Penrose Tilings

Thomas Fernique

Moscow, Spring 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Penrose tilings

Penrose tilings

- 2 Matching rules
- **3** Some properties

The trouble with Kepler tilings

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへ⊙

Some properties

Pentagrids

The trouble with Kepler tilings

(日)、(四)、(E)、(E)、(E)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tilings by pentagons, diamonds, boats and stars

Regular pentagons almost tile a bigger pentagon.

Pentagrids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Tilings by pentagons, diamonds, boats and stars

Each pentagon can in turn be tiled by smaller pentagons.

Pentagrids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Tilings by pentagons, diamonds, boats and stars

Holes can be filled by diamonds.

Pentagrids

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Tilings by pentagons, diamonds, boats and stars

Consider such a diamond with its neighborhood.

Pentagrids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tilings by pentagons, diamonds, boats and stars

Consider such a diamond with its neighborhood.

Pentagrids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tilings by pentagons, diamonds, boats and stars

Tile pentagons by smaller pentagons and fill diamond holes.

Pentagrids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Tilings by pentagons, diamonds, boats and stars

The rest can be tiled with a star, a boat and a pentagon.

Pentagrids

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Tilings by pentagons, diamonds, boats and stars

Consider the star and the boat, with their neighborhood.

Pentagrids

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Tilings by pentagons, diamonds, boats and stars

Consider the star and the boat, with their neighborhood.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tilings by pentagons, diamonds, boats and stars

Consider the star and the boat, with their neighborhood.

Some properties

Pentagrids

Tilings by pentagons, diamonds, boats and stars

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Tile pentagons by smaller pentagons and fill diamond holes.

Some properties

Pentagrids

Tilings by pentagons, diamonds, boats and stars

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The rest can be tiled with the same tiles (and neighborhood)

Pentagrids

Tilings by pentagons, diamonds, boats and stars

 \rightsquigarrow tiling of the plane by pentagons, diamonds, boats and stars.

Pentagrids

Tilings by pentagons, diamonds, boats and stars

Method: inflate, divide and fill diamond-shaped holes - ad infinitum.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Tilings by pentagons, diamonds, boats and stars

This yields a *hierarchical* tiling of the plane (hence non-periodic).

Pentagrids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Tilings by kites and darts

Pentagrids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Tilings by kites and darts

Pentagrids

Tilings by kites and darts

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Pentagrids

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Tilings by kites and darts

Pentagrids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Tilings by kites and darts

Pentagrids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mutual local derivability

Equivalence relation on tilings:

Definition (MLD tilings)

Two tilings are said to be *mutually locally derivable* (MLD) if the one can be obtained from the other by a local map, and *vice versa*.

Example: the two previous tilings are MLD.

Some properties

Pentagrids

Tilings by thin and fat rhombi

・ロト ・ 日本・ 小田・ 小田・ 一日・ 今日・

Some properties

Pentagrids

Tilings by thin and fat rhombi

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Some properties

Pentagrids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Tilings by thin and fat rhombi

Some properties

Pentagrids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Tilings by thin and fat rhombi

Some properties

Pentagrids

Tilings by thin and fat rhombi

・ロト ・ 日本・ 小田・ 小田・ 一日・ 今日・

1 Penrose tilings

3 Some properties

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

The trouble with Penrose tilings

The previous tilesets also admit periodic tilings.

Pentagrids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The trouble with Penrose tilings

The previous tilesets also admit periodic tilings.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The trouble with Penrose tilings

The previous tilesets also admit periodic tilings.

Some properties

Pentagrids

Three aperiodic tilesets (Penrose, 1974)

Penrose's trick: notch edges to enforce the hierarchical structure.

(tiles up to rotation)
Matching rules

Some properties

Pentagrids

Three aperiodic tilesets (Penrose, 1974)

Penrose's trick: notch edges to enforce the hierarchical structure.

(tiles up to rotation)

3

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Matching rules

Some properties

Pentagrids

Three aperiodic tilesets (Penrose, 1974)

Penrose's trick: notch edges to enforce the hierarchical structure.

(tiles up to rotation)

э

(日)、

Penrose tilings (formal)

Definition (Equivalence)

Two tilesets are *equivalent* if any tiling by one tileset is mutually locally derivable from a tiling by the other tileset.

