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This yields a new tiling by Robinson triangles (up to deflating).
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Back to Penrose
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Macro-tiles can thus be substituted to tiles (and conversely).



Formalism

Combinatorial substitution

Definition (Combinatorial substitution)

A combinatorial substitution is a finite set of rules (P, Q,~), where
P is a tile, Q is a finite tiling called macro-tile, and v : 9P — 0Q
maps facets of P to disjoint facet sets of @, called macro-facet.




Formalism

Combinatorial substitution

Definition (Combinatorial substitution)

A combinatorial substitution is a finite set of rules (P, Q,~), where
P is a tile, Q is a finite tiling called macro-tile, and v : 9P — 0Q
maps facets of P to disjoint facet sets of @, called macro-facet.

Let o = {(P;, Qi,7i)i} be a combinatorial substitution.

Definition (Preimage)

Let T be a tiling by the P;'s and T’ be a macro-tiling by the Q;'s.
If there is a bijection between tiles of T and macro-tiles of T’
preserving the combinatorial structure, then T is a preimage of T'.

Consistency: any macro-tiling by the Q;'s admits a preimage.



Formalism

Limit set and non-periodicity

Definition (Limit set)

The limit set of a combinatorial substitution o is the set A, of the
tilings which admit an infinite sequence of preimages under o.

Proposition

If tilings in A, have each a unique preimage, then none is periodic.

Can decorations enforce tilings to have this hierarchical structure?



Formalism

Self-simulation

Let o = {(P;j, Qi,7i)i} be a consistent combinatorial substitution.

A decorated tile set 7 is said to o-self-simulate if there is a set of
T-macro-tiles and a map ¢ from these 7-macro-tiles to 7-tiles s.t.

@ each 7-macro-tile Q and ¢(Q) form a decorated pair (Q;, P;);

@ any 7-tiling can uniquely be seen as a tiling by 7-macro-tiles;

@ each 7-macro-tile Q is combinatorially equivalent to ¢(Q).




Formalism

Self-simulation

Let o = {(P;j, Qi,7i)i} be a consistent combinatorial substitution.

A decorated tile set 7 is said to o-self-simulate if there is a set of
T-macro-tiles and a map ¢ from these 7-macro-tiles to 7-tiles s.t.

@ each 7-macro-tile Q and ¢(Q) form a decorated pair (Q;, P;);

@ any 7-tiling can uniquely be seen as a tiling by 7-macro-tiles;

@ each 7-macro-tile Q is combinatorially equivalent to ¢(Q).

Proposition

If 7 is a tile set which o-self-simulates, then all the 7-tilings are,
once undecorated, in the limit set of o.
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Back again to Penrose
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Decorated Robinson triangles o-self-simulates (o first slide).
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General construction

A self-simulating tile set 7

Consider o = {(P;, Qi,7i)i}, where each P; appears in some Q;.
Let T1,..., T, denote all the tiles which appear in the Q;'s.



General construction

A self-simulating tile set 7

To enforce 7-tilings to be 7-macro-tilings: decorations specify tile
neighbors within macro-tiles and mark macro-facets.



General construction

A self-simulating tile set 7

SR

This yields so-called macro-indices on tile facets.



General construction

A self-simulating tile set 7

The macro-indices of facets of a 7-tile must then be encoded on
the corresponding macro-facets of its simulating 7-macro-tile.



General construction

A self-simulating tile set 7

This yields so-called neighbor-indices on tile facets.



General construction
A self-simulating tile set 7

We force these neighbor-indices to come from the same tile T;,
called parent-tile, by carrying its index i between macro-facets,
where it is converted into the suitable neighbor-index.



General construction
A self-simulating tile set 7

Such tile indices are encoded on facets by so-called parent-index.



General construction

A self-simulating tile set 7

This yields, once again, a new index on each tile facets. . .



General construction
A self-simulating tile set 7

But the trick is that the neighbor-indices and parent-indices of
facets of a 7-tile can be encoded on the corresponding big enough
macro-facets of the equivalent 7-macro-tile without any new index!




General construction

A self-simulating tile set 7

In big enough macro-tiles, we can then carry these pairs of neigh-
bor/parent indices up to a central tile along a star-like network.



General construction

A self-simulating tile set 7

On internal facets not crossed by this network, we copy the
macro-index on the neighbor-index (this redundancy is later used).




General construction

A self-simulating tile set 7

The pairs on a central 7-tile can be those of any non-central 7-tile
(from which the central 7-tile is said to derive).




General construction
A self-simulating tile set 7

The 7-macro-tile with parent-index i is combinatorially equivalent
to T; endowed with the pairs of the central 7-tile. But is it a 7-tile?




General construction

A self-simulating tile set 7

If T; is a central tile, then its pairs can be derived from any
non-central 7-tile (as for any central tile). ..



General construction

A self-simulating tile set 7

...in particular from the non-central 7-tile from which are also
derived the pairs of the central 7-tile of our 7-macro-tile.



