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Abstract

A substitution tiling is a certain globally de�ned hierarchical structure

in a geometric space; we show that for any substitution tiling in E
n, n > 1,

subject to relatively mild conditions, one can construct local rules that

force the desired global structure to emerge. As an immediate corollary,

in�nite collections of forced aperiodic tilings are constructed.

Figure 1: A substitution tiling

On the left in �gure 1, L-shaped tiles are repeatedly \in
ated and subdi-
vided". (We de�ne our terms more precisely in Section 1.) As this process is
iterated, larger and larger regions of the plane are tiled with L-tiles hierarchically

1Dept. of Mathematics, Univ. Arkansas, Fayetteville, AR 72701. This work was partially
supported by the Geometry Center under NSF Grant DMS-8920161.
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Figure 2: A matching rule tiling

arranged into larger and larger images of in
ated and subdivided L-tiles, as at
right in �gure 1 (the thicker lines have been added to emphasize the hierarchy).
We can then de�ne a global structure{ the \substitution tiling" induced by the
in
ation and division of the tiles.

But L-tiles can tile the plane in myriad ways. Is there a set of local conditions|
\matching rules" | that, if satis�ed everywhere, force the hierarchical structure
of the substitution tiling to emerge? One can show that no such rules exist for
unmarked L-tiles. However, we can �nd a set of marked L-tiles, and matching
rules that force the the original hierarchical structure to emerge. For example,
in �gure 2, we tile with the seven marked L-tiles, and require that we can cover
the plane with overlapping images of the two matching rules at lower left. At
right we see a portion of a tiling satisfying these rules, tiled with marked L's.

As the hierarchical structure of �gure 1 is precisely reproduced, we say the
original substitution tiling has been \enforced" by these matching rules. [GS]

That is, this global structure can be recreated using only locally de�ned
conditions.

Matching rules have been given for a variety of hierarchical tilings, beginning
with R. Berger's landmark paper [Ber]. R. Robinson gave the �rst simple exam-
ple [Rob], soon followed by R. Penrose's celebrated rhombs [Pen]. R. Amman
[GrSh], J. Socolar [Soc], L. Danzer [Dan] and others have constructed many
beautiful examples. S. Mozes gave rules enforcing one special in�nite class of
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substitution tiling [Mos], and C. Radin gave rules enforcing the Conway-Radin
pinwheel tiling [Rad]. However, no truly general technique had emerged.

Our theorem includes all examples known to the author:

Theorem Every substitution tiling of En, n > 1, can be enforced with �nite matching
rules, subject to a mild condition:

the tiles are required to admit a set of \hereditary edges" such that the substitution
tiling is \sibling-edge-to-edge".

Two general methods are known to produce \aperiodic tiles"| tiles that
admit no periodic tiling: construct matching rules enforcing substitution tilings;
or construct matching rules enforcing a \quasiperiodic" tiling- tilings derived as
slices through higher dimensional lattices ([dBr],[Sen]). 2

Our theorem immediately gives an in�nite collection of corollaries: any sub-
stitution tiling satisfying our technical condition yields a forced aperiodic tiling
of the plane. 3

Le T.T.Q. has recently given a theorem similar to ours, for quasiperiodic
tilings [Le].

A fuller introduction to substitution tilings and many issues of technical or
historical interest has been relegated to Appendix A.

The author thanks David Molnar, the participants of the Geometry Seminar
at the University of Arkansas, John Luecke, Ludwig Danzer, Marjorie Senechal,
Lorenzo Sadun and Charles Radin, each for useful discussions at various points
in the preparation of this paper.

In Section 0.1 we give a quick expository summary of the techniques involved.

In Section 1 we will establish the setting, de�ning basic terms such as \tile",

2Exactly one other class of forced aperiodic tilings is known, found by P. Schmitt and
altered by J.H. Conway and L. Danzer [Dan]. These tilings of E3 are not isotropic.

3Our construction produces aperiodic tiles even if the original substitution tiling is periodic;
this is because we speci�cally enforce a hierarchical structure in the tiling.
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\substitution" and \enforcement".

In Section 2 we will select vertices and edges, and carefully de�ne our \labels"|
names of elements in structures we draw from the substitution tiling. Our main
structures will be \skeletons" and \vertex-wires".

In Section 3, we describe how to mark tiles with our labels and in Section 3.5
give matching rules.

In Section 4 we prove the matching rules and marked tiles enforce the original
substitution tiling.

Appendix A is an expository introduction to substitution tilings.

In Appendix B matching rules are produced for a speci�c substitution tiling.

In Appendix C additional formalisms are given.

0.1 A sketch of the techniques

In order to sketch the technique of the proof of the theorem we �rst pause
for rough de�nitions. We will de�ne our terms more precisely in Sections 1
and 2. Our de�nitions are generally designed to allow enough 
exibility to
accommodate all historical examples but retain meaning.

For our speci�c proof of the theorem we take a narrow, classical setting:
\tilings" are to be coverings of n-dimensional Euclidean space En by congruences
of a �nite set of \prototiles"| marked compact subsets of En. The images of
the prototiles under congruences are to be called \tiles"; we require the tiles in
a tiling to have disjoint interiors.

A \matching rule tiling" (M, T 0) is the set of all tilings by prototiles T 0,
that satisfy some local rules M that specify allowed bounded con�gurations.

Given a set of prototiles T , a \substitution acting on the prototiles" is an
expanding linear map � (called an \in
ation" or \similarity") on En, such that
for each prototile A, �(A) is the union of a set A+ of \daughter" tiles with
disjoint interiors. Thus � may also be thought of as an \in
ate and subdivide"
operation on con�gurations of tiles. We take care to require that � can be
iterated; any con�guration congruent to some �k(A), for some prototile A, we
call a \supertile". The speci�c substitutions are encoded in a set S of images
of the prototiles in the in
ated prototiles.
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A \substitution tiling" (T , �,S) is the set of tilings by \polyhedral" prototiles
T such that any bounded subset of the tiling appears in some supertile given
by the substitution de�ned through � and S.

To de�ne the \enforcement of substitution tiling by matching rules" we must
de�ne a \labeling" of a substitution tiling; essentially, this formally allows one
to mark information concerning the hierarchy on the supertiles. Then a match-
ing rule tiling \enforces" a substitution tiling if and only if it reproduces this
labeling.

The \edges" of a n-dimensional prototile are polyhedral subsets of the (n�1)-
dimensional facets of the polyhedron underlying the prototile.

A set of edges is \hereditary" if: for any edge e of any prototile A, �n(e) is
exactly tiled by edges of the prototiles in A+, and every k-facet, 0 � � � (n�2)
of any edge is tiled by k-facets of any prototiles in �n(A) to which it is incident.

A substitution tiling, with edges de�ned, is \sibling edge-to-edge" if for each
B;C 2 A+, if an edge e of B is incident to C in �(A), then the edge is exactly
coincident to some edge f of C, and every k-facet, 0 � � � (n � 2) of e is
coincident to a k-facet of f .

The condition in our theorem is actually that given a set of prototiles and a
substitution we are able to de�ne a set of edges that is hereditary and renders
the tiling sibling edge-to-edge. This act of de�ning is made weaker by allowing
di�erent edges for each image of the prototiles in the substitution rules.

