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The Halting problem

The Halting problem for dummies (Windows 3.11, 1993)

Windows Setup

Windows Setup

Copying Mail Drivers for Fax
File: MSMAIL.EXE

Copying Mail Drivers for Fax

0 This operation can take several minutes. If it stops for a
relatively long time, please restart your computer.




The Halting problem

Turing machines (1937)

Machine with finite
number of States

Read, Write, Scroll
1 according to Rules

]

Finite number of
different Symbols

Scrolling infinite Tape

Rule: read s in state g ~ write s/, scroll tape, goto state ¢'.
Turing machine: finite set of rules (q,s,s’,=,q’).

Input: finite symbol sequence written on the tape.



The Halting problem

Example

What does compute this Turing machine?

on0

onl

state

write

scroll

goto

write

scroll

goto

—




The Halting problem

Examples

What does compute this Turing machine?

on0 onl

state || write | scroll | goto || write | scroll | goto

q 1 — 0 0 — q

How many steps of computation on a O-filled tape for this one?

on0 onl

state || write | scroll | goto || write | scroll | goto

A 1 — B 1 — O
B 1 — B 0 — C
C 1 — C 1 — A




The Halting problem

Decidability

Decision problem: does the input satisfies a given property?
Example (parity): does the input encodes an even number?
Decidable problem: there exists a Turing machine which decides
(writes yes/no on the tape and halts) the problem for any input.

Example: parity problem is decidable.



The Halting problem

Decidability

Decision problem: does the input satisfies a given property?
Example (parity): does the input encodes an even number?
Decidable problem: there exists a Turing machine which decides
(writes yes/no on the tape and halts) the problem for any input.

Example: parity problem is decidable.

Example: decision problems in P and NP are equally decidable.



The Halting problem
The Halting problem

Halting problem: does Turing machine M halts on input w?

Theorem (Turing, 1937)
The halting problem is undecidable.

Proof:
@ assume My decides the halting problem for any input M; w;
e let D(M): if My(M; M) = yes then loops, otherwise halts;
e D(D) halts & My(D; D) =no < D(D) does not halt.



The Halting problem

The Halting problem

Halting problem: does Turing machine M halts on input w?

Theorem (Turing, 1937)
The halting problem is undecidable.

Proof:
@ assume My decides the halting problem for any input M; w;
e let D(M): if My(M; M) = yes then loops, otherwise halts;
e D(D) halts & My(D; D) =no < D(D) does not halt.

Halting problem bis: does Turing machine M halts on empty input?



The Halting problem

Busy beavers

Challenge: Among fixed size Turing machines (the beavers), find
the one with the longest output on an empty input (the busiest).

Try to beat this one:

on 0 onl on 2

state || write | scroll | goto || write | scroll | goto || write | scroll | goto
A 1 — B 2 — A 1 — C
B 0 — A 2 — B 1 — B
C 1 — 0 1 — A 1 — C




The Halting problem

Busy beavers

Challenge: Among fixed size Turing machines (the beavers), find
the one with the longest output on an empty input (the busiest).

Try to beat this one:

on 0 onl on 2

state || write | scroll | goto || write | scroll | goto || write | scroll | goto
A 1 — B 2 — A 1 — C
B 0 — A 2 — B 1 — B
C 1 — 0 1 — A 1 — C

(halts after 119 x 105 steps, with 374 x 10° non-zero cells)



The Domino problem

© The Domino problem



The Domino problem

Wang tiles (1961)

Wang tiles: colored squares; match along edges of the same color.



The Domino problem

Simulating Turing machines by Wang tiles

Three tiles for each rule (g, s,s’,=,q’), one for each symbol s:

qs qs S S S
i Y

ql— —1q | .|
S S qs qs S




The Domino problem

Simulating Turing machines by Wang tiles

Three tiles for each rule (g, s,s’,=,q’), one for each symbol s:

qs qs S S S
i Y

ql— —1q | .|
S S qs qs S

No proper computation initialization.



The Domino problem

The Completion problem

Additional tiles to start a computation on a empty imput:

# q# #

T T




The Domino problem

The Completion problem

Additional tiles to start a computation on a empty imput:

# q# #

T T

Undecidability of Halting problem bis then yields the one of:

Completion problem: given a finite tileset and a seed tile, is it
possible to extend this seed tile to a tiling of the whole plane?



