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Pentagrids

Penrose tiling ≡ pentagrid with integer-sum shift (de Bruijn).
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Pentagrids

Different integer-sum shifts yield different Penrose tilings.
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Playing with the shift

Forgetting the integer-sum condition still yields rhombus tilings.
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Playing with the shift

Not Penrose tilings, but so-called generalized Penrose tilings.
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Playing with the grid number

One can actually consider any number n ≥ 2 of grids (here, n = 7).
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Playing with the grid number

This yields rhombus tilings with arbitrary point-symmetry.
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Formally

Definition (Grid)

Let ~g be a unit vector of R2 and C be a discrete subset of R.
The ~g-directed and C -spaced grid is G := {~x ∈ R2 | 〈~x |~g〉 ∈ C}.

Let KG index by integer the strips of G (in the direction of ~g).

Definition (Dual of a multigrid (G1, . . . ,Gd))

To a mesh containing ~x ∈ R2 is associated the point
∑

i KGi
(~x)~gi ,

and segments connect points associated to edge-adjacent meshes.

This defines tilings of the plane with at most
(d
2

)
different rhombi.

Theorem (de Bruijn, 1986)

The dualization of a multigrid is a quasiperiodic rhombus tiling if
and only if each grid has a quasiperiodic spacing.
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Pseudogrids

Can any rhombus tiling be obtained as the dual of some multigrid?
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Given a rhombus tiling, draw pseudolines in parallel ribbons of tiles.
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Pseudogrids

This yields a pseudogrid. Is it topologically equivalent to a multigrid?
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Pseudogrids

If yes, then the dualization yields back the original rhombus tiling.
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Pseudogrids

But this does not always holds (Ringel, 1956 – Grünbaum, 1972).
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Let there be light!

Consider a rhombus tiling defined by three grids (here, 3-fold).
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Let there be light!

Shadowing  kind of digital plane of the Euclidean space!
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Lift

Consider a rhombus tiling where edges can take at most d directions.
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Lift

0,0,0,0,0

Map an arbitrary vertex onto an arbitrary vector of Zd .
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Lift

0,0,0,0,0

0,0,0,1,0

0,0,0,-1,0

Modify ±1 the k-th entry when moving along the k-th direction.
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Lift

0,0,0,0,0
-1,0,0,0,0

0,0,0,1,0
-1,0,0,1,0

0,0,0,-1,0

Rhombus vertices are mapped onto vertices of unit d-dim. squares.
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Lift

0,0,0,0,0
-1,0,0,0,0

0,0,0,1,0
-1,0,0,1,0

0,0,0,-1,0

0,1,0,0,0

0,1,0,1,0

0,1,0,1,-1

0,1,0,0,-1

0,1,0,-

9,0,0,0,-1

-1,0,0,-1,0-1,0,-1,0,0-2,0,-1,0,0

-2,0,0,0,0

-1,0,0,0,-1-2,0,0,0,-1

0,1,1,0

-2,-1,0,0,0

-1,0,0,1,-1-2,0,0,1,-1

The whole tiling is mapped onto a stepped surface of R2: its lift.
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Plane tilings

Definition (Plane tiling)

A rhombus tiling is said to be plane if its lift lies inside a “slice”
V + [0, 1)d , where V is an affine plane of Rd .

The plane ~V is sometimes called physical or real space, while its
orthogonal ~V⊥ is called reciprocal, internal or perp- space.

Parameters of ~V are called slope or phason-strain of the tiling.

Proposition (Gähler and Rhyner, 1986)

Plane tilings exactly correspond to uniformly spaced multigrids.
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Almost plane tilings

Definition (Almost plane tiling)

A rhombus tiling is said to be almost plane if its lift lies inside a
“slice” V + [0, t)d , where V is an affine plane of Rd and t ∈ R.

t

The smallest possible t is the thickness or fluctuation of the tiling.
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Almost plane tilings

Definition (Almost plane tiling)

A rhombus tiling is said to be almost plane if its lift lies inside a
“slice” V + [0, t)d , where V is an affine plane of Rd and t ∈ R.