Naively, one might expect such edges might always be found{ indeed this is
so for all examples known to the author at this moment, although a counter-
example may not be di�cult to �nd. The conditions are indeed mild: one can
always �nd edges for the images of the prototiles in the substitutions such that
the tiling is sibling edge-to-edge. And one can always take as edges the vertices
of the polyhedra underlying the prototiles; these will always be hereditary edges
if the prototiles are convex. In a vast collection of examples, one can �nd edges
satisfying both criteria.

We now describe our techniques. We begin with a substitution tiling (T ,�,S).
We intend for the tiles to organize themselves into larger and larger supertiles
|in
ations of the original tiles| further and further up the hierarchy. Each
n-level supertile congruent to, say, �(n�1)(A), A 2 T is to lie in a (n+ 1)-level
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supertile congruent to �n(A�), where A� = fB 2 T j A 2 B+g. The essential
information associated with each supertile is its own shape and position in the
next level of the hierarchy.

Much of the construction given here is foreshadowed in [Moz], in which S.
Mozes gives matching rules enforcing substitution tilings in which the tiles are
all rectangular blocks. [Moz] uses two key observations: each supertile needs
only to know its ancestry only a �nite number of generations back, and each
supertile should be combinatorially active at only a few key sites.

This information needs to be consistent across the supertile, needs to be
manifest at a few key points on the boundary of the supertile, and any neigh-
borhood in the tiling must contain only a �nite amount of information.

We can use the combinatorial structure of our addressing scheme as the basis
for a \labeling" of (T , �, S): this labeling will encode \skeletons" and \wires"
to compare and transport information across supertiles. We will de�ne �nite
classes of \labels"| combinatorial encodings of these mechanisms; the labeling
will consist of marking the tiling with these labels.

We will de�ne the elements of our labeling in in Section 2. In Section 3 we
derive tiles and matching rules from the local structure of the labeling, and in
Section 4 show these force the hierarchy to organize.

Because we de�ne our structures on in
ated prototiles they will be available,
scaled up, on every supertile.

Note we are selecting these structures. We do not assume the \nice" choices
are being made. There is thus still ample room to �nd elegant constructions in
more speci�c cases.

Each n-level supertile will consist of (n � 1)-level supertiles held together
by an n-level \skeleton", de�ned shortly, of edges for the parent supertile. The
essential information de�ning this supertile is conveyed in a \packet" of labels
along this skeleton. That is, our matching rules will assure that we have iden-
ti�ed each supertile's intended position with respect to its parent, and perhaps
with respect to a few recent ancestral supertiles.

A skeleton will be loose and 
oppy, a locally de�ned topological object,
combinatorial in nature, on top of which is encoded information concerning
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the role of the supertile in the hierarchy. Supertiles are geometrically rigid,
and combinatorially inert. Skeletons provide combinatorial cohesion; supertiles
provide geometrical rigidity. Together they force the hierarchy to emerge.

Matching rules at its vertices ensure the skeleton is formed correctly; match-
ing rules at certain \sites" ensure that an n-level skeleton correctly meets its
descendant (n� 1)-level skeletons and its parent (n+ 1)-level skeleton.

In the lower left of �gure 3, the substitution for the pinwheel tiling [Rad] is
shown; above and to the right skeletons for three generations of supertile are
shown. Note the sites, shown as half circles, connecting the skeletons of child
to parent.

Figure 3: Skeletons

As a technical point, to ensure that skeletons are connected, that a supertile's
skeleton meets each of the supertile's children, and that sites can be chosen, we
allow an n-level skeleton to enter lower level supertiles (cf. �gure 12). However,
for any substitution tiling we �nd a constant � so that all n-level skeletons
include only edges of level at least (n � �) and less than n.4 Thus skeletons
might overlap, but only to a bounded depth.

Each n-level supertile, and skeleton, is associated with its \address"X�X(��1):::X1,
relative to its (n+��1)-level ancestor. These digits are in S. Each edge, vertex,
and site in a skeleton carries the supertile's address and its own label relative

4In fact, though, in most well known examples, we can take � = 1. In this case, especially
when n = 2, the construction simpli�es enormously.
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to the skeleton, in classes de�ned throughout Section 2. As an edge or vertex
might belong to many skeletons, we may encode many such pairs; however the
total information at any point in a tiling will be bounded.

We need a supertile to \know" where certain vertices{\terminals"{ are; these
vertices are endpoints of the supertile's parent's edges. That is, if the supertile
is of level n, the terminals are endpoints of n-level edges in the boundary of the
supertile. We can hook the terminals into the supertile's skeleton, if they meet
lower level edges in the interior of the supertile (such terminals are \endover-
tices"). Alas, this is not often the case and we must introduce another device{
we link certain terminals (\mesovertices") to the skeleton through a series of
lower level supertiles. Such a series is a \vertex wire". A supertile may thus
carry, for certain of its vertices, certain information associated with some higher
level supertile.

In �gure 2.3 vertex wires are shown for three vertices on the pinwheel proto-
tile (the vertex in the middle of the large edge is not really necessary in the
actual enforcement of the pinwheel tiling but gives a more interesting vertex
wire to illustrate). To the left the three vertices are illustrated; in the middle
the wires is drawn as it appears in the tiling{ a nested sequence of supertiles
converging to the vertices; on the right the wires are drawn as they are abstractly
represented{ sequences of tiles. The vertex on the left of the prototile does not
need a vertex wire; it is incident to the tile's skeleton.

A schematic of all the various structures we will exploit is shown in �gure 5.
The bulk of the construction will be an algorithm to encode these structures in
our sets of labels, our packets and tiles.

Once these mechanisms are set up, the actual proof that they succeed in
enforcing the hierarchical structure is relatively simple. This is necessarily so,
since we cannot rely on combinatorial arguments speci�c to a given set of tiles.
Here is a very quick sketch of the proof of the matching rules:

We derive a labeling of (T , �, S), and from this construct a matching rule
tiling (M, T 0). A \well-formed supertile" is a con�guration of tiles in (M, T 0)
that is essentially a labeled supertile in (T , �, S).

Once everything is prepared we induct: if every tile in our matching rule
tiling (M, T 0) lies in a well-formed supertile of level n, we show every tile must
lie in a well-formed supertile of level (n+ 1). A well-formed supertile has only
a few relevant properties: it is clearly marked with its address X�X(��1):::X1
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Figure 4: Vertex wires

skeleton
vertex wire for
some  higher
level supertile

vertex wire

terminals
at meso- &
endo-vertices

site for some
higher level
supertile

site

sites for
daughter
supertiles

structures in supertile

skeleton 
of some
higher 
level
supertile

Figure 5: Structures in a supertile
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at the sites on its boundary and at its terminals, it is actually congruent to
�n(X1), and it is already anticipating any information it must carry for higher
level supertiles (that is, it has clearly marked channels in which higher level
skeletons or vertex wires will run).

In �gure 6, we see in the upper center a schematic of such a �n(X1); the ter-
minals, sites and points at which a higher level skeleton enters the supertile have
already be �xed, and are marked with little gray 
ags. At these points, all infor-
mation concerning the supertile itself is determined and consistent; information
concerning higher level structures may be present, but is not yet corroborated
nor necessarily consistent.