A self-simulating tile set 7

In this case, the equivalent decorated T; is a derived central 7-tile.



General construction
A self-simulating tile set 7

Otherwise, consider the non-central 7-tile from which derives our
central 7-tile; at least one facet is internal and not crossed by
a network: its neighbor and macro indices are equal (by redundancy).



A self-simulating tile set 7

Thus, by copying the neighbor and parent indices (derivation). ..



General construction

A self-simulating tile set 7

...one copies a macro-index on our central 7-tile, and thus on the
whole corresponding network branch.



General construction
A self-simulating tile set 7

A on this k-th branch which also knows the parent-index / can
then force this macro-index to be the one on the k-th facet of a
decorated T; (recall that all the decorated T; have the same one).



General construction

A self-simulating tile set 7

In this case, the equivalent decorated T; is the non-central 7-tile
from which derives the central 7-tile of our 7-macro-tile.



General construction

Back to the limit set

7 self-simulates for o ~~ the 7-tilings are (once undecorated) in A,.

Conversely, any tiling in A, can be decorated into a 7-tiling (easy).

The limit set of a (suitable) combinatorial substitution is sofic.

Note 1: tilings in the limit set may be periodic. .. but not 7-tilings.

Note 2: such a general construction easily yields thousands of tiles!
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© Step-by-step example



Step-by-step example

Settings

S

Consider this combinatorial substitution with only one rule.



Step-by-step example

Settings

The network is a cross connecting external facets called ports.



Step-by-step example

Settings

Tiles are numbered; on facets: macro-, parent- and neighbor-indices.



Step-by-step example

L S 3 ok ok L S 3
1 2 3
% *| ES *
ok sk % L
% *| EIS *
s T, # = T, #p T, =
4 5 6
% *| ES *
s L, o« T, # ¢ T, =
7 8 9
% *| % ES *

Indices are initially all undefined.



M % % P ok %k M % %
M T 12| 12 T 13| 13 T M
% %| % S %

1 2 3
% *| |% EIES *

14 % % 25 %k % 36 % %

14 % % 25 % % 36 * *
P 45| 45 56| 56 P
« T, o« ¢ T, # ¢ T, =

4 5 6
% *| % % % *

47 % % 58 % %k 69 k3

47 * % 58 k% % 69 k%
M 78| 78 89| 89 M
T, 4+ T, « T, =

7 8 9
% % |% EINES *
\Y Pk % M

Step-by-step example

Macro-indices: enforce any tilings to be a tiling by macro-tiles.



M 0 ¥ Pk k M 0 %
M T 12| 12 T 13| 13 T M
0 i| | i | 0

1 2 3
* *|F *|F *

14 i % 25 k& & 36 0

14 i * 25 % ¥ 36 i ¥
P 45| @5 56| 56 P
e T, #p T, #p T, «

4 S 6
% *|* *|* *

47 i 58 % % 69 i

47 i ¥ 58 % ok 69 i ¥
M T 78| 18 T 89| B9 T M
0 il | i | 0

7 8 9
* *|F *|F *
M0 P % % M0

Step-by-step example

Parent-indices outside the network ~~ parent-tile T; (i =1,...,9).



Step-by-step example

M 0 * P * % M 0 *
M 12| 12 13 13 M
0 T il | T i| | T 0
* L) e 2 5 s 3 .

14 i 14 25 % % 36 i 36

14 i 14 25 % % 36 1 36
P 45| ps 56| 56 P

47 i a1 S8 % % 69 i 69

a7 i 47 58 % % 69 i 69
M 78| 18 89| B89 M
0 T il |i T i| |i T 0
% T 18| s 8 5o Bo ¥

M0 % P % M0 %

Neighbor-index of an internal facet not on the network: macro-index.



M 0 M P * % M 0 M
M 12| 12 13 13 M
0 T 1| |1 T 1| |1 T 0
M L) e 2 5 s 3 1

14 1 14 25 % % 36 1 36

14 1 14 25 % % 36 1 36
P 45| ps 56| 56 P

47 1 a7 S8 % % 69 1 69

a7 1 47 58 % 6 1 69
M 78| 18 89| B89 M
0 T 1] |1 T 1| |1 T 0
M T 18| s 8 50| Bo ? 1

M 0 14 P M 0 14

Step-by-step example

Parent-tile ~» neighbor-index of an external facet not on the network.



Step-by-step example

M 0P P * % M 0P
M 12| 12 13 13 M
0 T 2| |2 T 2| |2 T 0
12 L) e 2 5 s 3 s
14 2 14 25 % % 36 2 36
14 2 14 25 % % 36 2 36
P 45| ps 56| 56 P
47 2 a1 S8 % % 69 2 69
a7 2 47 58 % ¥ 69 2 69
M 78| 18 89| B89 M
0 T 2| |2 T 2| |2 T 0
12 T 18| s 8 50| Bo ? 1
M 0 25 P M 0 25

Parent-tile ~» neighbor-index of an external facet not on the network.



