Hierarchical Tilings

Thomas Fernique

Moscow, Spring 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

② General construction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Back to Penrose

Remind Penrose tilings by Robinson triangles.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Back to Penrose

Robinson triangles can be grouped into Robinson macro-triangle.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Back to Penrose

This yields a new tiling by Robinson triangles (up to deflating).

Back to Penrose

Macro-tiles can thus be substituted to tiles (and conversely).

Combinatorial substitution

Definition (Combinatorial substitution)

A combinatorial substitution is a finite set of rules (P, Q, γ) , where P is a tile, Q is a finite tiling called macro-tile, and $\gamma : \partial P \to \partial Q$ maps facets of P to disjoint facet sets of Q, called macro-facet.

Combinatorial substitution

Definition (Combinatorial substitution)

A combinatorial substitution is a finite set of rules (P, Q, γ) , where P is a tile, Q is a finite tiling called macro-tile, and $\gamma : \partial P \to \partial Q$ maps facets of P to disjoint facet sets of Q, called macro-facet.

Let $\sigma = \{(P_i, Q_i, \gamma_i)_i\}$ be a combinatorial substitution.

Definition (Preimage)

Let T be a tiling by the P_i 's and T' be a macro-tiling by the Q_i 's. If there is a bijection between tiles of T and macro-tiles of T'preserving the *combinatorial structure*, then T is a *preimage* of T'.

Consistency: any macro-tiling by the Q_i 's admits a preimage.

Limit set and non-periodicity

Definition (Limit set)

The limit set of a combinatorial substitution σ is the set Λ_{σ} of the tilings which admit an infinite sequence of preimages under σ .

Proposition

If tilings in Λ_{σ} have each a unique preimage, then none is periodic.

Can decorations enforce tilings to have this hierarchical structure?

Self-simulation

Let $\sigma = \{(P_i, Q_i, \gamma_i)_i\}$ be a consistent combinatorial substitution.

Definition

A decorated tile set τ is said to σ -self-simulate if there is a set of τ -macro-tiles and a map ϕ from these τ -macro-tiles to τ -tiles s.t.

- each τ -macro-tile Q and $\phi(Q)$ form a decorated pair (Q_i, P_i) ;
- 2) any τ -tiling can uniquely be seen as a tiling by τ -macro-tiles;
- **3** each τ -macro-tile Q is combinatorially equivalent to $\phi(Q)$.

Let $\sigma = \{(P_i, Q_i, \gamma_i)_i\}$ be a consistent combinatorial substitution.

Definition

A decorated tile set τ is said to σ -self-simulate if there is a set of τ -macro-tiles and a map ϕ from these τ -macro-tiles to τ -tiles s.t.

- each τ -macro-tile Q and $\phi(Q)$ form a decorated pair (Q_i, P_i) ;
- 2 any τ -tiling can uniquely be seen as a tiling by τ -macro-tiles;
- **3** each τ -macro-tile Q is combinatorially equivalent to $\phi(Q)$.

Proposition

If τ is a tile set which σ -self-simulates, then all the τ -tilings are, once undecorated, in the limit set of σ .

イロト 不得 トイヨト イヨト

э

Back again to Penrose

Decorated Robinson triangles σ -self-simulates (σ : first slide).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Consider $\sigma = \{(P_i, Q_i, \gamma_i)_i\}$, where each P_i appears in some Q_j . Let T_1, \ldots, T_n denote all the tiles which appear in the Q_i 's.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

To enforce τ -tilings to be τ -macro-tilings: decorations specify tile neighbors within macro-tiles and mark macro-facets.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A self-simulating tile set τ

This yields so-called macro-indices on tile facets.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A self-simulating tile set τ

The macro-indices of facets of a τ -tile must then be encoded on the corresponding macro-facets of its simulating τ -macro-tile.

A self-simulating tile set τ

This yields so-called neighbor-indices on tile facets.

We force these neighbor-indices to come from the same tile T_i , called parent-tile, by carrying its index *i* between macro-facets, where it is converted into the suitable neighbor-index.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Such tile indices are encoded on facets by so-called parent-index.

A self-simulating tile set τ

This yields, once again, a new index on each tile facets...

But the trick is that the neighbor-indices and parent-indices of facets of a τ -tile can be encoded on the corresponding big enough macro-facets of the equivalent τ -macro-tile without any new index!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

In big enough macro-tiles, we can then carry these pairs of neighbor/parent indices up to a central tile along a star-like network.