Then (i) the skeleton of the parent emerges at the sites, propagating in a un-
controlled, but locally well-formed manner along the boundary of the supertile,
until (ii) terminating at the terminals. As edges meet, information concerning
the parent supertile begins to be corroborated. Because the tiling is sibling
edge-to-edge, the terminals must be incident to edges that seem to be edges for
neighboring sibling supertiles.

As these neighboring edges propagate (iii) sites for sibling supertiles must
have been present, although initially it may not be clear that the sibling super-
tiles are the right size or in the right position. However (iv) again the vertex
wires come to the rescue; that the tiling is sibling edge-to-edge ensures that the
wires of siblings must meet, and so �xing the siblings adjacent to our original
supertile. We can then �x siblings adjacent to these, and so forth, until the
geometry of the entire parent supertile has been �xed.

Finally, because the parent supertile's skeleton is connected, all information
concerning the parent's alleged role in the hierarchy is consistently represented
across the entire parent supertile. Thus, every tile in every tiling in (M,T 0) lies
in a well-formed supertile of level (n+ 1).

The full proof is not much longer; however precisely de�ning the structures
we need requires extreme care.
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Want:  σ n(A)

have:  σ (n-1)(B),  B in A+

(i) 

(ii)
(iii)

(iv)

Figure 6: A sketch of the proof of that matching rules succeed

1 De�nitions

We carefully de�ne a narrow, classical setting. The construction is mostly com-
binatorial in nature, however, and most of these de�nitions can be expanded in
a variety of ways.

In Appendix C, we give rather technical de�nitions of marked prototiles,
matching rules etc. that are essentially equivalent to those we give here but
that �rmly rest on set theoretic statements.

1.1 Tiles, matching rules, matching rule tilings

Let N be the natural numbers, f1; 2:::g. We take for our space and congruences,
n-dimensional Euclidean space En, 1 < n 2 N. G will be the set of Euclidean
isometries on En.

A prototile A is a n-dimensional compact set in En, perhaps marked with
some combinatorial information; it is understood that any image of any point
in a marked prototile is also marked.5

5In Appendix C we de�ne these markings through maps � to some set X of combinatorial
information
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A tile is a congruent image BA, B 2 G of a prototile A.
A tiling [BiAi of X � En by prototiles T satis�es: X = [BiAi, and for i 6= j,

BiAi and BjAj have disjoint interiors.
If we do not specify X , we assume X = En.
A set of tilings of X by prototiles T , perhaps with further restrictions, is a

species of tilings.

\Con�gurations" are often de�ned as a tiling of some compact X , but for
later convenience we take: A con�guration is a subset D � [BiAi of points in a
tiling.

A �nite setM of matching rules for a tiling of X with prototiles T is a �nite
algorithm that examines any bounded con�guration in the tiling and determines
in a �nite number of steps whether the con�guration is permitted or not per-
mitted. In particular, we can choose rules that lock tiles in speci�c positions
to each other, or that allow some slipping of tiles past one another (with or
without comparing information across such lines of slipping), or combinations
of these. 6

A tiling [BiAi satis�es a set M of matching rules if and only if every con-
�guration is permitted.

Note that, in a sense, requiring the tiles to �t together with no gaps or
overlapping is a matching rule already built into the de�nition of a tiling, and
turns out to be su�cient for our construction.

A matching rule tiling (M, T 0), is the species of tilings of En, with prototiles
T 0 that satisfy matching rules M.

For example, in �gure 2, we have two tiles in T 0 marked with colors Black,
Gray, and White. Our set of matching rules simply requires that the colors
match on the boundaries of neighboring tiles. The image on the right of �gure
2 satis�es these matching rules.

1.2 A similarity � and substitutions S

A similarity will be an expanding linear map acting on En; that is, a linear map
under which all distances increase. Let � be a similarity on En, with center of
dilation at an oriented and �xed origin.

6In Appendix C, this algorithm is described as checking to see if a tiling can be covered by
some �nite collection of con�gurations.
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A polyhedron is a complex � such that: � is a connected compact n-manifold
embedded in En and each k-cell (k-facet), 0 � k � n, of � is a connected k-
manifold in the exterior of � that lies in a k-plane in En; we require the set of
facets of a polyhedron to be �nite. The terms \vertex" and \edge" will have
special technical meanings relative to this complex, described below in Section
1.5. We require n > 1 henceforth.

Let T be a �nite set of marked polyhedra in En; these have a �xed position
and orientation with respect to the origin (�xed point) of this map �. With
no loss of generality, we may assume the union of 1-facets of any polyhedron
in T is connected. (The 1-facets will allow us to ensure a well-formed supertile
(Section 1.3) has a well-de�ned orientation.)

We essentially just in
ate a tile by some similarity and subdivide the image
into congruences of our prototiles to de�ne substitutions �0 : T ! f[CiBig, a
map from the prototiles to tilings such that

�0(A) is a tiling [CiBi of �(A)
and for each of the Ci, there is a C0i 2 G with �Ci = C0i�
(that is, if [CiBi is a tiling of �(A), then [BCiBi will be a tiling of �(BA)).

The last condition ensures we may repeatedly substitute: for A 2 T de�ne
(�0)2(A) = �0([CiBi) = [C0i�

0(Bi); we thus may generate larger and larger
supertiles �n(A) of tiling.

That the map is expanding ensures that all k dimensional facets, 0 < k � n
of every prototile are eventually subdivided, for each is bounded and falls into
one of only �nitely many congruence classes.

To ensure that every tile is really used, we require, given T , � and S, that
for each A 2 T there exists n 2 N;B 2 T ;C 2 G such that CA � �n(B).

The level of the supertile �n(A) is n. We also will call the congruent images
B�n(A) of supertiles, supertiles as well, and usually will take �n(A) to mean
any congruent image of �n(A).

Note we often use n for dimension, but n for level.

Given a supertile �k(A) = [�(k�1)(Ci(Bi)), the �
(k�1)(Ci(Bi)) are daugh-

ter supertiles relative to their parent supertile �k(A), and are sibling supertiles
relative to each other.

When we refer to one supertile inside another, e.g. �j(B) � �n(A), it will
be understood that �j(B) is a descendant supertile of ancestral �n(A)
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Figure 7: A substitution

At left in �gure 7 are three prototiles and their substitutions under �. The
Ci might be regarded as the motions needed to assemble such a diagram.

Note the graph must have a �nite number of arrows and nodes because each
prototile is compact, and jT j 2 N. We do not assume that every node can be
reached from any other following the arrows, but we can be sure that every node
is at the head of some arrow (or the corresponding prototile would appear in
no supertile). (Incidentally, if every node can be reached from any other, the
substitution tilings must be \repetitive"; cf. [Sen])

For simplicity we coalesce � and �0 and refer to both the substitution and
the similarity as �. We hope the context will make the meaning clear. For
example, we may need to refer to the image under �n of some structure X in
a prototile A, relative to the image of the prototile itself. It seems sensible to
leave the use of � slightly ambiguous and refer to �n(X) � �n(A), whether the
substitution or the similarity has acted on X (�gure 8). In particular, � almost
always will act as a substitution on prototiles, tiles and supertiles; � will almost
always act as a similarity on other structures.

Note the requirement that a similar copy of a prototile is congruent to the
union of its o�spring is very strong indeed, and at �rst glance seems not to be
obeyed in some well known examples, such as the Penrose rhombs (�gure 24).
However, these examples can all be recomposed into a tiling with substitution
satisfying our requirements; there is undoubtedly a simple su�cient condition
(such as \edge-to-edge") for when this can be done.

