Hierarchical Tilings

Thomas Fernique

Moscow, Spring 2011
(1) Formalism
(2) General construction
(3) Step-by-step example

2 General construction

(3) Step-by-step example

Back to Penrose

Remind Penrose tilings by Robinson triangles.

Back to Penrose

Robinson triangles can be grouped into Robinson macro-triangle.

Back to Penrose

This yields a new tiling by Robinson triangles (up to deflating).

Back to Penrose

Macro-tiles can thus be substituted to tiles (and conversely).

Combinatorial substitution

Definition (Combinatorial substitution)

A combinatorial substitution is a finite set of rules (P, Q, γ), where P is a tile, Q is a finite tiling called macro-tile, and $\gamma: \partial P \rightarrow \partial Q$ maps facets of P to disjoint facet sets of Q, called macro-facet.

Combinatorial substitution

Definition (Combinatorial substitution)

A combinatorial substitution is a finite set of rules (P, Q, γ), where P is a tile, Q is a finite tiling called macro-tile, and $\gamma: \partial P \rightarrow \partial Q$ maps facets of P to disjoint facet sets of Q, called macro-facet.

Let $\sigma=\left\{\left(P_{i}, Q_{i}, \gamma_{i}\right)_{i}\right\}$ be a combinatorial substitution.

Definition (Preimage)

Let T be a tiling by the P_{i} 's and T^{\prime} be a macro-tiling by the Q_{i} 's. If there is a bijection between tiles of T and macro-tiles of T^{\prime} preserving the combinatorial structure, then T is a preimage of T^{\prime}.

Consistency: any macro-tiling by the Q_{i} 's admits a preimage.

Limit set and non-periodicity

Definition (Limit set)

The limit set of a combinatorial substitution σ is the set Λ_{σ} of the tilings which admit an infinite sequence of preimages under σ.

Proposition

If tilings in Λ_{σ} have each a unique preimage, then none is periodic.

Can decorations enforce tilings to have this hierarchical structure?

Self-simulation

Let $\sigma=\left\{\left(P_{i}, Q_{i}, \gamma_{i}\right)_{i}\right\}$ be a consistent combinatorial substitution.

Definition

A decorated tile set τ is said to σ-self-simulate if there is a set of τ-macro-tiles and a map ϕ from these τ-macro-tiles to τ-tiles s.t.
(1) each τ-macro-tile \mathcal{Q} and $\phi(\mathcal{Q})$ form a decorated pair $\left(Q_{i}, P_{i}\right)$;
(2) any τ-tiling can uniquely be seen as a tiling by τ-macro-tiles;
(3) each τ-macro-tile \mathcal{Q} is combinatorially equivalent to $\phi(\mathcal{Q})$.

Self-simulation

Let $\sigma=\left\{\left(P_{i}, Q_{i}, \gamma_{i}\right)_{i}\right\}$ be a consistent combinatorial substitution.

Definition

A decorated tile set τ is said to σ-self-simulate if there is a set of τ-macro-tiles and a map ϕ from these τ-macro-tiles to τ-tiles s.t.
(1) each τ-macro-tile \mathcal{Q} and $\phi(\mathcal{Q})$ form a decorated pair $\left(Q_{i}, P_{i}\right)$;
(2) any τ-tiling can uniquely be seen as a tiling by τ-macro-tiles;
(3) each τ-macro-tile \mathcal{Q} is combinatorially equivalent to $\phi(\mathcal{Q})$.

Proposition

If τ is a tile set which σ-self-simulates, then all the τ-tilings are, once undecorated, in the limit set of σ.

Back again to Penrose

Decorated Robinson triangles σ-self-simulates (σ : first slide).

(1) Formalism

(2) General construction

(3) Step-by-step example

A self-simulating tile set τ

Consider $\sigma=\left\{\left(P_{i}, Q_{i}, \gamma_{i}\right)_{i}\right\}$, where each P_{i} appears in some Q_{j}. Let T_{1}, \ldots, T_{n} denote all the tiles which appear in the Q_{i} 's.

A self-simulating tile set τ

To enforce τ-tilings to be τ-macro-tilings: decorations specify tile neighbors within macro-tiles and mark macro-facets.

A self-simulating tile set τ

This yields so-called macro-indices on tile facets.

A self-simulating tile set τ

The macro-indices of facets of a τ-tile must then be encoded on the corresponding macro-facets of its simulating τ-macro-tile.

A self-simulating tile set τ

This yields so-called neighbor-indices on tile facets.

A self-simulating tile set τ

We force these neighbor-indices to come from the same tile T_{i}, called parent-tile, by carrying its index i between macro-facets, where it is converted into the suitable neighbor-index.

A self-simulating tile set τ

Such tile indices are encoded on facets by so-called parent-index.

A self-simulating tile set τ

This yields, once again, a new index on each tile facets...

A self-simulating tile set τ

But the trick is that the neighbor-indices and parent-indices of facets of a τ-tile can be encoded on the corresponding big enough macro-facets of the equivalent τ-macro-tile without any new index!

