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Penrose tilings

Tilings by pentagons, diamonds, boats and stars

Regular pentagons almost tile a bigger pentagon.



Penrose tilings

Tilings by pentagons, diamonds, boats and stars

Each pentagon can in turn be tiled by smaller pentagons.



Penrose tilings

Tilings by pentagons, diamonds, boats and stars

Holes can be filled by diamonds.



Penrose tilings

Tilings by pentagons, diamonds, boats and stars

30

Consider such a diamond with its neighborhood.
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Tilings by pentagons, diamonds, boats and stars

Consider such a diamond with its neighborhood.



Penrose tilings

Tilings by pentagons, diamonds, boats and stars

Tile pentagons by smaller pentagons and fill diamond holes.



Penrose tilings

Tilings by pentagons, diamonds, boats and stars

The rest can be tiled with a star, a boat and a pentagon.
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Tilings by pentagons, diamonds, boats and stars

Consider the star and the boat, with their neighborhood.



Penrose tilings

Tilings by pentagons, diamonds, boats and stars
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Consider the star and the boat, with their neighborhood.



Penrose tilings

Tilings by pentagons, diamonds, boats and stars

Tile pentagons by smaller pentagons and fill diamond holes.



Penrose tilings

Tilings by pentagons, diamonds, boats and stars

The rest can be tiled with the same tiles (and neighborhood)



Penrose tilings

Tilings by pentagons, diamonds, boats and stars

~ tiling of the plane by pentagons, diamonds, boats and stars.



Penrose tilings

Tilings by pentagons, diamonds, boats and stars
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Method: inflate, divide and fill diamond-shaped holes — ad infinitum.



Tilings by pentagons, diamonds, boats and stars
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Tilings by kites and darts
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Tilings by kites and darts




Penrose tilings

Mutual local derivability

Equivalence relation on tilings:

Definition (MLD tilings)
Two tilings are said to be mutually locally derivable (MLD) if the
one can be obtained from the other by a local map, and vice versa.

Example: the two previous tilings are MLD.



Tilings by thin and fat rhombi







Tilings by thin and fat rhombi







Tilings by thin and fat rhombi
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Matching rules

The trouble with Penrose tilings

The previous tilesets also admit periodic tilings.
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The previous tilesets also admit periodic tilings.



Matching rules

The trouble with Penrose tilings

The previous tilesets also admit periodic tilings.



Matching rules

Three aperiodic tilesets (Penrose, 1974)

Penrose’s trick: notch edges to enforce the hierarchical structure.

(tiles up to rotation)
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Matching rules

Three aperiodic tilesets (Penrose, 1974)

Penrose’s trick: notch edges to enforce the hierarchical structure.

(tiles up to rotation)



Matching rules

Penrose tilings (formal)

Definition (Equivalence)

Two tilesets are equivalent if any tiling by one tileset is mutually
locally derivable from a tiling by the other tileset.

Exercise: prove the equivalence of Penrose tilesets.

Definition (Penrose tilings)

A Penrose tiling is a tiling mutually locally derivable from a tiling
of the whole plane by one of the three previous Penrose tilesets.




Matching rules

Robinson triangles

Notched rhombi are equivalent to colored rhombi.



Matching rules

Robinson triangles

Notched rhombi are equivalent to colored rhombi.



Matching rules

Robinson triangles

Colored rhombi are equivalent to Robinson triangles.

(tiles up to rotations and reflections)



Matching rules

Robinson macro-triangles

Lf
A

Robinson macro-triangle: homothetic unions of Robinson triangles.
Up to this homothety, triangles and macro-triangles are equivalent.



Matching rules

Inflate and divide

Pattern + inflate/divide ad infinitum ~~ tiling of the plane (Kénig).
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Matching rules

Inflate and divide

Pattern + inflate/divide ad infinitum ~~ tiling of the plane (Kénig).



Inflate and divide
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Pattern + inflate/divide ad infinitum ~~ tiling of the plane (Kénig).



Inflate and divide
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Pattern + inflate/divide ad infinitum ~~ tiling of the plane (Kénig).




Matching rules

Group and deflate

Conversely, fix a tiling of the plane. Consider a thin triangle (if any).



