Self-assembled Tilings

Thomas Fernique

Moscow, Spring 2011
(1) Self-assembly
(2) Forced self-assembly
(3) Defects as seeds

4 Weighted self-assembly

(1) Self-assembly

2 Forced self-assembly

(3) Defects as seeds

4 Weighted self-assembly

Principle

Add one tile at time, with matching rules being satisfied. Physically: minimize the free energy $F=E-T S$ at $T=0$.

Principle

Add one tile at time, with matching rules being satisfied. Physically: minimize the free energy $F=E-T S$ at $T=0$.

Principle

Add one tile at time, with matching rules being satisfied. Physically: minimize the free energy $F=E-T S$ at $T=0$.

Principle

Add one tile at time, with matching rules being satisfied. Physically: minimize the free energy $F=E-T S$ at $T=0$.

Principle

Add one tile at time, with matching rules being satisfied. Physically: minimize the free energy $F=E-T S$ at $T=0$.

Deceptions

Fix a tile set τ. A τ-patch is correct if it appears in some τ-tiling.

Definition (Deception)

A deception of order r is a τ-patch homeomorphic to a closed ball, with only correct size r subpatches, but which is itself not correct.

Deceptions

Fix a tile set τ. A τ-patch is correct if it appears in some τ-tiling.

Definition (Deception)

A deception of order r is a τ-patch homeomorphic to a closed ball, with only correct size r subpatches, but which is itself not correct.

Theorem (Dworkin-Shieh, 1995)

An aperiodic plane tile set has deceptions of arbitrarily large order.

Proof (by contradiction):
Assume that r bounds the order of deceptions. We make 3 steps.

Step 1: remind quasiperiodicity

Definition (Quasiperiodic tiling)

A tiling is quasiperiodic if, for any $r>0$, there is $R>0$ such that any patch of size r appears in any patch of size R.

Theorem (Birkhoff, 1912)

If a tile set admits a tiling, then it admits a quasiperiodic tiling.

Proof (following Durand, 1998):

- write $T^{\prime} \prec T$ if any finite (sub)patch of T^{\prime} appears in T;
- show that the minimal tilings for \prec are the quasiperiodic ones;
- $f(T):=\arg \min \left(T^{\prime} \mapsto \inf \left\{\operatorname{Diam}(P) \mid P \nprec T^{\prime} \prec T, P \prec T\right\}\right)$;
- diagonal extraction on $\left(f^{n}(T)\right)_{n \geq 0} \rightsquigarrow$ quasiperiodic tiling.

Step 2: find three siblings

We want a tiling with three patches containing a ball of radius r, which are equal up to translation and not aligned (siblings).

Step 2: find three siblings

Quasiperiodic tiling \rightsquigarrow patches equal up to isometries everywhere. This suffices if tiles can take only finitely many different orientations.

Step 2: find three siblings

In any case, some tiling has two patches equal up to an isometry.

Step 2: find three siblings

In this tiling, link these patches by a "bone" of diameter r. This form a new patch which appears everywhere up to an isometry.

Step 2: find three siblings

In the tiling, link two such occurences by a new bone (of diameter r).

Step 2: find three siblings

This form a new patch. Let us forget the tiling where it appears.

Step 2: find three siblings

The new bone and its "patella" can be duplicated without creating incorrect subpatches of diameter r (for a thick enough "cartilage").

Step 2: find three siblings

No deceptions of order $r \rightsquigarrow$ this new patch appears in some tiling.

Step 2: find three siblings

Forget some bones and patellae, link the two siblings by a bone.

Step 2: find three siblings

Forget the tiling. The patch can be extended without creating incorrect subpatches of diameter r, so that it contains three siblings.

Step 2: find three siblings

No deceptions of order $r \rightsquigarrow$ this new patch appears in some tiling.

Step 3: build a periodic tiling

Consider these three siblings, with two bones linking them.

Step 3: build a periodic tiling

Forget the tiling, extend the patch without incorrect subpatches.

Step 3: build a periodic tiling

Extend further to form a sufficiently stretched H -shaped patch.

Step 3: build a periodic tiling

No deceptions of order $r \rightsquigarrow$ this new patch appears in some tiling.

Step 3: build a periodic tiling

Link patellae by parallel bones \rightsquigarrow rungs of a ladder-shaped patch.

Step 3: build a periodic tiling

Stretched enough H-shaped patch \rightsquigarrow two identical rungs.

Step 3: build a periodic tiling

This forms a patch which periodically tiles \rightsquigarrow wanted contradiction!

Step 3: build a periodic tiling

This forms a patch which periodically tiles \rightsquigarrow wanted contradiction!

Some comments

If deceptions can have holes and tiles have finitely many different orientations, then the proof is much simpler (exercice).

In the previous proof, deceptions are very artificial (stretched H). What if deceptions are assumed to be, e.g., (roughly) convex?

Which proportion of the patches of a given size are deceptions?
Can we play with the order tiles are added to avoid deceptions?

