Penrose Tilings

Thomas Fernique

Moscow, Spring 2011
(1) Penrose tilings
(2) Matching rules
(3) Some properties

4 Pentagrids

(1) Penrose tilings

(2) Matching rules
(3) Some properties
4) Pentagrids

The trouble with Kepler tilings

The trouble with Kepler tilings

Tilings by pentagons, diamonds, boats and stars

Regular pentagons almost tile a bigger pentagon.

Tilings by pentagons, diamonds, boats and stars

Each pentagon can in turn be tiled by smaller pentagons.

Tilings by pentagons, diamonds, boats and stars

Holes can be filled by diamonds.

Tilings by pentagons, diamonds, boats and stars

Consider such a diamond with its neighborhood.

Tilings by pentagons, diamonds, boats and stars

Consider such a diamond with its neighborhood.

Tilings by pentagons, diamonds, boats and stars

Tile pentagons by smaller pentagons and fill diamond holes.

Tilings by pentagons, diamonds, boats and stars

The rest can be tiled with a star, a boat and a pentagon.

Tilings by pentagons, diamonds, boats and stars

Consider the star and the boat, with their neighborhood.

Tilings by pentagons, diamonds, boats and stars

Consider the star and the boat, with their neighborhood.

Tilings by pentagons, diamonds, boats and stars

Consider the star and the boat, with their neighborhood.

Tilings by pentagons, diamonds, boats and stars

Tile pentagons by smaller pentagons and fill diamond holes.

Tilings by pentagons, diamonds, boats and stars

The rest can be tiled with the same tiles (and neighborhood)

Tilings by pentagons, diamonds, boats and stars

\rightsquigarrow tiling of the plane by pentagons, diamonds, boats and stars.

Tilings by pentagons, diamonds, boats and stars

Method: inflate, divide and fill diamond-shaped holes - ad infinitum.

Tilings by pentagons, diamonds, boats and stars

This yields a hierarchical tiling of the plane (hence non-periodic).

Tilings by kites and darts

$\hbar \Delta \Delta \Delta$

Tilings by kites and darts

解 包 A $\otimes \otimes \otimes$

Tilings by kites and darts

Tilings by kites and darts

Tilings by kites and darts

$\hbar \Delta \Delta \Delta$

Mutual local derivability

Equivalence relation on tilings:

Definition (MLD tilings)

Two tilings are said to be mutually locally derivable (MLD) if the one can be obtained from the other by a local map, and vice versa.

Example: the two previous tilings are MLD.

Tilings by thin and fat rhombi

Tilings by thin and fat rhombi

Tilings by thin and fat rhombi

Tilings by thin and fat rhombi

$\ll \gg$

Tilings by thin and fat rhombi

(1) Penrose tilings

(2) Matching rules
(3) Some properties

4 Pentagrids

The trouble with Penrose tilings

The previous tilesets also admit periodic tilings.

The trouble with Penrose tilings

The previous tilesets also admit periodic tilings.

The trouble with Penrose tilings

The previous tilesets also admit periodic tilings.

Three aperiodic tilesets (Penrose, 1974)

Penrose's trick: notch edges to enforce the hierarchical structure.
(tiles up to rotation)

Three aperiodic tilesets (Penrose, 1974)

Penrose's trick: notch edges to enforce the hierarchical structure.
(tiles up to rotation)

Three aperiodic tilesets (Penrose, 1974)

Penrose's trick: notch edges to enforce the hierarchical structure.
(tiles up to rotation)

Penrose tilings (formal)

Definition (Equivalence)

Two tilesets are equivalent if any tiling by one tileset is mutually locally derivable from a tiling by the other tileset.

Exercise: prove the equivalence of Penrose tilesets.

Definition (Penrose tilings)

A Penrose tiling is a tiling mutually locally derivable from a tiling of the whole plane by one of the three previous Penrose tilesets.

Robinson triangles

Notched rhombi are equivalent to colored rhombi.

Robinson triangles

Notched rhombi are equivalent to colored rhombi.