14



AA

AA

A

X ∋

B

B

A  ∋

A+ 

X+ 

∋A-   
X-   

σ

Figure 8: Conventions

It is useful to draw a substitution graph A, a directed graph with arrows
labeled by congruences and nodes indexed by T : Each prototile is represented
by a node of the graph; if for A 2 T , �(A) = [(Ci(Bi)), then the arrows
departing the node A are indexed by fCig and head towards the nodes indexed
fBig. We call the set of labeled arrows S. There is a natural projection from S
to T : an arrow is mapped to the name of the node at its head. Thus, a label in S
gives a prototile's name in T but also provides additional information, the label
of the prototile's parent in T . (A label is simply a name in some de�ned class
of names, such as T or S). Often we will treat an element of S as an element
of T ; consistently we will regard the elements of S as prototiles carrying the
names of their parents in T .

Note that A, in e�ect, is a �nite state automaton. The regular language
admitted by the automaton is exactly the set of possible lineages of prototiles
as we substitute.

For A 2 T , the collection of possible predecessors (parents) of A is A� � T ;
the unique predecessor of A 2 S is A� 2 T ; for either A 2 T or A 2 S
the successors (daughters) of A are A+ � S. If for A;B 2 S there is C 2 T
with A;B 2 C+, A and B are sibling supertiles. We will use other genealogical
nomenclature as needed. A substitution graph is illustrated at right in �gure 7;
only a few of the labels in S are shown.

Sometimes in designing substitution tilings, some proto-tiles serve as place-
holders and are only subdivided after some �nite number of in
ations (as in
�gure 7). That is, A is a placeholder if and only if only one arrow departs
the node A in A. Note that because there are only �nitely many prototiles
and because our substitution is actually in
ating our tiles, we must eventually
subdivide our tiles, as well as any of their k-dimensional faces, 0 < k � n.
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A substitution tiling (T , �, S) is the species of tilings [BiAi by T such that
any bounded con�guration in any [BiAi is congruent to some con�guration in
the interior of some supertile �n(A), A 2 T , n 2 N.

With no loss of generality we assume every prototile appears in some tiling
in (T , �, S).

Lemma 1.1 Let [BiAi be a tiling in (T , �, S). Then for all BjAj , for all
n 2 N, there is a supertile �n(A) � [BiAi with BjAj � �n(A).

That is, every tile in a tiling in (T , �, S) appears in a supertile in the tiling.
This is not quite trivial, since by the de�nition of (T , �, S) we only know that
an image of any con�guration appears in some supertile.

Proof . Let BjAj be a tile in [BiAi and induct: When n = 0, A = Aj and
BjAj = �0(A) (As will be usual, we are being casual about specifying that
�0(A) is really a congruence of the supertile). Now suppose that for (n � 1),
there exists B 2 T with �(n�1)(B) � [BiAi with BjAj � �(n�1)(B). If there
does not exist a �n(A) with �(n�1)(B) � �(A), then the con�guration �(n�1)(B)
does not lie in the interior of any supertile. qed

Lemma 1.2 The union of elements of any nested sequence f�n(An)gn2N of
supertiles in a tiling is closed.

Proof Of course each �n(An) is closed. Let x be any point not in [�n(An). No
tile incident to x could lie in any �n(An) but x lies in the interior of the union
of the tiles incident to x. Hence x cannot be a limit point of [�n(An). qed

A tiling [BiAi in (T , �, S) has connected hierarchy if and only if for every
x; y 2 [BiAi there exists some supertile �

n(A) such that x; y � �n(A) � [BiAi.

Lemma 1.3 If a tiling has connected hierarchy then for each point x in the
tiling, there exists an N 2 N such that for all n > N there exists an A 2 T with
x in the interior of �n(A).

Proof Assume there exists a point x in a tiling with connected hierarchy such
that for all n 2 N, there is no A with x in the interior of �n(A). Now for each
n, x is in some supertile �n(An) (by Lemma 1.1); we may take these as nested
by the proof of that lemma. Now there is a point y in the interior of a tile
incident to x with y =2 [�n(An). Let y

0 be a point in the interior of A0. By the
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de�nition of connected hierarchy, there is some supertile sigmam(A) containing
both y; y0, but this is a contradiction, since y is in the interior of each An and
so belongs to no other supertiles, but y0 =2 [An. qed

1.3 Enforcement

We now de�ne \enforcement" of a substitution tiling by matching rules. An
equivalent, more clearly rigorous de�nition is given in Appendix C.

A labeling � of a substitution tiling (T , �, S) is an algorithm for uniquely
marking every tiling in (T , �, S), such that the original markings of the pro-
totiles T are unambiguously visible, and such that for any supertile �n(A), there
are only �nitely many ways its images in the tilings in (T , �, S) will be marked
under �.

For example, in �gure 2, a labeling is given for the L-tilings; if one looks
closely, one sees that each the images of each in
ated L-tile are marked in one
of only three ways.

Note that this de�nition is global: the labeling algorithm requires examining
the entire in�nite tiling, at least to label some points. For example, one may
need to decide, for a given edge in a tiling, what is the highest level supertile
with that edge on its boundary.

Once we have a labeling for (T , �, S), let �(�n(A)) be the �nite collection
of labelings of the supertile �n(A) and de�ne a well-formed supertile of level n in
(M, T 0) to be a con�guration X of tiles in T 0, satisfying M, such that there
exist A 2 T , B 2 G, and �0 2 �(�n(A)) such that all the markings of �0�n(A)
coincide with the markings of the tiles in BX .

For example in �gure 2, the well formed supertiles are the pieces of the new
tiles that lie in labeled in
ated L-tiles.

A matching rule tiling (M, T 0) enforces a substitution tiling (T , �, S) if
and only if one can de�ne a labeling on (T , �, S) such that for every n 2 N,
every point in the interior of any tile in any tiling in (M, T 0) lies in a unique
well-formed supertile of level n.

A substitution tiling (T , �, S) is enforced by �nite matching rules if and only
if there is a �nite set of matching rules M, and a �nite set T 0 such that (M,
T 0) enforces (T , �, S).

In e�ect, we have de�ned enforcement as being able to parse the matching
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rule tiling into supertiles. Our de�nition is e�ectively no stronger or weaker
than other de�nitions known to the author. In particular, see Lemma C.3.

1.4 Addresses

A string is a well-formed list of digits in S. An address is a string drawn from
a regular language given by the substitution graph A (Section 1.2); that is
addresses can be viewed as directed paths in A. Addresses are to be read from
left to right as the directed path is followed from node to node in A. We allow
these paths to be �nite, in�nite-to-the-right, in�nite-to-the-left, or in�nite in-
both-sides; and we require the appearance of exactly one decimal point � in an
address.

The � speci�es the \scale" at which we are viewing these addresses.

We wish to assign addresses to tilings; we begin with addresses for in
ations
of a single tile. So assume the origin is in a �xed orientation at a �xed point in
the interior of some �xed tile, and take this tile's label A 2 T as the �rst digit
to the left of the decimal point �. Now this tiling was the result of some action
under the substitution system and so our tile at the origin is contained in some
supertile that is the image of a prototile under a single substitution. We specify
the label in T of this parent supertile and our original digit now is written in
S. Note that since for A 2 T , jA�j may be greater than one, this gives us some
choice at each step of the construction.