The Domino problem

The Completion problem

Additional tiles to start a computation on a empty imput:

# q# #

T T

Undecidability of Halting problem bis then yields the one of:

Completion problem: given a finite tileset and a seed tile, is it
possible to extend this seed tile to a tiling of the whole plane?

And without seed?



The Domino problem

The Domino problem

Domino problem: does a given finite tileset tile the whole plane?

To prove undecidability: forbid translational order (as seeds do)?



The Domino problem

The Domino problem

Domino problem: does a given finite tileset tile the whole plane?

To prove undecidability: forbid translational order (as seeds do)?

Theorem (Wang, 1961)

If any finite tileset which tile the plane does admit a periodic tiling,
then the domino problem is decidable.

Proof: just try to tile larger and larger squares till finding a period.



The Domino problem

The Domino problem

Domino problem: does a given finite tileset tile the whole plane?

To prove undecidability: forbid translational order (as seeds do)?

Theorem (Wang, 1961)

If any finite tileset which tile the plane does admit a periodic tiling,
then the domino problem is decidable.

Proof: just try to tile larger and larger squares till finding a period.

Does exist finite tilesets which tile the plane only non-periodically?
Wang conjectured that there are no such so-called aperiodic tileset.



The Domino problem

Undecidability (Berger, 1964)

KE’S—:} IE‘;HE E )
0

Berger proved the undecidability of Domino problem in his thesis.

In particular, he constructed the first aperiodic tileset: 20426 tiles!



Robinson tilings

© Robinson tilings



Robinson tilings

Robinson tiles (1971)

Six bumped and dented tiles which can be rotated or reflected.
Two corners (bumpy and dented, left) and four arms (right).




Robinson tilings

Robinson tiles (1971)

Six bumped and dented tiles which can be rotated or reflected.
Two corners (bumpy and dented, left) and four arms (right).




Robinson tilings

Bumpy corners

Order n bumpy corners: recursively defined squares of side 27 — 1.
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Bumpy corners

Order n bumpy corners: recursively defined squares of side 27 — 1.



Robinson tilings

Bumpy corners

Order n bumpy corners: recursively defined squares of side 27 — 1.



Robinson tilings

Bumpy corners

Order n bumpy corners: recursively defined squares of side 27 — 1.



Robinson tilings

Bumpy corners

Order n bumpy corners: recursively defined squares of side 27 — 1.



Robinson tilings

Bumpy corners

Order n bumpy corners: recursively defined squares of side 27 — 1.



Robinson tilings

Bumpy corners

Order n bumpy corners: recursively defined squares of side 27 — 1.



Robinson tilings

Bumpy corners

Sgsts

pigles

Order n bumpy corners: recursively defined squares of side 27 — 1.



Robinson tilings

Bumpy corners

Sgses

piggles

Order n bumpy corners: recursively defined squares of side 27 — 1.



Robinson tilings

Bumpy corners

JF

JF

+

7@

Order n bumpy corners: recursively defined squares of side 27 — 1.



Bumpy corners
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Order n bumpy corners: recursively defined squares of side 27 — 1.
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Order n bumpy corners: recursively defined squares of side 27 — 1.



Robinson tilings

Tiling the whole plane

The Robinson tileset does tile the plane. \

Proof: infinite spiral-growing increasing sequence of bumpy corners.




Robinson tilings

Tiling the whole plane

The Robinson tileset does tile the plane. \

Proof: infinite spiral-growing increasing sequence of bumpy corners.

Proof 2: Kénig lemma on an infinite growing sequence of patches.



Robinson tilings

Nested bumpy corners

QF

Assume a tiling has an order n bumpy NE-corner.



Robinson tilings

Nested bumpy corners

QF

The tiles along the east side can only be arms.



Robinson tilings
Nested bumpy corners

QF

The middle one is S or E. Both have an inwards N-arrow.



Robinson tilings

Nested bumpy corners

QF

This forces northern arms to be S-arms.



Robinson tilings

Nested bumpy corners

Symmetrically north.



Robinson tilings

Nested bumpy corners

This forces a corner,



Robinson tilings

Nested bumpy corners

This forces a corner, two arms,



Robinson tilings

Nested bumpy corners

This forces a corner, two arms, and three order 1 bumpy corners.



