# **Cooled Tilings**

**Thomas Fernique** 

Moscow, Spring 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ











2 The two-letter case

3 The Dimer case

4 The Penrose case

# Remind previous lectures

## Energy:

Can explain quasiperiodic tiling stability at low temperature. Mostly fails to explain growth of quasiperiodic tiling.

#### Entropy:

Can explain random tiling stability at high temperature. Some random tilings may be close to quasiperiodic tilings.

(日)、(四)、(E)、(E)、(E)

# Two problems with random tilings



Real quasicrystals stable at low temperature do exist. Real quasicrystals which look perfectly quasiperiodic do exist.

# The Bridgman-Stockbarger method



◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の < @

# A general cooling model (simulated annealing)

Start at high temperature from a maximal entropy random tiling.

Decrease slowly the temperature T up to T = 0.

Meanwhile, perform random local transformations step by step. More precisely: choose at random a location, try to transform:

- with probability 1 if it changes the energy by  $\Delta E \leq$  0;
- with probability  $\exp(-\Delta E/T)$  otherwise.

Does the process reach a ground state (E = 0)? At which rate?

# A general cooling model (simulated annealing)

Start at high temperature from a maximal entropy random tiling.

Decrease slowly the temperature T up to T = 0.

Meanwhile, perform random local transformations step by step. More precisely: choose at random a location, try to transform:

- with probability 1 if it changes the energy by  $\Delta E \leq 0$ ;
- with probability  $\exp(-\Delta E/T)$  otherwise.

Does the process reach a ground state (E = 0)? At which rate?

In what follows, "simplified cooling": allow only  $\Delta E \leq 0$ .











# Formalization

## Configuration: word w over $\{1, 2\}$ with as many 1 as 2.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Formalization

## Configuration: word w over $\{1, 2\}$ with as many 1 as 2.



Error: two identical consecutive letters. Counted by E(w)

# Formalization



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

# Formalization

## Flip: local transformation $12 \leftrightarrow 21$ .



Flips can delete, shift or create errors.

# Formalization



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Formalization



## Formalization

### Process: $w_t \rightarrow w_{t+1}$ by a random flip which does not create errors.



Convergence time:  $T(w_0) := \min\{t \ge 0 \mid E(w_t) = 0\}.$ 

# Conjectures and results

Expected number of flips to get an error-free word:

Worst case (initial word  $1^n 2^n$  or  $2^n 1^n$ ):

- $\Theta(n^3)$  conjectured (simulations);
- $O(n^3)$  proven (next slides).

Average case (initial word drawn uniformly at random):

- $\Theta(n^2\sqrt{n})$  conjectured (simulations);
- $O(n^2\sqrt{n}\log n)$  proven.

 $\rightsquigarrow$  Polynomial mixing time in any case.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

# Weighted Dyck factors



# Weighted Dyck factors

### We introduce Dyck factor:



#### Definition

Let  $0 < \alpha < 1$ . Let DF(w) be the Dyck factors of w. One sets:

$$\psi_{lpha}(w) := \sum_{v \in DF(w)} (1 + |v|_1)^{lpha}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

# A cubic upper bound

One proves 
$$(n = |w|)$$
:  
(1 +  $\frac{n}{2}$ ) $^{\alpha} \leq \psi_{\alpha}(w) \leq n^{1+\alpha}$ ;  
( $\psi_{\alpha}(w) > (1 + \frac{n}{2})^{\alpha} \Rightarrow \mathbb{E}(\Delta \psi_{\alpha}(w)|w) \leq -\frac{\alpha(1-\alpha)}{2}n^{\alpha-2}$ ;  
( $\psi_{\alpha}(w) = (1 + \frac{n}{2})^{\alpha} \Rightarrow E(w) = 0$ .
#### A cubic upper bound

One proves 
$$(n = |w|)$$
:  
(1 +  $\frac{n}{2}$ ) $^{\alpha} \leq \psi_{\alpha}(w) \leq n^{1+\alpha}$ ;  
( $\psi_{\alpha}(w) > (1 + \frac{n}{2})^{\alpha} \Rightarrow \mathbb{E}(\Delta \psi_{\alpha}(w)|w) \leq -\frac{\alpha(1-\alpha)}{2}n^{\alpha-2}$ ;  
( $\psi_{\alpha}(w) = (1 + \frac{n}{2})^{\alpha} \Rightarrow E(w) = 0$ .

One uses that, for a Markov chain  $(w_t)_t$  on  $\Omega$  and  $\psi: \Omega \to \mathbb{R}^+$ :

#### Proposition

If  $\mathbb{E}\Delta\psi < -\varepsilon$  for  $\psi(w) > 0$ , then  $\mathbb{E}(\min\{t \mid \psi(w_t) = 0\}) \leq \frac{\max\psi}{\varepsilon}$ .

