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Remind previous lectures

Energy:

Can explain quasiperiodic tiling stability at low temperature.
Mostly fails to explain growth of quasiperiodic tiling.

Entropy:

Can explain random tiling stability at high temperature.
Some random tilings may be close to quasiperiodic tilings.
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Two problems with random tilings

Real quasicrystals stable at low temperature do exist.
Real quasicrystals which look perfectly quasiperiodic do exist.
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The Bridgman-Stockbarger method
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A general cooling model (simulated annealing)

Start at high temperature from a maximal entropy random tiling.

Decrease slowly the temperature T up to T = 0.

Meanwhile, perform random local transformations step by step.
More precisely: choose at random a location, try to transform:

with probability 1 if it changes the energy by ∆E ≤ 0;

with probability exp(−∆E/T ) otherwise.

Does the process reach a ground state (E = 0)? At which rate?

In what follows, “simplified cooling”: allow only ∆E ≤ 0.
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Formalization

Configuration: word w over {1, 2} with as many 1 as 2.

Error: two identical consecutive letters. Counted by E (w)
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Formalization

Flip: local transformation 12↔ 21.

Flips can delete, shift or create errors.
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Formalization

Process: wt → wt+1 by a random flip which does not create errors.

Convergence time: T (w0) := min{t ≥ 0 | E (wt) = 0}.
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Formalization

Process: wt → wt+1 by a random flip which does not create errors.
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Conjectures and results

Expected number of flips to get an error-free word:

Worst case (initial word 1n2n or 2n1n):

Θ(n3) conjectured (simulations);

O(n3) proven (next slides).

Average case (initial word drawn uniformly at random):

Θ(n2√n) conjectured (simulations);

O(n2√n log n) proven.

 Polynomial mixing time in any case.
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Weighted Dyck factors

We introduce Dyck factor:

Definition

Let 0 < α < 1. Let DF (w) be the Dyck factors of w . One sets:

ψα(w) :=
∑

v∈DF (w)

(1 + |v |1)α.
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A cubic upper bound

One proves (n = |w |):

1 (1 + n
2 )α ≤ ψα(w) ≤ n1+α;

2 ψα(w) > (1 + n
2 )α ⇒ E(∆ψα(w)|w) ≤ −α(1−α)

2 nα−2;

3 ψα(w) = (1 + n
2 )α ⇒ E (w) = 0.

One uses that, for a Markov chain (wt)t on Ω and ψ : Ω→ R+:

Proposition

If E∆ψ < −ε for ψ(w) > 0, then E(min{t | ψ(wt) = 0}) ≤ maxψ
ε .

Here, this yields:

Theorem (Bodini-F-Regnault 2010)

The expected convergence time satisfies: E(T (w)) ≤ 2
α(1−α)n3.
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Proof (sketch)

Main idea ensuring the decrease on expectation (sketch):

A flip can increase (red) or decrease (blue) ψα.
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Proof (sketch)

Main idea ensuring the decrease on expectation (sketch):

With each red flip is associated a “higher” blue flip.
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Main idea ensuring the decrease on expectation (sketch):

q

. . . the blue flip decreases it by (q − 1)α − qα, with q ≤ p. . .
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Proof (sketch)

Main idea ensuring the decrease on expectation (sketch):

q−1

. . . the blue flip decreases it by (q − 1)α − qα, with q ≤ p. . .



Principle The two-letter case The Dimer case The Penrose case

Proof (sketch)

Main idea ensuring the decrease on expectation (sketch):

q

p

. . . and the concavity of x → xα yields a negative total variation.
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Formalization

Consider a dimer tiling with flat boundary.
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Formalization

Height function: color ∼ distance of tile center to x + y + z = 0.
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Formalization

Errors: edges between tiles of different height (i.e., color level set).
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Formalization

Allowed flips: do not create errors (boundaries do not grow).
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Formalization

Error-free tiling (ground state): flat tiling with order 6 symmetry.
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Cooling

Cooling: stochastic flips which do not create errors are performed.
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Conjectures and results

Expected number of flips to get an error-free dimer tiling:

Worst case:

Θ(n2) conjectured (simulations);

O(n2√n) proven.

Average case (initial tiling drawn uniformly at random):

Θ(n
√

n) conjectured (simulations);

O(n2 log n) proven, assuming order log n fluctuations.

 Polynomial mixing time in any case.
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Formalization

Theorem (Kleman-Pavlovitch 1987)

A tiling of the plane by Penrose rhombi is a generalized Penrose
tiling iff, in any ribbon, symmetric thin (resp. fat) tiles alternate.

Error: two consecutive similar thin (resp. fat) tiles in a ribbon.
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Conjectures and results

Expected number of flips to get an error-free tiling:

Worst case:

Θ(n2) conjectured (simulations);

nothing proven (even not finiteness!).

Average case (initial tiling drawn uniformly at random):

Θ(n
√

n) conjectured (simulations);

nothing proven.

Further cases? Back to matching rules for rhombus tilings. . .
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