Matching rules
Group and deflate

What can be its red neighbor?



Matching rules

Group and deflate

A thin triangle would yield an uncompletable vertex.



Matching rules

Group and deflate

This is thus a fat triangle.



Matching rules

Group and deflate

We can group both to form a thin macro-triangle.



Matching rules

Group and deflate

pel AN

Consider a remaining fat triangle (if any).



Matching rules

Group and deflate

Its red neighbor is fat (otherwise it would be already grouped).



Matching rules
Group and deflate

?

What can be its blue neighbor?



Matching rules

Group and deflate

A fat triangle would yield an uncompletable vertex.



Matching rules

Group and deflate

This is thus a thin triangle



Matching rules

Group and deflate

This is thus a thin triangle grouped into a thin macro-triangle.



Matching rules

Group and deflate

We can group the three triangles to form a fat macro-triangle.












Group and deflate
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Group and deflate
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Group/deflate ad infinitum ~~ aperiodicity of Robinson triangles.
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Some properties

Uncountability

Proposition
Penrose tilesets admit uncountably many tilings of the plane.

Proof:

@ track a tile in the tiling hierarchy ~~ infinite tile sequence;

o tiles of isometric tilings ~~ sequences with the same tail ends;
@ infinite tile sequence ~ tiling;
@ countably many sequences with the same tail end;

@ uncountably many infinite tile sequences.



Some properties

Quasiperiodicity

Pattern of size r (in a tiling): tiles lying in a closed ball of radius r.

Definition (Quasiperiodic tiling)

A tiling is said to be quasiperiodic if, for any r > 0, there is R > 0
such that any pattern of size r appears in any pattern of size R.

Quasiperiodic = bounded gap = repetitive = uniformly recurrent.

Any periodic tiling is also quasiperiodic (take R = r + period).



Some properties

Quasiperiodicity

Pattern of size r (in a tiling): tiles lying in a closed ball of radius r.

Definition (Quasiperiodic tiling)

A tiling is said to be quasiperiodic if, for any r > 0, there is R > 0
such that any pattern of size r appears in any pattern of size R.

Quasiperiodic = bounded gap = repetitive = uniformly recurrent.

Any periodic tiling is also quasiperiodic (take R = r + period).

Proposition

Penrose tilings are quasiperiodic.

Proof: first check for r = Diam(tile), then group/deflate.



Some properties

Rotational symmetry

Tile angles multiple of § ~~ only 5- or 10-fold symmetries (or 2-fold).



Some properties

Rotational symmetry

&

Up to isometry, three 5-fold elementary patterns.



Rotational symmetry
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Inflate/divide ~~ two 5-fold Penrose tilings of the plane.



Rotational symmetry
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Inflate/divide ~~ two 5-fold Penrose tilings of the plane.



Rotational symmetry
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Inflate/divide ~~ two 5-fold Penrose tilings of the plane.



Rotational symmetry

up to decorations.

They are different even
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Some properties

Rotational symmetry

&

Conversely, a symmetry center must live in the whole hierarchy.
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Rotational symmetry

Conversely, a symmetry center must live in the whole hierarchy.



Rotational symmetry
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Conversely, a symmetry center must live in the whole hierarchy.



Rotational symmetry
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There is thus only two 5-fold Penrose tilings of the plane.



Rotational symmetry
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The uncountably many others have only local 5-fold symmetry.



Some properties

Remind quasicrystals

Point-holes at vertices of a Penrose tiling ~» 5-fold diffractogram.
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Some properties

Remind quasicrystals

Point-holes at vertices of a Penrose tiling ~» 5-fold diffractogram.



Some properties

Vertex atlas

In Penrose tilings, Robinson triangles fit in 8 ways around a vertex.



Some properties

Vertex atlas

Up to decorations, this yields a vertex atlas of size 7.



Some properties

Vertex atlas

Proposition: any tiling with this vertex atlas is a Penrose tiling.



Some properties
Vertex atlas
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A similar vertex atlas for tilings by thin and fat rhombi.



Some properties

Vertex atlas
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A similar vertex atlas for tilings by kites and darts.