The t = 1 case corresponds to plane tilings.
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Diffraction

Long-range order of plane tilings yields Bragg peaks.
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Diffraction

Almost plane tilings still have this long-range order!
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Shadows

Rhombus tilings are projection of d-dim. unit squares (remind lift).
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Shadows

Select three edge directions and emphasize rhombi defined by them.
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Shadows

Rotate in Rd until all the remaining edges orthogonally project.
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Shadows

Rotate in Rd until all the remaining edges orthogonally project.
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Shadows

This yields a rhombus tiling, called a shadow, whose lift is in R3.
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Local rules

Terminology:

set T of tiles  set XT of tilings;

r -pattern of a tiling: tiles lying inside a ball of radius r > 0;

r -atlas of X ⊂ XT : r -patterns of tilings in X (up to isometry).

Definition (Local rules)

X ⊂ XT admits local rules if it is characterized by a r -atlas, r > 0.

Dynamical systems terminology:

XT : fullshift over T ;

X ⊂ XT translation-invariant and closed: shift;

X admits local rules ≡ X is a shift of finite type.
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Decorated local rules

Terminology:

Decorated tiling: tiles can be colored, labelled, notched etc.;

locally derivable from ≡ image under a local map of.

Definition (Decorated local rules)

X ⊂ XT admits decorated local rules if it is locally derivable from
a set of decorated tilings which admits local rules.

Dynamical systems terminology:

locally derivable from ≡ topological factor of;

X admits decorated local rules ≡ X is a sofic shift.
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One-dimensional examples

Consider the fullshift {a, b}Z.

Local rules that admit these subshifts?

1 the sequences with no more than 10 consecutive b;

2 the sequences with at most one b-run;

3 the centro-symmetric sequences;

4 the non-periodic sequences.
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Strong and weak local rules

Distinction introduced by Levitov for rhombus tilings:

Definition (Strong and weak local rules)

Local rules which define a set of rhombus tilings are said to be

strong if the tilings are all parallel plane tilings;

weak if the tilings are parallel almost plane tilings.

Remind: bounded fluctuations do not destroy long-range order!
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One-dimensional examples

Fullshift over {a, b} ≡ one-dimensional rhombus tilings.

Type of these local rules (and subshifts they define)?

1 {aba, bab}
2 {aa, ab, ba}
3 {aabb, abba, bbaa, baab}
4 {aiai+1, aibi , biai−p}1≤i≤q
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Two-dimensional examples

Consider this decorated rhombus.
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Two-dimensional examples

Two rhombi match if they form an arrow on their common edge.
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Two-dimensional examples

This allows only one plane tiling  strong (decorated) rules.
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Two-dimensional examples

This allows only one plane tiling  strong (decorated) rules.
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Two-dimensional examples

Consider now this decorated rhombus.
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Two-dimensional examples

Matching are free on empty edges, as before on arrowed ones.
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Two-dimensional examples

Matching are free on empty edges, as before on arrowed ones.
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Two-dimensional examples

This allows only small fluctuations on tile ribbons.
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Two-dimensional examples

The same thus holds for the whole tiling  weak decorated rules.



Dualization of multigrids Projection of higher dimensional lattices Matching rules: basics Matching rules: results

1 Dualization of multigrids

2 Projection of higher dimensional lattices

3 Matching rules: basics

4 Matching rules: results



Dualization of multigrids Projection of higher dimensional lattices Matching rules: basics Matching rules: results

Shifting the cut of a fully periodic shadow

Consider a plane tiling obtained by a rational cut in R3.
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Shifting the cut of a fully periodic shadow

Shifting (in R3) the cut just shifts (in R2) the tiling.
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Shifting the cut of a fully periodic shadow

This corresponds to local rearrangements (flip) on a 2-dim. lattice.
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Shifting the cut of a non-periodic shadow

