Robinson Tilings

Thomas Fernique

Moscow, Spring 2011
(1) The Halting problem
(2) The Domino problem
(3) Robinson tilings

4 Undecidability

(1) The Halting problem

(2) The Domino problem

3 Robinson tilings
4. Undecidability

The Halting problem for dummies (Windows 3.11, 1993)

W/hcows Setup

(1)

This operation can take several minutes. If it stops for a relatively long time, please restart your computer.

Turing machines (1937)

Scrolling infinite Tape

Rule: read s in state $q \rightsquigarrow$ write s^{\prime}, scroll tape, goto state q^{\prime}.
Turing machine: finite set of rules $\left(q, s, s^{\prime}, \leftrightharpoons, q^{\prime}\right)$.
Input: finite symbol sequence written on the tape.

Example

What does compute this Turing machine?

	on 0			on 1		
state	write	scroll	goto	write	scroll	goto
q	1	\rightarrow	\square	0	\rightarrow	q

Examples

What does compute this Turing machine?

	on 0			on 1		
state	write	scroll	goto	write	scroll	goto
q	1	\rightarrow	\square	0	\rightarrow	q

How many steps of computation on a 0 -filled tape for this one?

	on 0			on 1		
state	write	scroll	goto	write	scroll	goto
A	1	\rightarrow	B	1	\rightarrow	\square
B	1	\leftarrow	B	0	\rightarrow	C
C	1	\leftarrow	C	1	\leftarrow	A

Decidability

Decision problem: does the input satisfies a given property?
Example (parity): does the input encodes an even number?
Decidable problem: there exists a Turing machine which decides (writes yes/no on the tape and halts) the problem for any input.

Example: parity problem is decidable.

Decidability

Decision problem: does the input satisfies a given property?
Example (parity): does the input encodes an even number?
Decidable problem: there exists a Turing machine which decides (writes yes/no on the tape and halts) the problem for any input.

Example: parity problem is decidable.
Example: decision problems in P and NP are equally decidable.

The Halting problem

Halting problem: does Turing machine M halts on input w ?

Theorem (Turing, 1937)

The halting problem is undecidable.

Proof:

- assume M_{H} decides the halting problem for any input M; w;
- let $D(M)$: if $M_{H}(M ; M)=$ yes then loops, otherwise halts;
- $D(D)$ halts $\Leftrightarrow M_{H}(D ; D)=$ no $\Leftrightarrow D(D)$ does not halt.

The Halting problem

Halting problem: does Turing machine M halts on input w ?

Theorem (Turing, 1937)

The halting problem is undecidable.

Proof:

- assume M_{H} decides the halting problem for any input M; w;
- let $D(M)$: if $M_{H}(M ; M)=$ yes then loops, otherwise halts;
- $D(D)$ halts $\Leftrightarrow M_{H}(D ; D)=$ no $\Leftrightarrow D(D)$ does not halt.

Halting problem bis: does Turing machine M halts on empty input?

Busy beavers

Challenge: Among fixed size Turing machines (the beavers), find the one with the longest output on an empty input (the busiest).

Try to beat this one:

	on 0			on 1			on 2		
state	write	scroll	goto	write	scroll	goto	write	scroll	goto
A	1	\rightarrow	B	2	\leftarrow	A	1	\leftarrow	C
B	0	\leftarrow	A	2	\rightarrow	B	1	\leftarrow	B
C	1	\rightarrow	\square	1	\rightarrow	A	1	\rightarrow	C

Busy beavers

Challenge: Among fixed size Turing machines (the beavers), find the one with the longest output on an empty input (the busiest).

Try to beat this one:

	on 0			on 1			on 2		
state	write	scroll	goto	write	scroll	goto	write	scroll	goto
A	1	\rightarrow	B	2	\leftarrow	A	1	\leftarrow	C
B	0	\leftarrow	A	2	\rightarrow	B	1	\leftarrow	B
C	1	\rightarrow	\square	1	\rightarrow	A	1	\rightarrow	C

(halts after 119×10^{15} steps, with 374×10^{6} non-zero cells)

(1) The Halting problem

(2) The Domino problem
(3) Robinson tilings

4 Undecidability

Wang tiles (1961)

Wang tiles: colored squares; match along edges of the same color.