Exercise: prove the equivalence of Penrose tilesets.

Definition (Penrose tilings)

A *Penrose tiling* is a tiling mutually locally derivable from a tiling of the whole plane by one of the three previous Penrose tilesets.

Pentagrids

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Robinson triangles

Notched rhombi are equivalent to colored rhombi.

Pentagrids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Robinson triangles

Notched rhombi are equivalent to colored rhombi.

Robinson triangles

Colored rhombi are equivalent to Robinson triangles.

(tiles up to rotations and reflections)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pentagrids

Robinson macro-triangles

Robinson macro-triangle: homothetic unions of Robinson triangles. Up to this homothety, triangles and macro-triangles are equivalent.

Pentagrids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Inflate and divide

Pattern + inflate/divide ad infinitum → tiling of the plane (Kőnig).

Pentagrids

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Inflate and divide

Pattern + inflate/divide ad infinitum ~> tiling of the plane (Kőnig).

Pentagrids

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Inflate and divide

Pattern + inflate/divide ad infinitum ~> tiling of the plane (Kőnig).

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Inflate and divide

Pattern + inflate/divide ad infinitum ~>> tiling of the plane (Kőnig).

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Inflate and divide

Pattern + inflate/divide ad infinitum ~> tiling of the plane (Kőnig).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Inflate and divide

Pattern + inflate/divide ad infinitum ~> tiling of the plane (Kőnig).

Pentagrids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Group and deflate

Conversely, fix a tiling of the plane. Consider a thin triangle (if any).

Pentagrids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Group and deflate

What can be its red neighbor?

Pentagrids

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Group and deflate

A thin triangle would yield an uncompletable vertex.

Pentagrids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Group and deflate

This is thus a fat triangle.

Pentagrids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Group and deflate

We can group both to form a thin macro-triangle.

Pentagrids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Group and deflate

Consider a remaining fat triangle (if any).

Pentagrids

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Group and deflate

Its red neighbor is fat (otherwise it would be already grouped).

Pentagrids

・ロト ・ 日本・ 小田・ 小田・ 小田・

Group and deflate

What can be its blue neighbor?

Pentagrids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Group and deflate

A fat triangle would yield an uncompletable vertex.

Pentagrids

・ロト ・ 日本・ 小田・ 小田・ 小田・

Group and deflate

This is thus a thin triangle

Pentagrids

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Group and deflate

This is thus a thin triangle grouped into a thin macro-triangle.

Pentagrids

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Group and deflate

We can group the three triangles to form a fat macro-triangle.

Pentagrids

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Group and deflate

Hence, any tiling by Robinson triangles...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Group and deflate

... can be uniquely seen as a tiling by Robinson macro-triangles.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Group and deflate

Macro-triangles can be consistently replaced by triangles...

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Group and deflate

... and by deflating we get a new Penrose tiling.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Group and deflate

Group/deflate ad infinitum ~>> aperiodicity of Robinson triangles.

Penrose tilings

Uncountability

Proposition

Penrose tilesets admit uncountably many tilings of the plane.

Proof:

- track a tile in the tiling hierarchy \rightsquigarrow infinite tile sequence;
- tiles of isometric tilings \rightsquigarrow sequences with the same tail ends;
- infinite tile sequence \lambda tiling;
- countably many sequences with the same tail end;
- uncountably many infinite tile sequences.

Quasiperiodicity

Pattern of size r (in a tiling): tiles lying in a closed ball of radius r.

Definition (Quasiperiodic tiling)

A tiling is said to be *quasiperiodic* if, for any r > 0, there is R > 0 such that any pattern of size r appears in any pattern of size R.

 $\label{eq:Quasiperiodic} {\sf Quasiperiodic} \equiv {\sf bounded} \ {\sf gap} \equiv {\sf repetitive} \equiv {\sf uniformly} \ {\sf recurrent}.$

Any periodic tiling is also quasiperiodic (take R = r + period).

Quasiperiodicity

Pattern of size r (in a tiling): tiles lying in a closed ball of radius r.

Definition (Quasiperiodic tiling)

A tiling is said to be *quasiperiodic* if, for any r > 0, there is R > 0 such that any pattern of size r appears in any pattern of size R.