In turn, we give the label in T of the parent's parent, taking ever larger
con�gurations, adding to the left of our address digits that correspond to the
labels of ancestors of our original tile A. At every �nite stage we have an address
XkX(k�1):::X2A� where A, X(i<k) 2 S, Xk 2 T , X2 = A�, Xj = X�(j�1), j � k

(We can take an extra leading digit, X(k+1) = X�
k 2 T ).

This address serves an k-level supertile, giving its similarity class �(k�1)(Xk)
and its position and orientation with respect to the origin of the plane.

An in�nite-level supertile [�k(Xk) with speci�ed position and orientation
with respect to some origin is thus represented by an in�nite-to-the-left address
:::Xk:::X1� where Xj = X�(j�1), j > 1; Note the collection of these in�nite-level

supertiles is uncountable, and includes some partial tilings of the plane. By
Lemma subtech, the in�nite-level supertiles are closed.

If we next ignore the origin, and consider two in�nite-level supertiles to be
equivalent if there is a congruence taking one to the other, two in�nite-to-the-
left addresses :::Xk:::X1� and :::Yk:::Y1� give the same in�nite-level supertile if
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Figure 9: an address of a supertile relative to a �xed origin

and only if there is an natural number i such that Xj = Yj for all j � i; that
is if and only if they are identical on the left after some �nite number of digits.
We will take such classes of addresses as the address of an in�nite-level supertile.

Note that the tilings in (T , �, S) either are in�nite-level patches, or are
two or more in�nite level patches joined along (n � k)-dimensional half-planes
emanating from some k-plane, 0 � k � n. Any such lower dimensional planes
and half planes are in�nite fault-lines.

In�nite-to-the-right addresses A�::: are also useful, describing the location
of a point in a tile. (We use that En is complete and the similarity ��1 shrinks
all distances). That is, a point with address A�X�1:::X�n::: lies in the image
under ��n of X�n � �n(A). In this context, an address is rational if of the
form A�XYYY::: where X;Y are �nite addresses{the initial string and repeating
string respectively. We can continue to associate addresses with a variety of
other structures, but these will satisfy our present needs.

Thus an address structure is thus a well-de�ned, algorithmic coding of a hierar-
chical structure residing in some geometric space. In some sense, the full substi-
tution structure is a lexicon of a regular language encoded in the geometry of
En.

These address structures have a much richer structure than we have outlined
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for our present needs. 7

Let A� be the set of all in�nite-to-the-left addresses. For any in�nite level
supertile S, we have de�ned a map �A from the tiles in an in�nite level supertile
to in�nite-to-the-left addresses as described above.

1.5 Vertices and edges

We will use the terms \edges" and \vertices" in very technical senses. Note we
strongly use n > 1.

An edge of a prototile A in a substitution tiling (T , �, S) is a polyhedral
subset e of some (n� 1)-facet of the polyhedron underlying the tile, such that e
is the image, under the similarity ��k, for some k 2 N, of the union of (n� 1)-
facets in the boundary of the supertile �k(A). That is, edges arise by subdividing
facets, and new edges can be derived by subdividing previously de�ned edges.
Note facets are edges.

A set of edges for a prototile is a set of edges that cover the boundary of the
prototile and have disjoint interiors. We will repeatedly rede�ne the elements of
these sets of edges throughout the construction: in Section 2.1.1 we will begin
with a set E edges that are among the facets of our prototiles; in Section 2.1.4
we will in
ate and subdivide these to produce a class E 0; �nally in Section 2.2.2,
a third class E 00 will be derived from E 0.

An edge of a tile is a (n � 1)-facet of the tile; an edge of a supertile is the
image of the edge of a tile under in
ation �n; the level of an edge is n. Note
that each point of an edge of a tile is coincident to one or more other edges,
of neighboring tiles. Finally, an edge of a tiling is the image of the edge of a
supertile in a tiling; note that each edge of a tile in a tiling belongs to exactly
one edge of the tiling, and is coincident to a least one other edge of the tiling.
(Our edges are more like \sides of edges", in the context of a tiling).

7Address structures turn out to be very versatile, and can encode virtually all of the
structure in the space of substitution tilings. In particular, in this one framework, for a given
substitution system acting on tiles, we can encode points in a tile, tiles in a tiling, the space
of substitution tilings, the ergodic dynamics of the in
ation and substitution maps, natural
topologies on the space of tilings, and matching rules between tilings. In addition, they provide
a natural extension of symmetry from the realm of groups to that of algorithms| that is,
they provide a description of \algorithmic symmetry".
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Once we have de�ned a set of edges of a prototile, we de�ne the vertices of
a prototile to be the points incident to 0-dimensional facets of the edges. Thus
the vertices are discrete.

The vertices of a tile BA, B 2 G, A 2 T , are simply the images of the vertices
of A under B. The vertices of a tiling are the points in the tiling that are
vertices of tiles in the tiling; a vertex of a tiling may be coincident to a vertex
of all or some, but at least one of the tiles incident to the vertex. The endpoints
of an edge are the vertices of the edge.

A set of edges is hereditary if: for any edge e of any prototile A, �(e) � �(A)
is exactly tiled by edges of the tiles in A+, and every k-facet, 0 � � � (n� 2) of
�(e) is tiled by k-facets of tiles in �(A).

Similarly a set of vertices is hereditary if for every vertex v of prototile A, for
each B 2 A+ incident to �(v) � �(A), there is a vertex of B coincident to �(v).

A substitution tiling, with edges de�ned, is sibling edge-to-edge if for each
B;C 2 A+, if an edge e of B is incident to C in �(A), then e is exactly coincident
to some edge f of C, and every k-facet, 0 � � � (n� 2) of e is coincident to a
k-facet of f .

A substitution tiling, with vertices de�ned, is sibling vertex-to-vertex if for
each B;C 2 A+, if a vertex v of B is incident to C in �(A), then v is exactly
coincident to some vertex of C.

These conditions are indeed mild: one can always �nd edges for the images
of the prototiles in the substitutions such that the tiling is sibling edge-to-edge.
And one can always take as edges the edges of the polyhedra underlying the
prototiles; these will always be hereditary edges. An example of a tiling not
satisfying the condition may not be hard to �nd, however, especially for n > 2.

Lemma 1.4 If a set E of edges for a substitution tiling is hereditary, [the tiling
is sibling-edge-to-edge], then the corresponding vertices V are hereditary, [the
tiling is sibling-vertex-to-vertex]. When n = 2, the converse holds as well.

Proof This immediately follows from the de�nitions. qed

However, the converse is probably not true when n > 2: there are likely to
be tilings that are sibling vertex-to-vertex that are not sibling edge-to-edge.
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1.6 Epi-, Meso- and Endo- vertices

We give technical de�nitions of endovertices, mesovertices and epivertices:

First for each A 2 T let E(A) be (n� 1)-facets in the interior of �(A). Note
that the elements of E(A) are edges of the elements of A+.

Second, by hypotheses, we can de�ne hereditary vertices V(A) for each A 2 S,
such that the substitution tiling fT ; �;Sg is sibling-vertex-to-vertex. Note that
the V(A) are a set of vertices if we take the (n� 1)-facets of A as edges for A.