## A cubic upper bound

One proves 
$$(n = |w|)$$
:  
(1 +  $\frac{n}{2}$ ) $^{\alpha} \leq \psi_{\alpha}(w) \leq n^{1+\alpha}$ ;  
( $\psi_{\alpha}(w) > (1 + \frac{n}{2})^{\alpha} \Rightarrow \mathbb{E}(\Delta \psi_{\alpha}(w)|w) \leq -\frac{\alpha(1-\alpha)}{2}n^{\alpha-2}$ ;  
( $\psi_{\alpha}(w) = (1 + \frac{n}{2})^{\alpha} \Rightarrow E(w) = 0$ .

One uses that, for a Markov chain  $(w_t)_t$  on  $\Omega$  and  $\psi: \Omega \to \mathbb{R}^+$ :

#### Proposition

If  $\mathbb{E}\Delta\psi < -\varepsilon$  for  $\psi(w) > 0$ , then  $\mathbb{E}(\min\{t \mid \psi(w_t) = 0\}) \leq \frac{\max\psi}{\varepsilon}$ .

Here, this yields:

Theorem (Bodini-F-Regnault 2010)

The expected convergence time satisfies:  $\mathbb{E}(T(w)) \leq \frac{2}{\alpha(1-\alpha)}n^3$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

# Proof (sketch)

#### Main idea ensuring the decrease on expectation (sketch):



A flip can increase (red) or decrease (blue)  $\psi_{\alpha}$ .

# Proof (sketch)

#### Main idea ensuring the decrease on expectation (sketch):



With each red flip is associated a "higher" blue flip.

# Proof (sketch)

#### Main idea ensuring the decrease on expectation (sketch):



Whenever the red flip increases  $\psi_{\alpha}$  by  $(p+1)^{\alpha} - p^{\alpha} \dots$ 

# Proof (sketch)

#### Main idea ensuring the decrease on expectation (sketch):



Whenever the red flip increases  $\psi_{\alpha}$  by  $(p+1)^{\alpha} - p^{\alpha} \dots$ 

# Proof (sketch)

#### Main idea ensuring the decrease on expectation (sketch):



 $\ldots$  the blue flip decreases it by  $(q-1)^lpha-q^lpha$  , with  $q\leq p\ldots$ 

◆□> <圖> < E> < E> E のQQ

# Proof (sketch)

#### Main idea ensuring the decrease on expectation (sketch):



 $\ldots$  the blue flip decreases it by  $(q-1)^lpha-q^lpha$  , with  $q\leq p\ldots$ 

# Proof (sketch)

#### Main idea ensuring the decrease on expectation (sketch):



... and the concavity of  $x \to x^{\alpha}$  yields a negative total variation.









▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

#### Formalization



Consider a dimer tiling with *flat boundary*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Formalization



Height function: color  $\sim$  distance of tile center to x + y + z = 0.

#### Formalization



Errors: edges between tiles of different height (*i.e.*, color level set).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Formalization



Allowed flips: do not create errors (boundaries do not grow).

#### Formalization



Error-free tiling (ground state): flat tiling with order 6 symmetry.





















(ロ)、(型)、(E)、(E)、 E) の(の)

## Cooling





















◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Cooling






◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### Cooling







# Conjectures and results

Expected number of flips to get an error-free dimer tiling:

Worst case:

- $\Theta(n^2)$  conjectured (simulations);
- $O(n^2\sqrt{n})$  proven.

Average case (initial tiling drawn uniformly at random):

- $\Theta(n\sqrt{n})$  conjectured (simulations);
- $O(n^2 \log n)$  proven, assuming order log *n* fluctuations.

 $\rightsquigarrow$  Polynomial mixing time in any case.











### Formalization

#### Theorem (Kleman-Pavlovitch 1987)

A tiling of the plane by Penrose rhombi is a generalized Penrose tiling iff, in any ribbon, symmetric thin (resp. fat) tiles alternate.



Error: two consecutive similar thin (resp. fat) tiles in a ribbon.

(日)、(四)、(E)、(E)、(E)

### Formalization

#### Theorem (Kleman-Pavlovitch 1987)

A tiling of the plane by Penrose rhombi is a generalized Penrose tiling iff, in any ribbon, symmetric thin (resp. fat) tiles alternate.



Error: two consecutive similar thin (resp. fat) tiles in a ribbon.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

## Cooling













# Conjectures and results

Expected number of flips to get an error-free tiling:

#### Worst case:

- $\Theta(n^2)$  conjectured (simulations);
- nothing proven (even not finiteness!).

Average case (initial tiling drawn uniformly at random):

- $\Theta(n\sqrt{n})$  conjectured (simulations);
- nothing proven.

Further cases? Back to matching rules for rhombus tilings...

Some references for this lecture:

- Olivier Bodini, Thomas Fernique, Damien Regnault, Crystallization by stochastic flips, J. Phy.: Conf. ser. 226 (2010).
- Olivier Bodini, Thomas Fernique, Damien Regnault, Stochastic flips on two-letter words, in proc. of ANALCO'10 (2010).
- Thomas Fernique, Damien Regnault, *Stochastic flips on dimer tilings*, Disc. Math. Theor. Comput. Sci. (2010).

These slides and the above references can be found there:

http://www.lif.univ-mrs.fr/~fernique/qc/