 $\label{eq:Quasiperiodic} {\sf Quasiperiodic} \equiv {\sf bounded} \ {\sf gap} \equiv {\sf repetitive} \equiv {\sf uniformly} \ {\sf recurrent}.$

Any periodic tiling is also quasiperiodic (take R = r + period).

Proposition

Penrose tilings are quasiperiodic.

Proof: first check for r = Diam(tile), then group/deflate.

・ロト ・ 日本・ 小田・ 小田・ 小田・

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rotational symmetry

Tile angles multiple of $\frac{\pi}{5} \rightsquigarrow$ only 5- or 10-fold symmetries (or 2-fold).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Rotational symmetry

Up to isometry, three 5-fold elementary patterns.
Pentagrids

Rotational symmetry

Inflate/divide \log two 5-fold Penrose tilings of the plane.

・ロト ・聞ト ・ヨト ・ヨト

э

Rotational symmetry

Inflate/divide \rightsquigarrow two 5-fold Penrose tilings of the plane.

・ロト ・聞ト ・ヨト ・ヨト

э

Rotational symmetry

Inflate/divide \log two 5-fold Penrose tilings of the plane.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Rotational symmetry

They are different even up to decorations.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Rotational symmetry

They are different even up to decorations.

Pentagrids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rotational symmetry

Conversely, a symmetry center must live in the whole hierarchy.

Pentagrids

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Rotational symmetry

Conversely, a symmetry center must live in the whole hierarchy.

Pentagrids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Rotational symmetry

Conversely, a symmetry center must live in the whole hierarchy.

Pentagrids

Rotational symmetry

There is thus only two 5-fold Penrose tilings of the plane.

Pentagrids

Rotational symmetry

The uncountably many others have only local 5-fold symmetry.

・ロト ・ 一 ト ・ モト ・ モト

э

Pentagrids

Remind quasicrystals

Point-holes at vertices of a Penrose tiling \rightsquigarrow 5-fold diffractogram.

(日)、

э

Remind quasicrystals

Point-holes at vertices of a Penrose tiling ~> 5-fold diffractogram.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Pentagrids

Remind quasicrystals

Point-holes at vertices of a Penrose tiling \rightsquigarrow 5-fold diffractogram.

(日)、

Pentagrids

Remind quasicrystals

Point-holes at vertices of a Penrose tiling ~> 5-fold diffractogram.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Vertex atlas

In Penrose tilings, Robinson triangles fit in 8 ways around a vertex.

Vertex atlas

Up to decorations, this yields a vertex atlas of size 7.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Vertex atlas

Proposition: any tiling with this vertex atlas is a Penrose tiling.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Vertex atlas

A similar vertex atlas for tilings by thin and fat rhombi.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Vertex atlas

A similar vertex atlas for tilings by kites and darts.

Draw these two particular billiard trajectories in each triangle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ammann bars				
	\square		\land	
	$A \setminus$			

Some proper

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some trigonometry \rightsquigarrow ratio characterizing the trajectories.

Ammann bars

This draws on Penrose tilings five bundles of parallel lines.

Ammann bars

This draws on Penrose tilings five bundles of parallel lines.

Penrose tilings

- 2 Matching rules
- **3** Some properties

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pentagrid (De Bruijn, 1981)

Shift $s_j \in \mathbb{R} \rightsquigarrow \text{grid} \{z \in \mathbb{C} \mid \text{Re}(z\zeta^{-j}) + s_j = 0\}$, where $\zeta = e^{2i\pi/5}$.

・ロン ・御 と ・ ヨン ・ ヨン ・ ヨー

Pentagrids

Pentagrid (De Bruijn, 1981)

Strip numbering: $K_j(z) = \lceil \operatorname{Re}(z\zeta^{-j}) + s_j \rceil$.

Pentagrids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Pentagrid (De Bruijn, 1981)

Pentagrid: grids $0, \ldots, 4$, with $s_0 + \ldots + s_4 \in \mathbb{Z}$ and no triple point.

