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COMPLEX NETWORK

Definition
Graphs modeling (direct/indirect) interactions among actors.

Basic topological features
I Low Density

I Small Diameter

I Heterogeneous degree
distribution.

I High Clustering
coefficient

I Community structure
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COMMUNITY ?

Definitions
I A dense subgraph loosely coupled to other modules in the

network
I A community is a set of nodes seen as one by nodes outside the

community
I A subgraph where almost all nodes are linked to other nodes in

the community.
I . . .
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COMMUNITY DETECTION PROBLEM

I Local community identification (ego-centred).

I Network partition computing

I Overlapping community detection
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LOCAL COMMUNITY
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LOCAL COMMUNITY
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LOCAL COMMUNITY

1 C← {φ}, B← {n0} S← Γ(n0)

2 Q← 0 /* a community quality function */

3 While Q can be enhanced Do

1 n← argmaxn∈SQ
2 S← S− {n}
3 D← D + {n}
4 update B,S,C

4 Return D
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QUALITY FUNCTIONS : EXEMPLES I

Local modularity R [Cla05]

R = Bin
Bin+Bout

Local modularity M [LWP08]

M = Din
Dout

Local modularity L [CZG09]

L = Lin
Lex

where : Lin =

∑
i∈D
‖Γ(i)∩D‖

‖D‖ , Lex =

∑
i∈B
‖Γ(i)∩S‖

‖B‖

And many many others . . . [YL12]
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LOCAL MODULARITY LIMITATIONS: AN EXEMPLE

� Blank nodes enhance Bin and Din without affecting Bout and Dout

� Bank nodes will be added if M or R modularities are used
� Low precision computed communities
� Proposed solution: Ensemble approaches
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MULTI-OBJECTIVE LOCAL COMMUNITY

IDENTIFICATION

Three main approaches

Combine then Rank
Ensemble ranking
Ensemble clustering

11 / 32



INTRODUCTION Community detection

COMBINE THEN RANK

Principle

Let Qi(s) be the local modularity value induced by node s ∈ S

Q̃i(s) =


Qi(s)−min

u∈S
Qi(u)

max
u∈S

Qi(u)−min
u∈S

Qi(u) if max
u∈S

Qi(u) 6= min
u∈S

Qi(u)

1 otherwise

Qcom(s) = 1
k

k∑
i=1

Q̃i(s)
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ENSEMBLE RANKING APPROACHES

Principle

I Rank S in function of each local modularity Qi

I Select the winner after applying ensemble ranking approach
I What stopping criteria to apply ?

Stopping criteria

I Strict policy : All modularities should be enhanced
I Majority policy : Majority of local modularities are enhanced
I Least gain policy : At least one local modularity is enhanced.
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ENSEMBLE RANKING

Problem
I Let S be a set of elements to rank by n rankers
I Let σi be the rank provided by ranker i
I Goal: Compute a consensus rank of S.

Déjà Vu: Social choice algorithms, but . . .

I Small number of voters and big number of candidates
I Algorithmic efficiency is required
I Output could be a complete rank
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ENSEMBLE RANKING : APPROACHES

Jean-Charles de Borda [1733-1799]

Borda
I Borda’s score of i ∈ σk :

Bσk(i) = {count(j)|σk(j) < σk(i) ; j ∈ σk}.
I Rank elements in function of

B(i) =
∑k

t=1 wt × Bσt(i).
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ENSEMBLE RANKING : APPROACHES

Marquis de Condorcet [1743-1794]

Condorcet
I The winner is the candidate who defeats

every other candidate in pairwise
majority-rule election

I The winner may not exists

Condorcet 6= Borda
I Votes : 6× A � B � C, 4× B � C � A
I Borda winner : B
I Condorcet winner : A
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ENSEMBLE RANKING : APPROACHES

Extended Condorcet criterion
If for every a ∈ A and b ∈ B, majority prefers a to b the all elements in A
should be ranked before any element in B.

Kenneth Arrow, 1921-

Arrow’s Theorem
No vote rule can have the following desired
proprieties :
I Every result must be achievable somehow.
I Monotonicity.
I Independence of irrelevant attributes.
I Non-dictatorship.
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ENSEMBLE RANKING : APPROACHES

John Kemeny 1926-1992

Optimal Kemeny rank aggregation

I Let d() be distance over rankings σi (ex.
Kendall τ , Spearman’s footrule)

I Find π that minimise
∑

i d(π, σi)

I NP-Hard problem

I Approximation : Local Kemeny : two
adjacent candidats are in the good order.

I Local Kemeny : Apply Bubble sort using the
majority preference partial order relationship

I Approximate Kemeny : Apply QuickSort
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ENSEMBLE CLUSTERING APPROACHES

Principle

I Let CQi
vq be the the local community of vq applying Qi.

I We have a natural partition : PQi = {CQi
vq ,C

Qi
vq }

I Apply an ensemble clustering approach.
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ENSEMBLE CLUSTERING: PRINCIPLE

from A. Topchy et. al. Clustering Ensembles: Models of Consensus and Weak Partitions. PAMI, 2005
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ENSEMBLE CLUSTERING: APPROACHES

CSPA: Cluster-based Similarity Partitioning Algorithm

I Let K be the number of basic models, Ci(x) be the cluster in model
i to which x belongs.

I Define a similarity graph on objects : sim(v,u) =

K∑
i=1

δ(Ci(v),Ci(u))

K

I Cluster the obtained graph :
Isolate connected components after pruning edges
Apply community detection approach

I Complexity : O(n2kr) : n # objects, k # of clusters, r# of clustering
solutions
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CSPA : EXEMPLE

from Seifi, M. Cœurs stables de communautés dans les graphes de terrain. Thèse de l’université Paris 6, 2012
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ENSEMBLE CLUSTERING: APPROACHES

HGPA: HyperGraph-Partitioning Algorithm

I Construct a hypergraph where nodes are objects and hyperedges
are clusters.

I Partition the hypergraph by minimizing the number of cut
hyperedges

I Each component forms a meta cluster

I Complexity : O(nkr)
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ENSEMBLE CLUSTERING: APPROACHES

MCLA: Meta-Clustering Algorithm

I Each cluster from a base model is an item
I Similarity is defined as the percentage of shared common objects
I Conduct meta-clustering on these clusters
I Assign an object to its most associated meta-cluster

I Complexity : O(nk2r2)
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EXPERIMENTS

Protocol ([Bag08])

1 Apply the different algorithms on nodes in networks for which a
ground-truth community partition is known.

2 For each node compute the distance between the real-partition
and the computed one (Ex. NMI [Mei03])

3 Compute average and standard deviation for the network.
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DATASETS

Zachary’s Karate Club

US Political books network

Football network

Dolphins social network
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RESULTS : EVALUATING STOPPING CRITERIA (NMI)

Zachary’s Karate Club

US Political books network

Football network

Dolphins social network
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RESULTS : COMPARATIVE RESULTS (NMI)

Zachary’s Karate Club

US Political books network

Football network

Dolphins social network
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