Consider a plane tiling obtained by an irrational cut in R3.
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Shifting the cut of a non-periodic shadow

Shifting the cut modifies the tiling but not the finite patterns.
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Shifting the cut of a non-periodic shadow

Modifications are quasiperiodically spaced flips.
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Shifting the cut of a non-periodic shadow

The smaller is the shift, the sparser are these flips.
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Shifting the cut of a non-periodic shadow

The smaller is the shift, the sparser are these flips.
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Shifting the cut of a non-periodic shadow

Removing a single flip increases the thickness  non-plane tiling.
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Shifting the cut of a non-periodic shadow

To forbid this, strong rules should be larger than the flip-spacing. . .
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Shifting the cut of a semi-periodic shadow

Consider now the intermediary case.
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Shifting the cut of a semi-periodic shadow

Shifting the cut modifies the tiling but not the finite patterns.



Dualization of multigrids Projection of higher dimensional lattices Matching rules: basics Matching rules: results

Shifting the cut of a semi-periodic shadow

Modifications are quasiperiodically spaced periodic lines of flips.
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Shifting the cut of a semi-periodic shadow

The smaller is the shift, the sparser are these lines of flips.
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Shifting the cut of a semi-periodic shadow

For similar reasons, this is incompatible with strong rules.
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Necessary condition for strong rules

Theorem (Levitov, 1988)

If a rhombus tiling has strong rules, then its shadows are periodic.

Proof:
Assume that there are non-periodic shadows and strong rules.

1 by a sufficiently small shift on the cut (in Rn):

fully periodic shadows are unchanged (for a suitable shift);
flips in non-periodic shadows are at dist. ≥ R from each other;
flip lines in semi-periodic shadows are sufficiently spaced to be
at dist. ≥ R, in the tiling, of a flip of non-periodic shadows.

2 show that there is k indep. from R s.t. each diameter R ball
in the tiling contains at most k flips of non-periodic shadows;

3 deduce that strong rules should have diameter R
2k , for any R.
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Periodic shadows yield {3, 4, 5, 6, 8, 10, 12}-fold tilings

n-fold tiling: plane tiling of slope R(u1, . . . , un) + R(v1, . . . , vn),

uk = cos

(
2kπ

n

)
and vk = sin

(
2kπ

n

)
.

Periodicity of shadows yields cos(2π/n) ∈ Q(
√

D). Possible cases:

cos(2π/n) ∈ Q if n = 3, 4, 6

cos(2π/n) ∈ Q(
√

2) if n = 8

cos(2π/n) ∈ Q(
√

3) if n = 12

cos(2π/n) ∈ Q(
√

5) if n = 5, 10

These symmetries are exactly those yet experimentally observed!
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Sufficient condition for weak rules

The ijk-shadow of a plane tiling of slope R~u + R~v is periodic iff:

∃~pijk ∈ Z3\{~0}, det(~uijk , ~vijk , ~pijk) = (~uijk ∧ ~vijk).~pijk = 0.

This can be seen as an equation for three entries of ~u and ~v .

Theorem (Levitov-Socolar mix)

If periodic shadows of a plane tiling yield equations characterizing
its slope, then this tiling does admit weak rules.

Proof:

the periodicity of a shadow can be enforced by local rules;

the hypothesis ensure that this characterizes the tiling slope;

no control on the intertwining of shadows  only weak rules.
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Further results

Tiling undecorated rules decorated rules

5, 10-fold strong strong1

8-fold none2 strong3

12-fold none3 strong4

(46 | n)-fold weak5 strong?
quadratic slope in R4 a.e. weak6 strong7

non-algebraic slope none8 ?

(1): Penrose, 1974
(2): Burkov, 1988
(3): Le, 1992

(4): Socolar, 1989
(5): Socolar, 1990
(6): Levitov, 1988

(7): Le et al., 1992
(8): Le, 1997

Conjecture

A plane tiling admits decorated rules iff its slope is computable.
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