Robinson triangles

Colored rhombi are equivalent to Robinson triangles.
(tiles up to rotations and reflections)

Robinson macro-triangles

Robinson macro-triangle: homothetic unions of Robinson triangles. Up to this homothety, triangles and macro-triangles are equivalent.

Inflate and divide

Pattern + inflate/divide ad infinitum \rightsquigarrow tiling of the plane (Kőnig).

Inflate and divide

Pattern + inflate/divide ad infinitum \rightsquigarrow tiling of the plane (König).

Inflate and divide

Pattern + inflate/divide ad infinitum \rightsquigarrow tiling of the plane (König).

Inflate and divide

Pattern + inflate/divide ad infinitum \rightsquigarrow tiling of the plane (König).

Inflate and divide

Pattern + inflate/divide ad infinitum \rightsquigarrow tiling of the plane (Kőnig).

Inflate and divide

Pattern + inflate/divide ad infinitum \rightsquigarrow tiling of the plane (Kőnig).

Group and deflate

Conversely, fix a tiling of the plane. Consider a thin triangle (if any).

Group and deflate

What can be its red neighbor?

Group and deflate

A thin triangle would yield an uncompletable vertex.

Group and deflate

This is thus a fat triangle.

Group and deflate

We can group both to form a thin macro-triangle.

Group and deflate

Consider a remaining fat triangle (if any).

Group and deflate

Its red neighbor is fat (otherwise it would be already grouped).

Group and deflate

What can be its blue neighbor?

Group and deflate

A fat triangle would yield an uncompletable vertex.

Group and deflate

This is thus a thin triangle

Group and deflate

This is thus a thin triangle grouped into a thin macro-triangle.

Group and deflate

We can group the three triangles to form a fat macro-triangle.

Group and deflate

Hence, any tiling by Robinson triangles. . .

Group and deflate

... can be uniquely seen as a tiling by Robinson macro-triangles.

Group and deflate

Macro-triangles can be consistently replaced by triangles. . .

Group and deflate

... and by deflating we get a new Penrose tiling.

Group and deflate

Group/deflate ad infinitum \rightsquigarrow aperiodicity of Robinson triangles.

(1) Penrose tilings

(2) Matching rules
(3) Some properties
4) Pentagrids

Uncountability

Proposition

Penrose tilesets admit uncountably many tilings of the plane.

Proof:

- track a tile in the tiling hierarchy \rightsquigarrow infinite tile sequence;
- tiles of isometric tilings \rightsquigarrow sequences with the same tail ends;
- infinite tile sequence \rightsquigarrow tiling;
- countably many sequences with the same tail end;
- uncountably many infinite tile sequences.

Quasiperiodicity

Pattern of size r (in a tiling): tiles lying in a closed ball of radius r.

Definition (Quasiperiodic tiling)

A tiling is said to be quasiperiodic if, for any $r>0$, there is $R>0$ such that any pattern of size r appears in any pattern of size R.

Quasiperiodic \equiv bounded gap \equiv repetitive \equiv uniformly recurrent.
Any periodic tiling is also quasiperiodic (take $R=r+$ period).

Quasiperiodicity

Pattern of size r (in a tiling): tiles lying in a closed ball of radius r.

Definition (Quasiperiodic tiling)

A tiling is said to be quasiperiodic if, for any $r>0$, there is $R>0$ such that any pattern of size r appears in any pattern of size R.

Quasiperiodic \equiv bounded gap \equiv repetitive \equiv uniformly recurrent.
Any periodic tiling is also quasiperiodic (take $R=r+$ period).

Proposition

Penrose tilings are quasiperiodic.

Proof: first check for $r=$ Diam(tile), then group/deflate.

Rotational symmetry

Tile angles multiple of $\frac{\pi}{5} \rightsquigarrow$ only 5 - or 10 -fold symmetries (or 2 -fold).

Rotational symmetry

Up to isometry, three 5-fold elementary patterns.

Rotational symmetry

Inflate/divide \rightsquigarrow two 5-fold Penrose tilings of the plane.

Rotational symmetry

Inflate/divide \rightsquigarrow two 5-fold Penrose tilings of the plane.