Then we say:

v 2 V(A) is an endovertex if and only if: both there is some (minimal) positive
integer �(v) such that ��(v)(v) is incident to some edge in the interior of ��(v)(A)
(and hence �k(v) incident to some edge in the interior of �k(A) for all k � �(v)),
and also v is incident to some e 2 E(A�) in �(A�).

v 2 V(A) is an mesovertex if and only if: v is incident to some e 2 E(A�) in
�(A�), but �k(v) is not incident to any edge in the interior of �k(A) for any k.

Finally v 2 V(A) is an epivertex if and only if: v is not incident to any e 2 E(A�)
in �(A�).

Note that if v 2 V(A) is in the interior of �(A�) , it is incident to some e 2 E(A�)
in �(A�). The endo-, meso- and epi- vertices of tiles, supertiles and tilings are
the images of the endo-, meso- and epi- vertices of prototiles.

Terminals are another name for endo- and meso- vertices.

In �gure 10 vertices are shown for the dimer substitution of �gure 22). Endo-,
meso- and epi- vertices are marked. (Labels in S and T have also been assigned.)

Lemma 1.5 If a vertex is a mesovertex for a given n-level supertile, the vertex
is not coincident to a mesovertex for any descendant or ancestral supertile.
Moreover, the vertex is coincident to an epivertex for every descendant supertile
incident to the vertex.

Proof Let v be a mesovertex for some prototile A 2 S.
For every k, 0 � k � n, �n(v) is coincident to some vertex �k(vk) 2

�k(Ak) � �n(A).
Since v is a mesovertex, no edge meets �n(v) in the interior of �n(A). Con-

sequently, vk is an epivertex of Ak.
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Second, suppose v is coincident to some vertex �n(vn) of some ancestral
supertile �n(An). Because v is a mesovertex, v is incident to some edge e 2
�(A�) � �n(An). Thus, �

n(An) is a mesovertex or endovertex.
qed

Lemma 1.6 In a tiling in (T , �, S), any vertex v of any prototile A in the inte-
rior of some supertile �m(B) is either a mesovertex for some supertile contained
in �m(B) and containing A, or for some n 2 N, �n(v) � �n(A) is coincident to
an edge in the interior of �n(A).

Proof Let BA be a tile in the tiling such that BA is in the interior of some
supertile. Let �A�(BA) = :::Xn:::X1A.

Let v be a vertex of prototile A such that for no n 2 N, �n(v) � �n(A) is
coincident to an edge in the interior of �n(A). Thus v is either a mesovertex or
an epivertex of A. A itself is a supertile, so in the �rst case we are done.

So suppose v is an epivertex of A. Now there exists some N , such that for
all n > N , v is in the interior of �n(Xn) and for all n � N , v is on the boundary
of �n(Xn). There exists some maximal M � N such that for all n �M , v is on
the boundary of �n(Xn) but not incident to any edge in �n(Xn). Thus v is a
mesovertex or endovertex of �M (XM ). But for any n, �n(v) is not coincident to
an edge in the interior of �(n+M)(XM ); thus v is a mesovertex of �n(XN ). qed

Note that the hypothesis holds for all vertices of tiles in a tiling with con-
nected hierarchy.
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2 Selecting structures in a substitution tiling

We now begin to select structures in our substitution tiling (T , �, S) in order
to de�ne a labeling (Section 1.3).

There are a few main categories of label:

In Section 1 we described our initial categories T , S.

In Section 2.1 we de�ne labels, in V , V 0, E , E 0, and Z , concerning our �rst
structure, skeletons. We also choose our important constant �.

In Section 2.2, we construct keys, labels in R, V 00 and E 00 that de�ne the role
of a supertile in the hierarchy.

In Section 2.3, we construct labelsW concerning our second structure wires,
and wire keys U .

In Section 2.4, we construct well-formed packets in Q and P , combinatorially
complex combinations of previously de�ned labels; through our e�orts here and
in Section 3.3, we will have fairly simple matching rules (Section 3.5).

We begin with a given substitution system fT ; �;Sg, and �A mapping each
tile in each tiling to an in�nite-to-the right address. Crucially, note that even
if a tiling admits more than one hierarchy, �A �xes a particular hierarchy, and
every tile belongs to only one supertile of each level n in this �xed hierarchy.

2.1 Selecting structures to form skeletons

2.1.1 Selecting vertices V and edges E

By assumption, there is a set of hereditary edges on the prototiles such that the
tiling is sibling edge-to-edge. Let E0(B) be such edges of B 2 S. For each A 2 T ,
let E(A) be the edges E0(B), B 2 A+, that are not contained in the boundary
of �(A). By sibling edge-to-edge we can take these edges as occurring in pairs,
+e;�e. Let E be the disjoint union of the E(A), A 2 T .

Given an e 2 E , we will take as implicit the element A in T such that e 2
E(A), as well as the exact position of e in �(A). Note that in any con�guration,
the interiors of any �n(e), �m(e0) are disjoint, n 6= m, e 6= �e0, e; e0 2 E .

For e 2 E let e+ = A 2 S if e 2 E0(A)
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Let V(A), A 2 S be de�ned as the vertices of E0(A). Note that these are
hereditary and the tiling is sibling vertex-to-vertex by Lemma 1.4.

Let V be the disjoint union of the V(A) as A ranges over S; in particular, an
element v of V lies in a unique V(A).

Given a v 2 V , we will take as implicit the element A in S such that v 2 V(A),
as well as the exact position of v on the boundary of A. (This kind of implicitness
will be usual as all these lists of labels are made).

In �gure 10, V and E are shown for the dimer substitution of �gure 22.

+ 

+ 

-

-
+ 
-

+ 
-

endo
meso
epi

Figure 10: Edges E and vertices V

2.1.2 Selecting sites Z

For each A 2 S we choose a number of sites that will link the skeleton of any
supertile congruent to �n(A) to the skeleton of the parent supertile congruent
to �(n+1)(A�) at edges congruent to �n(E(A)).

For each e 2 E , choose a natural number �(e) such that the supertile
��(e)(e+) contains an edge with an endpoint on ��(e)(e) � �(�(e)+1)((e+)�).

For each A 2 S, we can choose a point Ze on each edge e 2 E(A) meeting +e
such that there is an edge in the interior of ��(+e) with one end at �k(Ze) �
��(e) � �(�+1)(A). We take these points as sites for the prototile +e 2 S; in
a supertile congruent to �n(A), A 2 S, each point corresponding to a �n(Ze),
+e = A 2 S, is to be a site for the supertile .

In practice one might eliminate redundancies. First, sites as de�ned may
lie at the endpoint of an edge. Thus two sites for a supertile may lie at the
same point. We simply coalesce these into one site. Second, endovertices make
excellent sites, since we will connect these to a supertile's skeleton anyway.
These steps do nothing for the proof, but ease one's burden in practice. Let
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Z(A) be the collection of sites serving A.

We come to a technicality: E(A�) may be empty| this occurs if and only
if A is a placeholder (Section 1.2). Sites need to be more carefully designed for
such A 2 S:

Because � expands all distances, we must eventually subdivide the facets of
our tiles; if A� is a placeholder, there is an integer j � 0 and B 2 S such that:
�j(B) consists only of A but E(B�) is not empty. Then let (Z(A)) lie at the
corresponding sites �j(Z(B)) � A.

