794]

Condorcet

- ➤ The winner is the candidate who defeats every other candidate in pairwise majority-rule election
- ► The winner may not exists

Condorcet ≠ Borda

- ▶ Votes : $6 \times A \succ B \succ C$, $4 \times B \succ C \succ A$
- ▶ Borda winner : B
- ► Condorcet winner : A

Extended Condorcet criterion

If for every $a \in A$ and $b \in B$, majority prefers a to b the all elements in A should be ranked before any element in B.

Kenneth Arrow, 1921-

Arrow's Theorem

No vote rule can have the following desired proprieties:

- ▶ Every result must be achievable somehow.
- ► Monotonicity.
- ▶ Independence of irrelevant attributes.
- ▶ Non-dictatorship.

John Kemeny 1926-1992

Optimal Kemeny rank aggregation

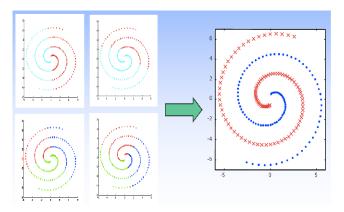
- Let d() be distance over rankings σ_i (ex. Kendall τ , Spearman's footrule)
- ▶ Find π that minimise $\sum_i d(\pi, \sigma_i)$
- ▶ NP-Hard problem
- ▶ Approximation : Local Kemeny : two adjacent candidats are in the good order.
- ► **Local Kemeny** : Apply Bubble sort using the *majority preference partial order relationship*
- ► **Approximate Kemeny** : Apply QuickSort

ENSEMBLE CLUSTERING APPROACHES

Principle

- ▶ Let $C_{v_q}^{Q_i}$ be the the local community of v_q applying Q_i .
- ▶ We have a natural partition : $P_{Q_i} = \{C_{v_q}^{Q_i}, \overline{C_{v_q}^{Q_i}}\}$
- ▶ Apply an ensemble clustering approach.

ENSEMBLE CLUSTERING: PRINCIPLE



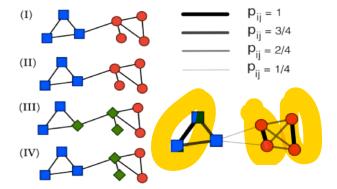
from A. Topchy et. al. Clustering Ensembles: Models of Consensus and Weak Partitions. PAMI, 2005

ENSEMBLE CLUSTERING: APPROACHES

CSPA: Cluster-based Similarity Partitioning Algorithm

- Let K be the number of basic models, $C_i(x)$ be the cluster in model i to which x belongs.
- ▶ Define a similarity graph on objects : $sim(v, u) = \frac{\sum\limits_{i=1}^{K} \delta(C_i(v), C_i(u))}{K}$
- Cluster the obtained graph:
 Isolate connected components after pruning edges
 Apply community detection approach
- ► Complexity : $\mathcal{O}(n^2kr)$: n # objects, k # of clusters, r# of clustering solutions

CSPA: EXEMPLE



from Seifi, M. Cœurs stables de communautés dans les graphes de terrain. Thèse de l'université Paris 6, 2012

ENSEMBLE CLUSTERING: APPROACHES

HGPA: HyperGraph-Partitioning Algorithm

- ► Construct a hypergraph where nodes are objects and hyperedges are clusters.
- ▶ Partition the hypergraph by minimizing the number of cut hyperedges
- ► Each component forms a meta cluster
- ► Complexity : $\mathcal{O}(nkr)$

ENSEMBLE CLUSTERING: APPROACHES

MCLA: Meta-Clustering Algorithm

- ▶ Each cluster from a base model is an item
- ▶ Similarity is defined as the percentage of shared common objects
- ► Conduct meta-clustering on these clusters
- Assign an object to its most associated meta-cluster
- ► Complexity : $\mathcal{O}(nk^2r^2)$

EXPERIMENTS

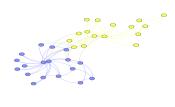
Protocol ([Bag08])

1 Apply the different algorithms on nodes in networks for which a ground-truth community partition is known.

2 For each node compute the distance between the real-partition and the computed one (Ex. NMI [Mei03])

3 Compute average and standard deviation for the network.

DATASETS



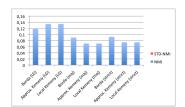
Zachary's Karate Club

US Political books network

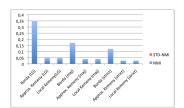
Football network

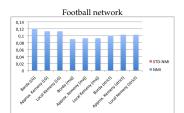
Dolphins social network

RESULTS: EVALUATING STOPPING CRITERIA (NMI)



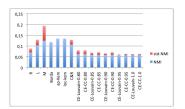
US Political books network



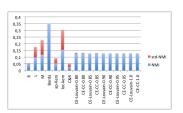


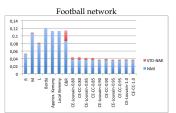
Dolphins social network

RESULTS: COMPARATIVE RESULTS (NMI)



US Political books network





Dolphins social network

BIBLIOGRAPHY I

J. P. Bagrow, Evaluating local community methods in networks, J. Stat. Mech. 2008 (2008), no. 5, P05001.

Aaron Clauset, Finding local community structure in networks, Physical Review E (2005).

Jiyang Chen, Osmar R. Zaïane, and Randy Goebel, Local community identification in social networks, ASONAM, 2009, pp. 237–242.

Feng Luo, James Zijun Wang, and Eric Promislow, Exploring local community structures in large networks, Web Intelligence and Agent Systems 6 (2008), no. 4, 387–400.

Marina Meila, Comparing clusterings by the variation of information, COLT (Bernhard Schölkopf and Manfred K. Warmuth, eds.), Lecture Notes in Computer Science, vol. 2777, Springer, 2003, pp. 173–187.

BIBLIOGRAPHY II

Jaewon Yang and Jure Leskovec, *Defining and evaluating network communities based on ground-truth*, ICDM (Mohammed Javeed Zaki, Arno Siebes, Jeffrey Xu Yu, Bart Goethals, Geoffrey I. Webb, and Xindong Wu, eds.), IEEE Computer Society, 2012, pp. 745–754.