(1) Self-assembly

(2) Forced self-assembly
(3) Defects as seeds

4 Weighted self-assembly

Let's play!

How to color french departements with only four different colors?

Let's play!

Assume some departements have already been coloried.

Let's play!

Let us choose, e.g., green for Aveyron.

Let's play!

No more free color for Lot!

Let's play!

Aveyron can be green or yellow \rightsquigarrow choice \rightsquigarrow risk!

Let's play!

No choice for Lot, Haute-Vienne, Aube, Saône-et-Loire and Isère.

Let's play!

Color them "for free": it does not reduce further possibilities!

Let's play!

No more choice for Aveyron and Vienne \rightsquigarrow color them.

Let's play!

No more choice for Aveyron and Vienne \rightsquigarrow color them.

Let's play!

No more choice for Gard and Tarn-et-Garonne \rightsquigarrow color them.

Let's play!

No more choice for Gard and Tarn-et-Garonne \rightsquigarrow color them.

Let's play!

No more choice for Vaucluse \rightsquigarrow color it.

Let's play!

At least two possible colors for each departement \rightsquigarrow good luck!

Let's play!

Theory guarantees that this is possible (Appel-Haken, 1976).

Principle

Fix a tile set τ. Let $A(e)$ be the number of different ways one can add a τ-tile along a boundary edge e of some τ-patch P.

- if $A(e)=0$, then e is a dead edge of P;
- if $A(e)=1$, then e is a forced edge of P;
- if $A(e) \geq 2$, then e is a free edge of P.

Starting from a correct patch (e.g., a single tile), repeat:

- complete forced edges until obtaining a free patch;
- add a suitable tile, so that the patch remains correct.

How to choose suitable tiles?

The Penrose case: forced edges

Forced edge: only one tile s.t. endpoints match the vertex atlas.

The Penrose case: free patches

Theorem (Onoda-Steinhardt-DiVincenzo-Socolar, 1988)
Complete classification of the free patches (via grouping/deflating).

The Penrose case: free patches

Theorem (Onoda-Steinhardt-DiVincenzo-Socolar, 1988)
Complete classification of the free patches (via grouping/deflating).

The Penrose case: free patches

Theorem (Onoda-Steinhardt-DiVincenzo-Socolar, 1988)
Complete classification of the free patches (via grouping/deflating).

The Penrose case: free patches

Theorem (Onoda-Steinhardt-DiVincenzo-Socolar, 1988)
Complete classification of the free patches (via grouping/deflating).

The Penrose case: free patches

Theorem (Onoda-Steinhardt-DiVincenzo-Socolar, 1988)
Complete classification of the free patches (via grouping/deflating).

The Penrose case: Conway worms \& Fibonacci sequences

Free patches have facets directed by Ammann bars.

The Penrose case: Conway worms \& Fibonacci sequences

Along each facet can be added, in two ways, a Conway worm.

The Penrose case: Conway worms \& Fibonacci sequences

It forms a S (hort) or L (ong) space between parallel Ammann bars.

The Penrose case: Conway worms \& Fibonacci sequences

In any Penrose tiling, S and L spaces form a Fibonacci sequence.

The Penrose case: Conway worms \& Fibonacci sequences

Non-local properties of this sequence can forbid one of the worms.

The Penrose case: Conway worms \& Fibonacci sequences

It is remarkable that the $2 D$ structure of Penrose tiling conspires to make this information available at the corners of dangerous faces.

The Penrose case: Conway worms \& Fibonacci sequences

It is remarkable that the $2 D$ structure of Penrose tiling conspires to make this information available at the corners of dangerous faces.

The Penrose case: Conway worms \& Fibonacci sequences

It is remarkable that the 2D structure of Penrose tiling conspires to make this information available at the corners of dangerous faces.

The Penrose case: Conway worms \& Fibonacci sequences

It is remarkable that the 2D structure of Penrose tiling conspires to make this information available at the corners of dangerous faces.

The Penrose case: OSDS rules

Theorem (Onoda-Steinhardt-DiVincenzo-Socolar, 1988)
Adding a fat tile on a 36° or 108° corner yields a correct tiling.

The Penrose case: OSDS rules

Theorem (Onoda-Steinhardt-DiVincenzo-Socolar, 1988)
Adding a fat tile on a 36° or 108° corner yields a correct tiling.

The Penrose case: local or non-local growth?

Check if a patch is free \rightsquigarrow check each boundary edge \rightsquigarrow non-local.

The Penrose case: local or non-local growth?

Check if a patch is free \rightsquigarrow check each boundary edge \rightsquigarrow non-local.

Trick:

- choose at each step a boundary edge at random;
- forced edge \rightsquigarrow add the only possible tile;
- 36° or 108° corner \rightsquigarrow add a fat tile with probability $\varepsilon>0$;
- other cases \rightsquigarrow go to the next step.

This converges to the previous process when $\varepsilon \rightarrow 0$.

The Penrose case: local or non-local growth?

Check if a patch is free \rightsquigarrow check each boundary edge \rightsquigarrow non-local.