Rotational symmetry

Inflate/divide \rightsquigarrow two 5-fold Penrose tilings of the plane.

Rotational symmetry

They are different even up to decorations.

Rotational symmetry

They are different even up to decorations.

Rotational symmetry

Conversely, a symmetry center must live in the whole hierarchy.

Rotational symmetry

Conversely, a symmetry center must live in the whole hierarchy.

Rotational symmetry

Conversely, a symmetry center must live in the whole hierarchy.

Rotational symmetry

There is thus only two 5-fold Penrose tilings of the plane.

Rotational symmetry

The uncountably many others have only local 5-fold symmetry.

Remind quasicrystals

Point-holes at vertices of a Penrose tiling $\rightsquigarrow 5$-fold diffractogram.

Remind quasicrystals

Point-holes at vertices of a Penrose tiling $\rightsquigarrow 5$-fold diffractogram.

Remind quasicrystals

Point-holes at vertices of a Penrose tiling $\rightsquigarrow 5$-fold diffractogram.

Remind quasicrystals

Point-holes at vertices of a Penrose tiling $\rightsquigarrow 5$-fold diffractogram.

Vertex atlas

In Penrose tilings, Robinson triangles fit in 8 ways around a vertex.

Vertex atlas

Up to decorations, this yields a vertex atlas of size 7 .

Vertex atlas

Proposition: any tiling with this vertex atlas is a Penrose tiling.

Vertex atlas

A similar vertex atlas for tilings by thin and fat rhombi.

Vertex atlas

A similar vertex atlas for tilings by kites and darts.

Ammann bars

Draw these two particular billiard trajectories in each triangle.

Ammann bars

Some trigonometry \rightsquigarrow ratio characterizing the trajectories.

Ammann bars

This draws on Penrose tilings five bundles of parallel lines.

Ammann bars

This draws on Penrose tilings five bundles of parallel lines.

(1) Penrose tilings

(2) Matching rules
(3) Some properties

4 Pentagrids

Pentagrid (De Bruijn, 1981)

Shift $s_{j} \in \mathbb{R} \rightsquigarrow$ grid $\left\{z \in \mathbb{C} \mid \operatorname{Re}\left(z \zeta^{-j}\right)+s_{j}=0\right\}$, where $\zeta=\mathrm{e}^{2 i \pi / 5}$.

Pentagrid (De Bruijn, 1981)

Strip numbering: $K_{j}(z)=\left\lceil\operatorname{Re}\left(z \zeta^{-j}\right)+s_{j}\right\rceil$.

Pentagrid (De Bruijn, 1981)

Pentagrid: grids $0, \ldots, 4$, with $s_{0}+\ldots+s_{4} \in \mathbb{Z}$ and no triple point.

From pentagrids to rhombus tilings

$$
+f\left(z_{1}\right)
$$

$f(z):=\sum_{0 \leq j \leq 4} K_{j}(z) \zeta^{j}$ maps each mesh onto a rhombus vertex.

From pentagrids to rhombus tilings

$f(z):=\sum_{0 \leq j \leq 4} K_{j}(z) \zeta^{j}$ maps each mesh onto a rhombus vertex.

From pentagrids to rhombus tilings

$f(z):=\sum_{0 \leq j \leq 4} K_{j}(z) \zeta^{j}$ maps each mesh onto a rhombus vertex.

From pentagrids to rhombus tilings

$f(z):=\sum_{0 \leq j \leq 4} K_{j}(z) \zeta^{j}$ maps each mesh onto a rhombus vertex.

From pentagrids to rhombus tilings

$f(z):=\sum_{0 \leq j \leq 4} K_{j}(z) \zeta^{j}$ maps each mesh onto a rhombus vertex.

From pentagrids to rhombus tilings

$f(z):=\sum_{0 \leq j \leq 4} K_{j}(z) \zeta^{j}$ maps each mesh onto a rhombus vertex.

From pentagrids to rhombus tilings

$f(z):=\sum_{0 \leq j \leq 4} K_{j}(z) \zeta^{j}$ maps each mesh onto a rhombus vertex.