Some properties

Ammann bars

Draw these two particular billiard trajectories in each triangle.



Some properties

Ammann bars

N

Some trigonometry ~~ ratio characterizing the trajectories.









@ Pentagrids



Pentagrids

Pentagrid (De Bruijn, 1981)

Shift s; € R ~~ grid {z € C | Re(z(’j)—i—sj =0}, where ¢ = e2im/5



Pentagrids

Pentagrid (De Bruijn, 1981)

Strip numbering: K;(z) = [Re(z¢ ) + s5i].



Pentagrids

Pentagrid (De Bruijn, 1981)
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Pentagrid: grids 0, ..., 4, with sp+...+ss € Z and no triple point.



Pentagrids
From pentagrids to rhombus tilings




Pentagrids

From pentagrids to rhombus tilings

f(z,)
T~ f(zy)
Zl




Pentagrids

From pentagrids to rhombus tilings
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From pentagrids to rhombus tilings




Pentagrids
From pentagrids to rhombus tilings

44



Pentagrids
From pentagrids to rhombus tilings

44



Pentagrids

From pentagrids to rhombus tilings

o A
i
: \

f(z) = Z Kj(z)¢/ maps each mesh onto a rhombus vertex.
0<j<4






Indices

i(z) = Z Kj(z) maps each mesh into {1,2,3,4}. (check)
0<j<4



Pentagrids
From rhombus tilings to Penrose tilings
?
= <[>

Can the rhombi of such tilings be consistently notched?



Pentagrids

From rhombus tilings to Penrose tilings

2 3
2 3
3 3 2 2 3<>3 2<>2
3 1
4 1

Lemma: each rhombus can be endowed by indices in only two ways.



From rhombus tilings to Penrose tilings




Pentagrids

From rhombus tilings to Penrose tilings

2 3
2 3
3 3 2 2 3@3 2{}2
4 1
4 1

Double-arrow notchings from 3 to 4 and from 1 to 2: consistent.






Pentagrids

From rhombus tilings to Penrose tilings

2 3
2 3
3 3 2 2 3%3 2%2
4 1
4 1

Notchings of remaining edges are forced. Is it consistent?



Pentagrids

From rhombus tilings to Penrose tilings

2 3
2 3
3 3 2 2 3%3 2%2
4 1
4 1

Remark: single-arrow notchings go from acute to obtuse angles.



Pentagrids

From rhombus tilings to Penrose tilings
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Lemma: along an edge between 2 and 3, acute/obtuse angles match.




Pentagrids

From rhombus tilings to Penrose tilings
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This yields the consistency of the single-arrow notchings.




From rhombus tilings to Pen

This yields the consistency of the single-arrow notchings.



Pentagrids
From Penrose tilings to pentagrids

Let ¢z be the rhombus tiling derived from the pentagrid of shift s.

Lemma: group/deflate ¢z yields ¢, z), where g(3); = sj—1 + sj41.



Pentagrids
From Penrose tilings to pentagrids

Let ¢z be the rhombus tiling derived from the pentagrid of shift s.

Lemma: group/deflate ¢z yields ¢, z), where g(3); = sj—1 + sj41.

Theorem (de Bruijn, 1981)

The Penrose tilings are exactly the tilings derived from pentagrids.

Proof:

o Fix a Penrose tiling ¢ = ¢(?);

e inflate/divide n times ~~ Penrose tiling gb(”);

e find S, such that ¢z, and #(" agree on B(0,1);

o group/deflate n times ~ ¢gn(s,) and #(©) agree on B(0,7");
e g"(8,) € [0,1)° ~» accumulation point t ~ ¢ = ¢(0) = ¢,.



Pentagrids

Application

Remind:
@ there are uncountably many Penrose tilings;

@ exactly two of them have a global five-fold symmetry.

Proof:

@ uncountably many shifts sg + ...+ s4 € Z;

o 0 center of symmetry iff 5; = Zors = —32.
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Some references for this lecture:

[§ Roger Penrose, Pentaplexity: a class of non-periodic tilings of
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These slides and the above references can be found there:

http://www.lif .univ-mrs.fr/~fernique/qc/
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