A self-simulating tile set τ

In big enough macro-tiles, we can then carry these pairs of neighbor/parent indices up to a central tile along a star-like network.

A self-simulating tile set τ

On internal facets not crossed by this network, we copy the macro-index on the neighbor-index (this redundancy is later used).

A self-simulating tile set τ

The pairs on a central τ-tile can be those of any non-central τ-tile (from which the central τ-tile is said to derive).

A self-simulating tile set τ

The τ-macro-tile with parent-index i is combinatorially equivalent to T_{i} endowed with the pairs of the central τ-tile. But is it a τ-tile?

A self-simulating tile set τ

If T_{i} is a central tile, then its pairs can be derived from any non-central τ-tile (as for any central tile)...

A self-simulating tile set τ

...in particular from the non-central τ-tile from which are also derived the pairs of the central τ-tile of our τ-macro-tile.

A self-simulating tile set τ

In this case, the equivalent decorated T_{i} is a derived central τ-tile.

A self-simulating tile set τ

Otherwise, consider the non-central τ-tile from which derives our central τ-tile; at least one facet is internal and not crossed by a network: its neighbor and macro indices are equal (by redundancy).

A self-simulating tile set τ

Thus, by copying the neighbor and parent indices (derivation)...

A self-simulating tile set τ

... one copies a macro-index on our central τ-tile, and thus on the whole corresponding network branch.

A self-simulating tile set τ

A tile on this k-th branch which also knows the parent-index i can then force this macro-index to be the one on the k-th facet of a decorated T_{i} (recall that all the decorated T_{i} have the same one).

A self-simulating tile set τ

In this case, the equivalent decorated T_{i} is the non-central τ-tile from which derives the central τ-tile of our τ-macro-tile.

Back to the limit set

τ self-simulates for $\sigma \rightsquigarrow$ the τ-tilings are (once undecorated) in Λ_{σ}.
Conversely, any tiling in Λ_{σ} can be decorated into a τ-tiling (easy).

Theorem

The limit set of a (suitable) combinatorial substitution is sofic.

Note 1: tilings in the limit set may be periodic. . . but not τ-tilings.
Note 2: such a general construction easily yields thousands of tiles!

(1) Formalism

(2) General construction
(3) Step-by-step example

Settings

Consider this combinatorial substitution with only one rule.

Settings

The network is a cross connecting external facets called ports.

Settings

Tiles are numbered; on facets: macro-, parent- and neighbor-indices.

Step 1

Indices are initially all undefined.

Step 1

Macro-indices: enforce any tilings to be a tiling by macro-tiles.

Step 2

Parent-indices outside the network \rightsquigarrow parent-tile $T_{i}(i=1, \ldots, 9)$.

Step 3

Neighbor-index of an internal facet not on the network: macro-index.

Step 3

Parent-tile \rightsquigarrow neighbor-index of an external facet not on the network.

Step 3

Parent-tile \rightsquigarrow neighbor-index of an external facet not on the network.

Step 4

Consider the non-central tiles on the network: T_{2}, T_{4}, T_{6} and T_{8}.

Step 4

Consider, e.g., T_{2}. Parent/neighbor pair on the North/South facets: any pair allowed on the North facet of the parent-tile.

Step 4

Parent-tiles T_{1} or T_{3} : only one decorated tile for each.

Step 4

	M	0	P	
M			12	
0			4	
12		1	12	
	14	4	14	

Parent-tiles T_{4}, T_{6}, T_{7} or T_{9} : 9 decorated tiles each.

Step 4

Parent-tiles T_{2} or T_{8} : no restriction $\rightsquigarrow 80$ decorated tiles each.

Step 5

25			$*$
45			
$*$			56
$*$		5	
	58	$*$	$*$

Parent/neighbor pairs of the central tile T_{5} : those of any noncentral tile \rightsquigarrow exactly twice more decorated tiles (i.e., 1656 at all).

Self-simulation

Consider a central tile (right) deriving from, say, a decorated T_{1}.

Self-simulation

This forces all the decorations of the corresponding macro-tile, with neighbor-indices on the network forcing a parent-tile T_{1} or T_{5}.

Self-simulation

If the parent-tile is T_{1}, then the macro-tile is combinatorially equivalent to the tile from which derive the pairs.

Self-simulation

Otherwise, it is combinatorially equivalent to its own central-tile.

Some references for this lecture:
围
Shahar Mozes, Tilings, substitution systems and dynamical systems generated by them, J. Anal. Math. 53 (1989).

居 Chaim Goodman-Strauss, Matching rules and substitution tilings, Ann. Math. 147 (1998).

E- Thomas Fernique, Nicolas Ollinger, Combinatorial substitutions and sofic tilings, in proc. JAC'10 (2010).

These slides and the above references can be found there:
http://www.lif.univ-mrs.fr/~fernique/qc/