From pentagrids to rhombus tilings

$f(z):=\sum_{0 \leq j \leq 4} K_{j}(z) \zeta^{j}$ maps each mesh onto a rhombus vertex.

From pentagrids to rhombus tilings

$f(z):=\sum_{0 \leq j \leq 4} K_{j}(z) \zeta^{j}$ maps each mesh onto a rhombus vertex.

Indices

$i(z):=\sum_{0 \leq j \leq 4} K_{j}(z)$ maps each mesh into $\{1,2,3,4\}$.

From rhombus tilings to Penrose tilings

Can the rhombi of such tilings be consistently notched?

From rhombus tilings to Penrose tilings

Lemma: each rhombus can be endowed by indices in only two ways.

From rhombus tilings to Penrose tilings

Lemma: each rhombus can be endowed by indices in only two ways.

From rhombus tilings to Penrose tilings

Double-arrow notchings from 3 to 4 and from 1 to 2: consistent.

From rhombus tilings to Penrose tilings

Double-arrow notchings from 3 to 4 and from 1 to 2: consistent.

From rhombus tilings to Penrose tilings

Notchings of remaining edges are forced. Is it consistent?

From rhombus tilings to Penrose tilings

Remark: single-arrow notchings go from acute to obtuse angles.

From rhombus tilings to Penrose tilings

Lemma: along an edge between 2 and 3, acute/obtuse angles match.

From rhombus tilings to Penrose tilings

This yields the consistency of the single-arrow notchings.

From rhombus tilings to Penrose tilings

This yields the consistency of the single-arrow notchings.

From Penrose tilings to pentagrids

Let $\phi_{\vec{s}}$ be the rhombus tiling derived from the pentagrid of shift \vec{s}.
Lemma: group/deflate $\phi_{\vec{s}}$ yields $\phi_{g(\vec{s})}$, where $g(\vec{s})_{j}=s_{j-1}+s_{j+1}$.

From Penrose tilings to pentagrids

Let $\phi_{\vec{s}}$ be the rhombus tiling derived from the pentagrid of shift \vec{s}.
Lemma: group/deflate $\phi_{\vec{s}}$ yields $\phi_{g(\vec{s})}$, where $g(\vec{s})_{j}=s_{j-1}+s_{j+1}$.

Theorem (de Bruijn, 1981)

The Penrose tilings are exactly the tilings derived from pentagrids.

Proof:

- Fix a Penrose tiling $\phi=\phi^{(0)}$;
- inflate/divide n times \rightsquigarrow Penrose tiling $\phi^{(n)}$;
- find \vec{s}_{n} such that $\phi_{\vec{s}_{n}}$ and $\phi^{(n)}$ agree on $B(0,1)$;
- group/deflate n times $\rightsquigarrow \phi_{g^{n}\left(\vec{s}_{n}\right)}$ and $\phi^{(0)}$ agree on $B\left(0, \tau^{n}\right)$;
- $g^{n}\left(\vec{s}_{n}\right) \in[0,1)^{5} \rightsquigarrow$ accumulation point $t \rightsquigarrow \phi=\phi^{(0)}=\phi_{t}$.

Application

Remind:

- there are uncountably many Penrose tilings;
- exactly two of them have a global five-fold symmetry.

Proof:

- uncountably many shifts $s_{0}+\ldots+s_{4} \in \mathbb{Z}$;
- $\overrightarrow{0}$ center of symmetry iff $s_{j}=\frac{2}{5}$ or $s_{j}=-\frac{2}{5}$.

Some references for this lecture:
Roger Penrose, Pentaplexity: a class of non-periodic tilings of the plane, Eureka 39 (1978).
嗇 Nicolaas Govert de Bruijn, Algebraic theory of Penrose's non-periodic tilings of the plane, Indag. Math. 43 (1981).

Q Marjorie Senechal, Quasicrystals and Geometry, Cambridge University Press, 1995. Chap. 6.

These slides and the above references can be found there:
http://www.lif.univ-mrs.fr/~fernique/qc/