Robinson tilings

Nested bumpy corners

=
“gﬂ

By induction, they appear in order n bumpy corners.



Robinson tilings

Nested bumpy corners

-
LS “gﬂ.ﬂ
o

Gaps must be filled by arms oriented away from the central corner.



Robinson tilings
Nested bumpy corners

This fixes the orientation of all the order n bumpy corners.



Robinson tilings

Nested bumpy corners

JF
7@

+

The central corner orientation fixes the arrow types of all the arms.



Robinson tilings

Aperiodicity

The Robinson tileset cannot tile periodically.

Proof:

@ tiling ~~ infinite sequence of nested bumpy squares;

@ such a sequence forms arbitrarily large blue squares;

@ no finite translation can leave them all invariant.



Robinson tilings

Aperiodicity

The Robinson tileset cannot tile periodically.

Proof:

@ tiling ~~ infinite sequence of nested bumpy squares;

@ such a sequence forms arbitrarily large blue squares;

@ no finite translation can leave them all invariant.

Theorem (Robinson, 1971)

The Robinson tileset is aperiodic.




Robinson tilings

How many tilings (up to translation)?

]
=l

B0 01| p-6) B

51 5+ 5+ B+

(31| [+ | [F+]|[d
(51 5 5T | [
[F] [F]| [3H] [d
51 5+ 5+ [
(1 [+ | [F+] [d
51 5 5 [
(3] | (3] | [ | [
51 5+ 5+ [
[ | 1] ]| [FH]
51 5] 5T [
[F5] [F] [ [d

O

Tiling 7 and square [J ~~ infinite four-arrow sequence 7([J).
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Robinson tilings

How many tilings (up to translation)?

]
=l

B0 01| -6 B

51 5+ 5+ B+

[F—1 | [+ ]| [d
(51 5 5| [
[F] [F] | [ [d
51 5+ 5+ [
[T [+ 1] [d
51 5 3 [
(3] | (3] | [ | [
51 5+ 5+ | [
[ | [F+] [T [FH]
(51 5] 5] [
[F5] [F] [ [d

Translated square or tiling ~> sequence with the same tail end.



Robinson tilings

How many tilings (up to translation)?

]
=l

B0 01| -6 B

51 5+ 5+ B+

1 50| [
[F] 3] [d

5] 5] [FR]| [FH

A [d
(51 [

There are countably many such sequences (heads are countable).

[F—1 | [+ ]| [d
(51 5 5| [
[F] [F] | [ [d
51 5+ 5+ [
[T [+ 1] [d
51 5 3 [
(3] | (3] | [ | [
51 5+ 5+ | [




Robinson tilings

How many tilings (up to translation)?

][
][
][
][
][
][
1O
][

Conversely: square + infinite four-arrow sequence ~» tiling.

OO OO oo

]
]
]
]
]
]
[]
]

OO OO oo
OO OO oo
OO OO oo
OO OO oo
OO OO oo
OO OO oo
OO OO oo
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Robinson tilings

How many tilings (up to translation)?

[
=
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=l
]
]
]
=l
]
=l
51 5+ 5+ B+

51 3+ 5+
[+l [+ [+
=
I=
=
=
=
I=
=
I=

2 B O] 52

Conversely: square + infinite four-arrow sequence ~» tiling.



Robinson tilings

How many tilings (up to translation)?

A [Ah) [Fe] [hR] -
) 5+ 51 () [

Conversely: square + infinite four-arrow sequence ~» tiling.

[+ [+ 1] [d
51 5+ 5+ B+

(51 3] 5]
[F] [ g
=
I=
=
=
=
I=
=
I=



Robinson tilings

How many tilings (up to translation)?

36 (5 (35 6] [-F1 35
T e e e B e
Hel e e e | e
b0 52 58|58 5|00
36| (6 (3-5]| 36 (A1 35
e | e ot | e s | 5
He R e B R )
b7 5 58 51 58 59

Conversely: square + infinite four-arrow sequence ~» tiling.



Robinson tilings

How many tilings (up to translation)?