2.1.3 Selecting �

In a sense � is the resolution at which we view the hierarchical structure.
For each B 2 S choose natural �(B) such that there is a connected collection

of edges in ��(B)(B) that

i) contains every �(�(B)�1)(e) for e 2 E(B),
ii) meets every Z(B) on the boundary of B and
iii) meets every endovertex on the boundary of B.

It is worth pointing out that we can indeed �nd such a �(B): �(B) is at least
the maximum of the �(v) as v ranges over the endovertices of B and of the
�(e), e 2 E(B). To ensure that we can �nd a connected collection of edges, we
may have to take further substitutions. Eventually however, such a �(B) can
be found: � expands all distances, all facets are bounded and fall into �nite
congruence classes; hence � must eventually subdivide every k-facet, 0 < k � n.

Moreover, any k > �(B) will su�ce as well, since edges are hereditary.

Take � to be the maximum of these �(B). In practice, � is often rather
low; in fact, many well known examples have � = 1 and very few have � > 2.
For example, the Conway-Radin pinwheel [Rad], the Sphinx [Godr], and the
systems studied by Mozes [Moz] each allow � = 1, as do most of the examples
in Appendix A. In the current incarnation of our construction, the L-tiling
requires � = 2, leading to a set of markings that is far from optimal [GS].

One can easily construct examples requiring arbitrarily large �, such as
Sadun's generalized pinwheel tilings [Sad]. Often a speci�c construction of
matching rules can be �nessed somewhat| in particular note that our bound
� is the maximum of many other bounds, each of which will play speci�c roles
in the construction.

In �gure 11, sites and � have been chosen for the dimer tiling of �gure 22.
Note that we require � = 2, both to �nd an appropriate site on one of the edges
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abutting prototile A 2 S (de�ned in �gure 10), and so that we have a connected
collection of edges that includes the image E(B) in each B 2 S.

κ=

Figure 11: Sites, � and skeletons for a dimer tiling

2.1.4 Selecting vertices V 0 and edges E 0 of skeletons

Lemma 2.1 Given (T , �, S), using hereditary edges E, there exists � 2 N, and
sites Z such that

for each A 2 S we may choose a skeleton of j-level edges, 0 � j < �,
EA � ��(A) such that

i) [e2E(A)�
(�(e)�1) � EA;

ii) EA is connected;
iii) ��(Z(A)) � EA;
iv) EA includes the endovertices of ��(A).

Proof This immediately follows the de�nitions and existence of � and Z . qed

We now subdivide our edges in EA into edges E
0(A) of the supertiles �(��1)(B),

B 2 A+ in order to describe the structure of this skeleton EA. We require that:
Each edge �j(e), 0 � j < � contained in EA is tiled with edges in E 0(A);

and any facet of an edge in E 0(A) is a facet of any edge in E 0(A) to which it is
incident.

We strongly require hereditary edges to ensure such an E 0(A) exists: we
could simply take appropriate (n � 1)-facets in ��(A); typically, this is choice
far from optimal.

We de�ne the set V 0(A) of vertices of EA to be the set of points coincident to
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vertices of the edges in E 0, union the points coincident to �(��1)(z), z 2 Z(B) �
EA;B 2 A+, union the points coincident to ��(V(A).

Suppose an edge f 2 E 0(A) was derived from some �j(e), e 2 E ; then the
level of �n(f) will be (n+ j).

Let V 0, E 0 be the disjoint union of the V 0(A), E 0(A) over S.

Given a v 2 V 0, it is to be implicit for which A 2 S that v 2 V 0(A) and the
exact position of v in ��(A). Given an e 2 E 0, it is to be implicit for which
A 2 S that e 2 E 0(A) and the exact position of e in ��(A).

Note that for any vertex v 2 V 0(A), v � ��(A), if v is incident to some �j(B),
B 2 S, 0 � j < �, v does not need to be coincident to some vertex �j(w) of
�j(B), w 2 V(B).

In �gure 12 the skeletons of three generations of supertiles in the dimer
tiling of �gure 22 are shown. Note skeletons frequently overlap, but only those
of parent and child.

2.2 Keys

Roughly, keys encode position and role relative to a few levels of the hierarchy.

2.2.1 Supertile keys R

Edges of tiles in tilings in (T , �, S) might serve up to � distinct skeletons.
We specify the ways this might occur. For each A 2 S let R(A) be the

collection of all supertile keys, �nite addresses X�:::X1 where xj 2 S, X(j+1) = X�j
for j < �, and X1 = A. Note that such a address could have been thought of as
having �+1 elements, for X� implicitly speci�es the label of its parent in T . Let
R be the disjoint union of these R(A) over S. (To facilitate a certain technical
point below, we also include an extra null label in R; this label contains no
combinatorial information.) Now a given R = X�:::A 2 R(A) exactly speci�es
all skeletons for all ancestral supertiles that pass through any supertile congruent
to �n(A) with address :::R:::�.

A label in R is the crucial information, then, that we will ensure that every
supertile carries.

We begin de�ning maps �� to structures in a generic tiling with connected
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Figure 12: Skeletons of three generations of dimer

29



hierarchy. This will eventually be the basis for a labeling (Section 1.3) of the
substitution tiling.

Lemma 2.2 Let [BiAi be a tiling in (T , �, S), with �A� (Section 1.4) cho-
sen for [BiAi. Then there exists a map �R : fB�n(A) j B 2 G; n 2 N;A 2
S;B�n(A) � [BiAig ! R such that if �R(�

n(A)) = X�:::X1 then X1 = A and
for all B 2 A+, �R(�

(n�1)(B) � �n(A)) = X(��1):::X1B, and if �A�(BiAi) =
:::X�:::Ai�, �R(BiAi) = X�:::Ai.

Proof In �n(A) 2 [BiAi, for any BiAi;BjAj � �n(A), if �A�(BiAi) = :::Xk :::Ai�
and �A�(BjAj) = :::Yk:::Aj� then for all k � n, Xk = Yk. Take �R(�

n(A)) =
X(�+n�1):::Xn. Clearly this meets the conditions of the lemma. qed

2.2.2 Edge keys E 00

We again rede�ne edges and vertices relative to the supertile keys. Take R =
X�:::X1 2 R. Recall that for A 2 S, E

0(A) and V 0(A) are de�ned within ��(A).

We now subdivide the edges E(X1) to produce a new set of edges E 00(R) for
the prototiles B � �(X1), B 2 X+

1 :
Let E� be the set of facets of the tiles in ��(X1) such that each facet in E�

lies in some �(��1)(e), e 2 E(X1). Then, �rst: the edges E 00(R) in �(X1) will
be the union of facets of the form ���(f), f 2 E� (thus each edge e 2 E(X1) is
tiled with edges in E 00(R)).

Second we require of E 00(R) that every facet of �(j��)(e) � �(X1) � �j(Xj),
0 � j � �, e 2 E 0(Xj), X0 2 X+

1 is the union of facets of edges in E 00(R).
That is, we are careful to design structures at every facet at which the

overlapping skeletons �(j��)(EXj ), 0 � j � �, X0 2 X+
1 meet the edges E(X1) in

�(X1) � ��(X�).

Note such an E 00(R) exists:
A poor choice is simply to take all (n� 1)-facets in ��k((��(A))) (where the

��k is a similarity and the �� is an iterated substitution).