M 0 M P * % M 0 M
M 12| 12 13 13 M
0 T 1| |1 T 1| |1 T 0
M L) e 2 5 s 3 1

14 1 14 25 % % 36 136

14 1 14 25 % ¥ 36 1 36
P 45| ps 56| 56 P

47 1 a7 S8 % % 69 1 69

47 1 47 58 % =% 69 1 69
M 78| 18 89| B89 M
0 T 1] |1 T 1 |1 T 0
M T 18| s 8 s ? 1

M 0 14 P M 0 14

Step-by-step example

Consider the non-central tiles on the network: T,, T, Te and Tg.



M 0 M P * % M 0 M
M 12| 12 13 13 M
0 T 1| |1 T 1| |1 T 0
M L) e 2 5 s 3 1

14 1 14 25 % % 361 36

14 1 14 25 % % 36 1 36
P 45| ps 56| 56 P

47 1 a7 S8 % % 69 1 69

a7 1 47 58 % % 69 1 69
M 78| 18 89| B89 M
0 T 1] |1 T 1| |1 T 0
M T 18| s 8 50| Bo ? 1

M 0 14 P M 0 14

Step-by-step example

Consider, e.g., Tp. Parent/neighbor pair on the North/South facets:
any pair allowed on the North facet of the parent-tile.



M 0 M P 0M M 0 M
M 12| 12 13 13 M
0 T 1| |1 T 1| |1 T 0
M L) e 2 5 s 3 1

14 1 14 25 0M 36 1 36

14 1 14 25 % % 36 1 36
P 45| ps 56| 56 P

47 1 a7 S8 % % 69 1 69

a7 1 47 58 % % 69 1 69
M 78| 18 89| B89 M
0 T 1] |1 T 1| |1 T 0
M T 18| s 8 50| Bo ? 1

M 0 14 P M 0 14

Parent-tiles T1 or T3: only one decorated tile for each.

Step-by-step example




Step-by-step example

M 0P P i14 M 0P
M 12| 12 13 13 M
0 T 4| |4 T 4| |4 T 0
12 L) e 2 5 s 3

14 4 14 25 i 14 36 4 36

14 4 14 25 % % 36 4 36
P 45| Us 56| 56 P

47 4 47 58 % % 69 4 69

47 4 47 58 % % 69 4 69
M 78| 18 89| B89 M
0 T 4| |4 T 4| |4 T 0
12 T 18| s 8 50| Bo ? n

M0 25 P M 0 25

Parent-tiles T4, Tg, T7 or Tg: 9 decorated tiles each.



Step-by-step example

M 0P P i jk M 0P
M 12| 12 13 13 M
0 T 2| |2 T 2| |2 T 0
12 L) e 2 5 s 3 i
14 2 14 25 i jk 36 2 36
14 2 14 25 % *® 36 2 36
P 45| ps 56| 56 P
% T %[ |% T e T %
47 2 a1 S8 % % 69 2 69
a7 2 47 58 % % 69 2 69
M 78| 18 89| B89 M
0 T 2| |2 T 2| |2 T 0
12 T 18| s 8 50| Bo ? n
M 0 25 P M 0 25

Parent-tiles T, or Tg: no restriction ~~ 80 decorated tiles each.



Step-by-step example

Parent/neighbor pairs of the central tile Ts: those of any non-
central tile ~» exactly twice more decorated tiles (i.e., 1656 at all).



Step-by-step example

Self-simulation

M 0P

14 2 14

Consider a central tile (right) deriving from, say, a decorated Tj.



Step-by-step example

Self-simulation

M 1212 1313 M

% 12112 1313 *

M 12 P 4545 5656 P

2 12 12 12112 12112 12
14 2 14 47 i 47 58 2 14 69 i 69

M 7878 89189 M

This forces all the decorations of the corresponding macro-tile,
with neighbor-indices on the network forcing a parent-tile T7 or Ts.



Step-by-step example

Self-simulation

M 1212 1313 M

M 12{12 1313 12

M 12 P 4545 5656

2 12 12 12112 12112 12
14 2 14 47 1 47 58 2 14 69 1 69

M 7878 89189 M

If the parent-tile is Ti, then the macro-tile is combinatorially
equivalent to the tile from which derive the pairs.



Step-by-step example

Self-simulation

M 1212

—
)
—
1)
=

-
-
=

4s 12{12 1313 56

2 12 12 12112 12112 12

14 2 14 47 5 47 58 2 14 69 5
47 5 47 58 2 14 69 5 69

M 7878 89189 M

45 78778 89 ’89 56

Otherwise, it is combinatorially equivalent to its own central-tile.
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These slides and the above references can be found there:

http://www.lif .univ-mrs.fr/~fernique/qc/
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