Simulating Turing machines by Wang tiles

Three tiles for each rule $\left(q, s, s^{\prime}, \leftrightharpoons, q^{\prime}\right)$, one for each symbol s :

Rows of a tiling of the plane \simeq tape evolution of the machine:

Simulating Turing machines by Wang tiles

Three tiles for each rule $\left(q, s, s^{\prime}, \leftrightharpoons, q^{\prime}\right)$, one for each symbol s :

Rows of a tiling of the plane \simeq tape evolution of the machine:

No proper computation initialization.

The Completion problem

Additional tiles to start a computation on a empty imput:

The Completion problem

Additional tiles to start a computation on a empty imput:

Undecidability of Halting problem bis then yields the one of:
Completion problem: given a finite tileset and a seed tile, is it possible to extend this seed tile to a tiling of the whole plane?

The Completion problem

Additional tiles to start a computation on a empty imput:

Undecidability of Halting problem bis then yields the one of:
Completion problem: given a finite tileset and a seed tile, is it possible to extend this seed tile to a tiling of the whole plane?

And without seed?

The Domino problem

Domino problem: does a given finite tileset tile the whole plane?
To prove undecidability: forbid translational order (as seeds do)?

The Domino problem

Domino problem: does a given finite tileset tile the whole plane?
To prove undecidability: forbid translational order (as seeds do)?

Theorem (Wang, 1961)

If any finite tileset which tile the plane does admit a periodic tiling, then the domino problem is decidable.

Proof: just try to tile larger and larger squares till finding a period.

The Domino problem

Domino problem: does a given finite tileset tile the whole plane?
To prove undecidability: forbid translational order (as seeds do)?

Theorem (Wang, 1961)

If any finite tileset which tile the plane does admit a periodic tiling, then the domino problem is decidable.

Proof: just try to tile larger and larger squares till finding a period.
Does exist finite tilesets which tile the plane only non-periodically? Wang conjectured that there are no such so-called aperiodic tileset.

Undecidability (Berger, 1964)

Berger proved the undecidability of Domino problem in his thesis.
In particular, he constructed the first aperiodic tileset: 20426 tiles!

(1) The Halting problem

(2) The Domino problem

(3) Robinson tilings

4 Undecidability

Robinson tiles (1971)

Six bumped and dented tiles which can be rotated or reflected. Two corners (bumpy and dented, left) and four arms (right).

Robinson tiles (1971)

Six bumped and dented tiles which can be rotated or reflected. Two corners (bumpy and dented, left) and four arms (right).

Bumpy corners

Order n bumpy corners: recursively defined squares of side $2^{n}-1$.

Bumpy corners

Order n bumpy corners: recursively defined squares of side $2^{n}-1$.

Bumpy corners

Order n bumpy corners: recursively defined squares of side $2^{n}-1$.

Bumpy corners

Order n bumpy corners: recursively defined squares of side $2^{n}-1$.

Bumpy corners

Order n bumpy corners: recursively defined squares of side $2^{n}-1$.

Bumpy corners

Order n bumpy corners: recursively defined squares of side $2^{n}-1$.

Bumpy corners

Order n bumpy corners: recursively defined squares of side $2^{n}-1$.

Bumpy corners

Order n bumpy corners: recursively defined squares of side $2^{n}-1$.

Bumpy corners

Order n bumpy corners: recursively defined squares of side $2^{n}-1$.

Bumpy corners

Order n bumpy corners: recursively defined squares of side $2^{n}-1$.

Bumpy corners

Order n bumpy corners: recursively defined squares of side $2^{n}-1$.

Bumpy corners

Order n bumpy corners: recursively defined squares of side $2^{n}-1$.

Tiling the whole plane

Lemma
 The Robinson tileset does tile the plane.

Proof: infinite spiral-growing increasing sequence of bumpy corners.

Tiling the whole plane

Lemma

The Robinson tileset does tile the plane.

Proof: infinite spiral-growing increasing sequence of bumpy corners.
Proof 2: Kőnig lemma on an infinite growing sequence of patches.

Nested bumpy corners

Assume a tiling has an order n bumpy NE-corner.

Nested bumpy corners

The tiles along the east side can only be arms.

Nested bumpy corners

The middle one is S or E . Both have an inwards N -arrow.

Nested bumpy corners

This forces northern arms to be S-arms.