On internal facets not crossed by this network, we copy the macro-index on the neighbor-index (this redundancy is later used).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A self-simulating tile set τ

The pairs on a <u>central</u> τ -tile can be those of any <u>non-central</u> τ -tile (from which the central τ -tile is said to <u>derive</u>).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A self-simulating tile set τ

The τ -macro-tile with parent-index *i* is combinatorially equivalent to T_i endowed with the pairs of the central τ -tile. But is it a τ -tile?

A self-simulating tile set τ

If T_i is a central tile, then its pairs can be derived from any non-central τ -tile (as for any central tile)...

A self-simulating tile set τ

...in particular from the non-central τ -tile from which are also derived the pairs of the central τ -tile of our τ -macro-tile.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A self-simulating tile set τ

In this case, the equivalent decorated T_i is a derived central τ -tile.

Otherwise, consider the non-central τ -tile from which derives our central τ -tile; at least one facet is internal and not crossed by a network: its neighbor and macro indices are equal (by redundancy).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A self-simulating tile set τ

Thus, by copying the neighbor and parent indices (derivation)...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A self-simulating tile set au

... one copies a macro-index on our central τ -tile, and thus on the whole corresponding network branch.

A tile on this k-th branch which also knows the parent-index i can then force this macro-index to be the one on the k-th facet of a decorated T_i (recall that all the decorated T_i have the same one).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A self-simulating tile set τ

In this case, the equivalent decorated T_i is the non-central τ -tile from which derives the central τ -tile of our τ -macro-tile.

Back to the limit set

 τ self-simulates for $\sigma \rightsquigarrow$ the τ -tilings are (once undecorated) in Λ_{σ} . Conversely, any tiling in Λ_{σ} can be decorated into a τ -tiling (easy).

Theorem

The limit set of a (suitable) combinatorial substitution is sofic.

Note 1: tilings in the limit set may be periodic... but not τ -tilings.

Note 2: such a general construction easily yields thousands of tiles!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Settings

Consider this combinatorial substitution with only one rule.

The network is a cross connecting external facets called ports.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Tiles are numbered; on facets: macro-, parent- and neighbor-indices.

Indices are initially all undefined.

ヘロト ヘ週ト ヘヨト ヘヨト

æ

Macro-indices: enforce any tilings to be a tiling by macro-tiles.

Parent-indices outside the network \rightsquigarrow parent-tile T_i (i = 1, ..., 9).

Neighbor-index of an internal facet not on the network: macro-index.

Parent-tile ~> neighbor-index of an external facet not on the network.

Parent-tile ~> neighbor-index of an external facet not on the network.

Consider the non-central tiles on the network: T_2 , T_4 , T_6 and T_8 .

Consider, *e.g.*, T_2 . Parent/neighbor pair on the North/South facets: any pair allowed on the North facet of the parent-tile.

Parent-tiles T_1 or T_3 : only one decorated tile for each.

Parent-tiles T_4 , T_6 , T_7 or T_9 : 9 decorated tiles each.

Parent-tiles T_2 or T_8 : no restriction $\rightsquigarrow 80$ decorated tiles each.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parent/neighbor pairs of the central tile T_5 : those of any noncentral tile \rightarrow *exactly* twice more decorated tiles (*i.e.*, 1656 at all).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Self-simulation

Consider a central tile (right) deriving from, say, a decorated T_1 .

0 P

12

12

<ロ> (四) (四) (日) (日) (日)

æ

This forces all the decorations of the corresponding macro-tile, with neighbor-indices on the network forcing a parent-tile T_1 or T_5 .

M 0 P

12

0

12

・ロト ・ 一 ト ・ モト ・ モト

æ

If the parent-tile is T_1 , then the macro-tile is combinatorially equivalent to the tile from which derive the pairs.

M 0 P

12

0

12

ヘロン 人間 とくほと くほとう

æ

Otherwise, it is combinatorially equivalent to its own central-tile.

Some references for this lecture:

- Shahar Mozes, Tilings, substitution systems and dynamical systems generated by them, J. Anal. Math. 53 (1989).
- Chaim Goodman-Strauss, *Matching rules and substitution tilings*, Ann. Math. **147** (1998).
- Thomas Fernique, Nicolas Ollinger, Combinatorial substitutions and sofic tilings, in proc. JAC'10 (2010).

These slides and the above references can be found there:

http://www.lif.univ-mrs.fr/~fernique/qc/