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Back to Penrose

Remind Penrose tilings by Robinson triangles.
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Back to Penrose

Robinson triangles can be grouped into Robinson macro-triangle.
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Back to Penrose

This yields a new tiling by Robinson triangles (up to deflating).
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Back to Penrose

Macro-tiles can thus be substituted to tiles (and conversely).
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Combinatorial substitution

Definition (Combinatorial substitution)

A combinatorial substitution is a finite set of rules (P,Q, γ), where
P is a tile, Q is a finite tiling called macro-tile, and γ : ∂P → ∂Q
maps facets of P to disjoint facet sets of Q, called macro-facet.

Let σ = {(Pi ,Qi , γi )i} be a combinatorial substitution.

Definition (Preimage)

Let T be a tiling by the Pi ’s and T ′ be a macro-tiling by the Qi ’s.
If there is a bijection between tiles of T and macro-tiles of T ′

preserving the combinatorial structure, then T is a preimage of T ′.

Consistency: any macro-tiling by the Qi ’s admits a preimage.
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Consistency: any macro-tiling by the Qi ’s admits a preimage.
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Limit set and non-periodicity

Definition (Limit set)

The limit set of a combinatorial substitution σ is the set Λσ of the
tilings which admit an infinite sequence of preimages under σ.

Proposition

If tilings in Λσ have each a unique preimage, then none is periodic.

Can decorations enforce tilings to have this hierarchical structure?
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Self-simulation

Let σ = {(Pi ,Qi , γi )i} be a consistent combinatorial substitution.

Definition

A decorated tile set τ is said to σ-self-simulate if there is a set of
τ -macro-tiles and a map φ from these τ -macro-tiles to τ -tiles s.t.

1 each τ -macro-tile Q and φ(Q) form a decorated pair (Qi ,Pi );

2 any τ -tiling can uniquely be seen as a tiling by τ -macro-tiles;

3 each τ -macro-tile Q is combinatorially equivalent to φ(Q).

Proposition

If τ is a tile set which σ-self-simulates, then all the τ -tilings are,
once undecorated, in the limit set of σ.
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Self-simulation

Let σ = {(Pi ,Qi , γi )i} be a consistent combinatorial substitution.

Definition

A decorated tile set τ is said to σ-self-simulate if there is a set of
τ -macro-tiles and a map φ from these τ -macro-tiles to τ -tiles s.t.

1 each τ -macro-tile Q and φ(Q) form a decorated pair (Qi ,Pi );

2 any τ -tiling can uniquely be seen as a tiling by τ -macro-tiles;

3 each τ -macro-tile Q is combinatorially equivalent to φ(Q).

Proposition

If τ is a tile set which σ-self-simulates, then all the τ -tilings are,
once undecorated, in the limit set of σ.
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Back again to Penrose

Decorated Robinson triangles σ-self-simulates (σ: first slide).
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A self-simulating tile set τ

T
i

Consider σ = {(Pi ,Qi , γi )i}, where each Pi appears in some Qj .
Let T1, . . . ,Tn denote all the tiles which appear in the Qi ’s.
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A self-simulating tile set τ

T
i

To enforce τ -tilings to be τ -macro-tilings: decorations specify tile
neighbors within macro-tiles and mark macro-facets.
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A self-simulating tile set τ

T
i

This yields so-called macro-indices on tile facets.
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A self-simulating tile set τ

T
i

The macro-indices of facets of a τ -tile must then be encoded on
the corresponding macro-facets of its simulating τ -macro-tile.
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A self-simulating tile set τ

T
i

This yields so-called neighbor-indices on tile facets.
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A self-simulating tile set τ

T
i

i

i

i
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We force these neighbor-indices to come from the same tile Ti ,
called parent-tile, by carrying its index i between macro-facets,
where it is converted into the suitable neighbor-index.
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A self-simulating tile set τ

T
i
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Such tile indices are encoded on facets by so-called parent-index.
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A self-simulating tile set τ

T
i
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This yields, once again, a new index on each tile facets. . .
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A self-simulating tile set τ

T
i
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But the trick is that the neighbor-indices and parent-indices of
facets of a τ -tile can be encoded on the corresponding big enough
macro-facets of the equivalent τ -macro-tile without any new index!
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A self-simulating tile set τ