Nested bumpy corners

Symmetrically north.

Nested bumpy corners

This forces a corner,

Nested bumpy corners

This forces a corner, two arms,

Nested bumpy corners

This forces a corner, two arms, and three order 1 bumpy corners.

Nested bumpy corners

By induction, they appear in order n bumpy corners.

Nested bumpy corners

Gaps must be filled by arms oriented away from the central corner.

Nested bumpy corners

This fixes the orientation of all the order n bumpy corners.

Nested bumpy corners

The central corner orientation fixes the arrow types of all the arms.

Aperiodicity

Lemma

The Robinson tileset cannot tile periodically.

Proof:

- tiling \rightsquigarrow infinite sequence of nested bumpy squares;
- such a sequence forms arbitrarily large blue squares;
- no finite translation can leave them all invariant.

Aperiodicity

Lemma

The Robinson tileset cannot tile periodically.

Proof:

- tiling \rightsquigarrow infinite sequence of nested bumpy squares;
- such a sequence forms arbitrarily large blue squares;
- no finite translation can leave them all invariant.

Theorem (Robinson, 1971)
The Robinson tileset is aperiodic.

How many tilings (up to translation)?

Tiling τ and square $\square \rightsquigarrow$ infinite four-arrow sequence $\tau(\square)$.

How many tilings (up to translation)?

Translated square or tiling \rightsquigarrow sequence with the same tail end.

How many tilings (up to translation)?

There are countably many such sequences (heads are countable).

How many tilings (up to translation)?

\square \square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square

\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square

\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square
\square

\square
\square
\square

\square
\square

\square
\square
\square
\square
\square

\square
\square

\square

\square
\square

\square
\square

Conversely: square + infinite four-arrow sequence \rightsquigarrow tiling.

How many tilings (up to translation)?

Conversely: square + infinite four-arrow sequence \rightsquigarrow tiling.

How many tilings (up to translation)?

Conversely: square + infinite four-arrow sequence \rightsquigarrow tiling.

How many tilings (up to translation)?

Conversely: square + infinite four-arrow sequence \rightsquigarrow tiling.

How many tilings (up to translation)?

Conversely: square + infinite four-arrow sequence \rightsquigarrow tiling.

How many tilings (up to translation)?

Conversely: square + infinite four-arrow sequence \rightsquigarrow tiling.

How many tilings (up to translation)?

There are uncountably many infinite four-arrow sequences.

How many tilings (up to translation)?

There are thus uncountably many Robinson tilings.

(1) The Halting problem

(2) The Domino problem
(3) Robinson tilings

4 Undecidability

Sketch

Proof of the undecidability of Domino problem:
Given a Turing machine M :

- define Wang tiles that simulate M on an empty input;
- convert Robinson tiles in equivalent Wang tiles;
- extend Robinson tiles to start a computation in each square.
M halts \Leftrightarrow there is a (big enough) square that cannot be tiled.
Halting problem bis undecidable \Rightarrow Domino problem undecidable.

From Robinson tiles to Wang tiles

From Robinson tiles to Wang tiles

毘 比 比 囲

比 囲 比 囲 田

囲 囲 囲 毗 田

From Robinson tiles to Wang tiles

圃 比 囲 囲 囲 囲

From Robinson tiles to Wang tiles

比
圃 比 囲 囲 囲 囲

比

From Robinson tiles to Wang tiles

囲囲囲画囲国囲

From Robinson tiles to Wang tiles

From Robinson tiles to Wang tiles

From Robinson tiles to Wang tiles

-												
				-	,		,		-	,	-	
					,			,				
					,							
						-						
												H

From Robinson tiles to Wang tiles

Alterning squares

Alterning squares

Alterning squares

Alterning squares

Computing in squares

Obstruction signals

Obstruction signals

Obstruction signals

Obstruction signals

Transmission signals

Transmission signals

Some references for this lecture:
Raphael Robinson, Undecidability and nonperiodicity for tilings of the plane, Inventiones Mathematicae 12 (1971).

R Robert Berger, The Undecidability of the domino problem, PhD thesis, Harvard University, 1964.

國 Hao Wang, Proving theorems by pattern recognition II, Bell Systems technical journal 40 (1961).

These slides and the above references can be found there:
http://www.lif.univ-mrs.fr/~fernique/qc/