Some properties

Pentagrids

From pentagrids to rhombus tilings

 $+ f(z_1)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some properties

Pentagrids

From pentagrids to rhombus tilings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some properties

Pentagrids

From pentagrids to rhombus tilings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some properties

Pentagrids

From pentagrids to rhombus tilings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some properties

Pentagrids

From pentagrids to rhombus tilings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some properties

Pentagrids

From pentagrids to rhombus tilings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some properties

Pentagrids

From pentagrids to rhombus tilings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pentagrids

From pentagrids to rhombus tilings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pentagrids

From pentagrids to rhombus tilings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
Indices

・ロト ・西ト ・ヨト ・ヨー うらぐ

$i(z) := \sum_{0 \le j \le 4} K_j(z)$ maps each mesh into $\{1, 2, 3, 4\}$. (check)

Some properties

イロト 不得 トイヨト イヨト

э

Pentagrids

From rhombus tilings to Penrose tilings

Can the rhombi of such tilings be consistently notched?

Some properties

э

Pentagrids

From rhombus tilings to Penrose tilings

Lemma: each rhombus can be endowed by indices in only two ways.

Some properties

Pentagrids

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

From rhombus tilings to Penrose tilings

Lemma: each rhombus can be endowed by indices in only two ways.

Some properties

э

Pentagrids

From rhombus tilings to Penrose tilings

Double-arrow notchings from 3 to 4 and from 1 to 2: consistent.

Some properties

Pentagrids

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

From rhombus tilings to Penrose tilings

Double-arrow notchings from 3 to 4 and from 1 to 2: consistent.

Some properties

э

Pentagrids

From rhombus tilings to Penrose tilings

Notchings of remaining edges are forced. Is it consistent?

Some properties

э

Pentagrids

From rhombus tilings to Penrose tilings

Remark: single-arrow notchings go from acute to obtuse angles.

Some properties

イロト 不得 トイヨト イヨト

э.

Pentagrids

From rhombus tilings to Penrose tilings

Lemma: along an edge between 2 and 3, acute/obtuse angles match.

Some properties

э

Pentagrids

From rhombus tilings to Penrose tilings

This yields the consistency of the single-arrow notchings.

Some properties

Pentagrids

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

From rhombus tilings to Penrose tilings

This yields the consistency of the single-arrow notchings.

From Penrose tilings to pentagrids

Let $\phi_{\vec{s}}$ be the rhombus tiling derived from the pentagrid of shift \vec{s} . Lemma: group/deflate $\phi_{\vec{s}}$ yields $\phi_{g(\vec{s})}$, where $g(\vec{s})_i = s_{i-1} + s_{i+1}$.

From Penrose tilings to pentagrids

Let $\phi_{\vec{s}}$ be the rhombus tiling derived from the pentagrid of shift \vec{s} .

Lemma: group/deflate $\phi_{\vec{s}}$ yields $\phi_{g(\vec{s})}$, where $g(\vec{s})_j = s_{j-1} + s_{j+1}$.

Theorem (de Bruijn, 1981)

The Penrose tilings are exactly the tilings derived from pentagrids.

Proof:

- Fix a Penrose tiling $\phi = \phi^{(0)}$;
- inflate/divide *n* times \rightsquigarrow Penrose tiling $\phi^{(n)}$;
- find \vec{s}_n such that $\phi_{\vec{s}_n}$ and $\phi^{(n)}$ agree on B(0,1);
- group/deflate *n* times $\rightsquigarrow \phi_{g^n(\vec{s}_n)}$ and $\phi^{(0)}$ agree on $B(0, \tau^n)$;
- $g^n(\vec{s}_n) \in [0,1)^5 \rightsquigarrow$ accumulation point $t \rightsquigarrow \phi = \phi^{(0)} = \phi_t$.

Application

Remind:

- there are uncountably many Penrose tilings;
- exactly two of them have a global five-fold symmetry.

Proof:

- uncountably many shifts $s_0 + \ldots + s_4 \in \mathbb{Z}$;
- $\vec{0}$ center of symmetry iff $s_j = \frac{2}{5}$ or $s_j = -\frac{2}{5}$.

Some references for this lecture:

- Roger Penrose, Pentaplexity: a class of non-periodic tilings of the plane, Eureka 39 (1978).
- Nicolaas Govert de Bruijn, Algebraic theory of Penrose's non-periodic tilings of the plane, Indag. Math. 43 (1981).
- Marjorie Senechal, Quasicrystals and Geometry, Cambridge University Press, 1995. Chap. 6.

These slides and the above references can be found there:

http://www.lif.univ-mrs.fr/~fernique/qc/