36 (5 (35 6] [-F1 35
T e e e B e
Hel e e e | e
b0 52 58|58 5|00
36| (0 35| 30| 61| 30
e | e ot | e | s | B
He 3 e e s e
b7 5 58 59|58 59

Conversely: square + infinite four-arrow sequence ~» tiling.



Robinson tilings

How many tilings (up to translation)?

]
=l

B0 01| -6 B

51 5+ 5+ B+

5] 5] [FH]| [FH

2] ] 5|
5] [R] [FR] [

[F—1 | [+ ]| [d
(51 5 5| [
[F] [F] | [ [d
51 5+ 5+ [
[T [+ 1] [d
51 5 3 [
(3] | (3] | [Fe] | [
51 5+ 5+ | [

(51 [

Conversely: square + infinite four-arrow sequence ~» tiling.




Robinson tilings

How many tilings (up to translation)?

]
=l

B0 01| -6 B

51 5+ 5+ B+

51 50| [
[F] 3] [d

5] 5] [FH]| [FH

A [d
(51 [

There are uncountably many infinite four-arrow sequences.

[F—1 | [+ ]| [d
(51 5 5| [
[F] [F] | [ [d
51 5+ 5+ [
[T [+ 1] [d
51 5 3 [
(3] | (3] | [Fe] | [
51 5+ 5+ | [




Robinson tilings

How many tilings (up to translation)?

]
=l

B0 01| -6 B

51 5+ 5+ B+

5] 5] [FH]| [FH

2] ] 5|
5] [R] [FR] [

[

[F—1 | [+ ]| [d
(51 5 5| [
[F] [F] | [ [d
51 5+ 5+ [
[T [+ 1] [d
51 5 3 [
(3] | (3] | [Fe] | [
51 5+ 5+ | [

(51 [

There are thus uncountably many Robinson tilings.
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@ Undecidability



Undecidability

Sketch

Proof of the undecidability of Domino problem:

Given a Turing machine M:

@ define Wang tiles that simulate M on an empty input;
@ convert Robinson tiles in equivalent Wang tiles;

@ extend Robinson tiles to start a computation in each square.

M halts < there is a (big enough) square that cannot be tiled.

Halting problem bis undecidable = Domino problem undecidable.



From Robinson tiles to Wang tiles
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From Robinson tiles to Wang tiles
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From Robinson tiles to Wang tiles




Undecidability
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Undecidability

From Robinson tiles to Wang tiles
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Undecidability

From Robinson tiles to Wang tiles

=




From Robinson tiles to Wang tiles

H
=
Gils
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From Robinson tiles to Wang tiles

HHEHEEEBEBES
B HE S EHEBBEEE
HEBHSEESBEHBEBER S
HEEHEEEBBHE B
B HGEEBHE B E
HEBH®HEEZHBBRB
HHEHBEEEBBEHEB®E
HEEBEEDEBBEDEHES



From Robinson tiles to Wang tiles

M MNEFEEBBES
NEEHSBEEHBBERE
HEBHSEESBEHBEBER S
HEEHEEEBBHE B
B HGEEBHE B E
HEBH®HEEZHBBRB
HHEHBEEEBBEHEB®E
HEMNEDBBDBHES



From Robinson tiles to Wang tiles

M MEEEBBE S
NEEHSBEEHBBERE
HEBHSEESBEHBEBER S
HEEHEEEBBHE B
B0 HE e e E e
HEBH®HEEZHBBRB
H HBEMEHEHBEHKBEHE
HEMWMEDLDEBDEBHES



From Robinson tiles to Wang tiles

M XX WX N MK M
XX MKENXERKRKKKX
N X MEIXXXNK XKW
KX X MMM NENAX
XK K M MNX KX K KK
XX MIXX X X X M
M XK MHEKEKKMKLK
M X M X KX MK KX M



Undecidability

From Robinson tiles to Wang tiles




Undecidability
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Undecidability

Alterning squares
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Alterning squares
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Undecidability

Computing in squares
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Computing in squares




Computing in squares

Undecidability

q#




Computing in squares




Undecidability

Computing in squares




Undecidability

Obstruction signals
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Undecidability
Obstruction signals




Undecidability
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Undecidability

Transmission signals
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Undecidability

Transmission signals
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These slides and the above references can be found there:

http://www.lif .univ-mrs.fr/~fernique/qc/
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