Trick:

- choose at each step a boundary edge at random;
- forced edge \rightsquigarrow add the only possible tile;
- 36° or 108° corner \rightsquigarrow add a fat tile with probability $\varepsilon>0$;
- other cases \rightsquigarrow go to the next step.

This converges to the previous process when $\varepsilon \rightarrow 0$.
Drawbacks:

- the growth is stucked $\sim|\partial P| / \varepsilon$ steps on a free patch P;
- the probability to get a dead patch increases with ε.

(1) Self-assembly

(2) Forced self-assembly
(3) Defects as seeds

4 Weighted self-assembly

The Czochralski method

A seed initiates the growth; the crystal is pulled out while growing.

The Penrose case: patch charge

Penrose tiles can be equally decorated with Ammann bars or arrows.

The Penrose case: patch charge

Penrose tiles can be equally decorated with Ammann bars or arrows.

The Penrose case: patch charge

Unit charge on edges \rightsquigarrow charge of tiles and patches (circulation).

The Penrose case: patch charge

The charge of a simply connected patch is always equal to zero.

The Penrose case: patch charge

The charge of a simply connected patch is always equal to zero.

The Penrose case: patch charge

The charge of a simply connected patch is always equal to zero.

The Penrose case: patch charge

The charge of a simply connected patch is always equal to zero.

The Penrose case: holes/defects charge

This extends to arrowed closed curves, seen as holes or defects.

The Penrose case: holes/defects charge

The charge of a defect can be non-zero.

The Penrose case: holes/defects charge

Adding tiles then yields defectuous patches with the same charge.

The Penrose case: holes/defects charge

Adding tiles then yields defectuous patches with the same charge.

The Penrose case: holes/defects charge

Adding tiles then yields defectuous patches with the same charge.

The Penrose case: free patch charge

Free patch: boundary delimited by Conway worms, six corner types.

The Penrose case: free patch charge

Ammann bars form a convex polygon with at most two 72° corners.

The Penrose case: free patch charge

Only 72° corners have a non-zero charge \rightsquigarrow total charge in $[-2,2]$.

The Penrose case: the cartwheel tiling

Among all the Penrose tilings, consider the so-called cartwheel tiling.

The Penrose case: the cartwheel tiling

Ten semi-infinite Conway worms radiate out from a central decapod.

The Penrose case: the cartwheel tiling

Removing this decapod yields a hole whose charge is equal to zero.

The Penrose case: the cartwheel tiling

By flipping a semi-infinite Conway worm, this charge changes by ± 2.

The Penrose case：the cartwheel tiling

This yields some correct holes which cannot belong to a free patch．

Some comments

This shows that a suitable seed allows to easily grow a tiling which matches almost everywhere with a Penrose tiling (\rightsquigarrow non-periodic).

Can this be generalized to other tilings by aperiodic tile sets?

Some comments

This shows that a suitable seed allows to easily grow a tiling which matches almost everywhere with a Penrose tiling (\rightsquigarrow non-periodic).

Can this be generalized to other tilings by aperiodic tile sets?

But remind the completion problem: it is very easy to find a tile set which is aperiodic once a tile is forced (exercice: find yours!).
\rightsquigarrow in a certain sense, growing a tiling from a seed is "cheating"...

(1) Self-assembly

(2) Forced self-assembly
(3) Defects as seeds

4 Weighted self-assembly

Principle

Assign weights to tile edges; introduce a temperature parameter.
A tile can be added to a patch iff the sum of weights of its edges which match edges of the patch is greater than the temperature.
\rightsquigarrow yields some control on the order tiles are added.
Can some non-periodic tilings be grown in this framework?

A simple example (Becker-Rémila-Schabanel)

Weight: number of colored disc. Temperature: 2. Only translations.

A simple example (Becker-Rémila-Schabanel)

Initially: tiles can be glued only along weight 2 black edges.

A simple example (Becker-Rémila-Schabanel)

A diagonal of arbitrary length can then be grown.

A simple example (Becker-Rémila-Schabanel)

A diagonal of arbitrary length can then be grown.

A simple example (Becker-Rémila-Schabanel)

On the same time, red or yellow tiles can be added.

A simple example (Becker-Rémila-Schabanel)

This forces a square whose size $n \times n$ is determined by the diagonal.

A simple example (Becker-Rémila-Schabanel)

As many as possible tiles at each step \rightsquigarrow assembly time $O(3 n-2)$.

Some references for this lecture:
© Joshua Socolar, Growth rules for quasicrystals, in Quasicrystals: The State of the Art, 1991.

囯 Steven Dworkin, Jiunn-I Shieh, Deceptions in quasicrystal growth, Commun. Math. Phy. 128 (1995).
(國 Florent Becker, Éric Rémila, Nicolas Schabanel, Time optimal self-assembly for 2D and 3D shapes: the case of squares and cubes, in proc. DNA'08 (2008).

These slides and the above references can be found there:
http://www.lif.univ-mrs.fr/~fernique/qc/