T
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In big enough macro-tiles, we can then carry these pairs of neigh-
bor/parent indices up to a central tile along a star-like network.
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A self-simulating tile set τ

T
i

i
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On internal facets not crossed by this network, we copy the
macro-index on the neighbor-index (this redundancy is later used).
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A self-simulating tile set τ

T
j

i
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The pairs on a central τ -tile can be those of any non-central τ -tile
(from which the central τ -tile is said to derive).
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A self-simulating tile set τ

T
i~

i
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The τ -macro-tile with parent-index i is combinatorially equivalent
to Ti endowed with the pairs of the central τ -tile. But is it a τ -tile?
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A self-simulating tile set τ

T
i

T
j
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If Ti is a central tile, then its pairs can be derived from any
non-central τ -tile (as for any central tile). . .
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A self-simulating tile set τ

T
i

T
j
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. . . in particular from the non-central τ -tile from which are also
derived the pairs of the central τ -tile of our τ -macro-tile.
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A self-simulating tile set τ

T
i~

i
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In this case, the equivalent decorated Ti is a derived central τ -tile.
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A self-simulating tile set τ
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j
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Otherwise, consider the non-central τ -tile from which derives our
central τ -tile; at least one facet is internal and not crossed by
a network: its neighbor and macro indices are equal (by redundancy).
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A self-simulating tile set τ

T
j
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Thus, by copying the neighbor and parent indices (derivation). . .
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A self-simulating tile set τ

T
j
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. . . one copies a macro-index on our central τ -tile, and thus on the
whole corresponding network branch.
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A self-simulating tile set τ

T
i
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A tile on this k-th branch which also knows the parent-index i can
then force this macro-index to be the one on the k-th facet of a
decorated Ti (recall that all the decorated Ti have the same one).



Formalism General construction Step-by-step example

A self-simulating tile set τ

T
i~

i

i

i
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In this case, the equivalent decorated Ti is the non-central τ -tile
from which derives the central τ -tile of our τ -macro-tile.
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Back to the limit set

τ self-simulates for σ  the τ -tilings are (once undecorated) in Λσ.

Conversely, any tiling in Λσ can be decorated into a τ -tiling (easy).

Theorem

The limit set of a (suitable) combinatorial substitution is sofic.

Note 1: tilings in the limit set may be periodic. . . but not τ -tilings.

Note 2: such a general construction easily yields thousands of tiles!
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Settings
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Consider this combinatorial substitution with only one rule.
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Settings

The network is a cross connecting external facets called ports.
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Settings

T1 T2 T3

T4 T5 T6

T7 T8 T9

T
i

p nm

Tiles are numbered; on facets: macro-, parent- and neighbor-indices.
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Indices are initially all undefined.
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Macro-indices: enforce any tilings to be a tiling by macro-tiles.
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Parent-indices outside the network  parent-tile Ti (i = 1, . . . , 9).
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Neighbor-index of an internal facet not on the network: macro-index.
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Parent-tile neighbor-index of an external facet not on the network.
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Parent-tile neighbor-index of an external facet not on the network.
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Step 4
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Consider the non-central tiles on the network: T2, T4, T6 and T8.
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Consider, e.g., T2. Parent/neighbor pair on the North/South facets:
any pair allowed on the North facet of the parent-tile.
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Parent-tiles T1 or T3: only one decorated tile for each.
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Parent-tiles T4, T6, T7 or T9: 9 decorated tiles each.
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Parent-tiles T2 or T8: no restriction  80 decorated tiles each.
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Step 5
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Parent/neighbor pairs of the central tile T5: those of any non-
central tile  exactly twice more decorated tiles (i.e., 1656 at all).
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Self-simulation
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Consider a central tile (right) deriving from, say, a decorated T1.
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Self-simulation
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This forces all the decorations of the corresponding macro-tile,
with neighbor-indices on the network forcing a parent-tile T1 or T5.
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Self-simulation
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If the parent-tile is T1, then the macro-tile is combinatorially
equivalent to the tile from which derive the pairs.
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Self-simulation
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Otherwise, it is combinatorially equivalent to its own central-tile.
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