Let E 00 be the disjoint union of the E 00(R) over R.

Lemma 2.3 Any edge f of any tile in the interior of some supertile in a tiling
in (T , �, S), is contained within a unique supertile edge �n(e00), e00 2 E 00 or
there exists (R = :::X1) 2 R, n < � � 1 such that f is a subset of a tiling by
edges �n(ei), ei 2 E

00(R). In this latter case, though, there is an e 2 E(X1) such
that f; �n(ei) � �n(e).
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Note that every edge of every tile in a tiling with connected hierarchy is in
the interior of some supertile.

Proof Let f be an edge of a tile BiAi in the interior of some supertile in the
tiling. There is a minimal level supertile �n(X1) containing this tile such that
the interior of f is in the interior of �n(X1). Thus f lies on the boundary of
�(n�1)(B) for some B 2 X+

1 and in �n(e) for some e 2 E(X1). The elements of
E 00 are the unions of the images under ��� of the edges of tiles; thus f lies in
the union of the images under �(n�1+�) of edges of tiles. In particular, since
edges are hereditary, if n � � � 1, f lies in the image of one edge of one tile
and so lies in one �n(e00); otherwise f is a subset of a tiling by edges �n(ei),
ei 2 E

00(R) for some R 2 R. By de�nition, each �n(ei) lies in �
n(e). qed

Lemma 2.4 Any edge f of any tile not in the interior of any supertile in a
tiling in (T , �, S), is contained within a unique in�nite fault-line

Proof Let f be such an edge. f lies on the exterior of some tile, contained in a
nested series f�n(An)g of supertiles; f must lie on the exterior of each �n(An)
and so in the exterior of [�n(An) and hence on an in�nite fault-line. qed

Thus we de�ne, for any tiling [BiAi in (T , �, S), with E 00 derived in Section
2.2.2, a map �E00 : E ! E 00[fnullg where E is the set of all points of all edges of
tiles in the tiling: for each x a point in some edge f of some tile in the tiling, if f
is in the interior of some supertile, let �E00(x) be the e

00 2 E 00 or ei 2 E
00 produced

by Lemma 2.3 such that x lies in �n(e00) or �n(e1); otherwise let �E00(f) =null.

2.2.3 Vertex hulls V 00

Take R = X�:::X1 2 R, and let V 00(R) be the images of the intersection with
�(X1) of exceedingly small � balls centered at each vertex of �(X1) and at the
points coincident to endpoints of the elements of E 00(R). The elements of V 00 are
called vertex hulls; the

center of a hull in V 00(R) is the point at which the � ball de�ning the hull is
centered.

Lemma 2.5 The set of centers of the V 00(R) is the set of all points v in �(X1)
such that:

v is an endpoint of of some �(j��)(e), e 2 E 0(Xj), 1 � j � � with �(j��)(v) 2
f for some f 2 E(X1),

or v = �(w), w 2 V(X1),
or v = �( � �)(z), z 2 Z(A), A 2 X+

1 .
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Proof This follows the de�nitions. qed

.
That is, for V 00 we take the endpoints of any edges in higher level skeletons
meeting the 0-level edges in X1, the images of the vertices of X1 under �

1, and
the images of the sites of the daughter tiles on the edges of X1.

Place an arbitrary ordering in V 00. Now we can assume that the 1-facets of
each edge in E 00 are connected. De�ne for each e 2 E 00 the set F(e) of labels of
1-facets. Each endpoint of an element of F(e) is associated with a label in V 00;
we associate each label in F(e) with an arrow pointing from the lower endpoint
to the higher. Let F be the disjoint union over E 00 of the F(e).

We mark each hull in V 00 with information concerning the edges it meets:
First the hull is darkly marked with the positions, orientations, labels in

E 0(Xj) and the relative level j of the various edges in �(j��)(e), e 2 E 0(Xj),
1 � j � � incident to the vertex in �(X1), as well as any edges �(��)(e),
e 2 E 0(A), A 2 X+

1 for which v incident to v. Note that a darkly marked edge
in a vertex hull may end up with many edge markings in E 0; however, we take
the single edge of lowest relative level as our marking, for this will be su�cient.

Second, given v 2 V 00, there is some �nite N such that if �N (v) is incident to
an edge e in �(N+1)(X1), then for any n > N , �n(v) is incident to �(n�V+1)(e)
in �(n+1)(X1), because of the �nite valence of the vertices in our substitution
tiling. That is, we can lightly mark the positions, orientations, and labels in E0

of all lower level edges that are eventually incident to v. We also put a height
function on these lightly marked edges: suppose e, f are lightly marked edges
incident to v such that there is some n such that �n(v) is incident to an image
of e but not incident to an image of f ; then e is higher than f .

On the 1-facets of all the edges, lightly marked or darkly marked, we further
mark the vertex hull with appropriate labels and orientations in F . (When
n = 2 we simply place arrows on the elements of E 00).

Note that this hull will be either an n-ball or a sector of a n-ball. Because
we have assumed sibling vertex-to-vertex, the �rst case always occurs if v is in
the interior of �(A); the latter case will occur only on the boundary of �(A). In
the latter case de�ne the 
at sides of the hull to be image of the boundary of
the �(A) on the boundary of the hull (i.e. the planes on which the n-ball was
cut to make a sector). (Here sibling vertex-to-vertex is not really being used
very strongly; to drop the condition we merely have to delineate a second kind
of 
at side).
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Given v 2 V 00(X�:::X1), its hull will be implicit. The hulls will orient a vertex
in the tiling, showing in which directions edges are expected.

In �gure 13, the construction of E 00(AC) and V 00(AC) is indicated for the
dimer tiling of �gure 22 and �gure 10. It is important to note that these hulls
actually have much more information encoded within them{ in particular speci�c
labels associated with these particular spots in the structure. Also light and dark
edges are not distinguished in this �gure.

vertex hulls
labeled with 
much combi-
natorial info.

only light edge
in hulls of   ''(AC)

Figure 13: elements of V 00, E 00 and vertex hulls

Note that E 00(X�:::X1), V
00(X�:::X1) are de�ned as structures in �(X1). Also

note that any edge, of level greater than �, of a tile in a tiling has a unique label
in E 00 (whereas it may have up to � labels in E 0. Also, if the edge is of level less
than �, the construction of E 00 may have divided it into some �nite number of
pieces). We can also mark terminals as appropriate on the vertex hulls, if they
are at the end of a dark edge of relative level-1, on the exterior of �(X1).

Labels v 2 V 00(R) e 2 E 00(R), with R = X�:::X1 2 R, exactly specify what
role, if any, �n(v) and �n(e) play in skeletons serving supertiles �(n�1+j)(Xj),
1 � j � �; that is, a edge or vertex label e 2 E 00(X�:::X1), v 2 V 00(X�:::X1)
exactly speci�es whether the edge or vertex has a label in each E 0(Xj), V

0(Xj)
and if so what this label is. Note however that because vertices may lie on the
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boundary of the supertile they serve, a given vertex may lie in several unrelated
skeletons. This is discussed further in the construction of vertex decorations.

We will return to these classes momentarily. The main point here is that
the primary information associated with each supertile is to be its label in R.
With this speci�ed, the role of the supertile in all higher level skeletons is �xed.

2.3 Vertex-wires W and wire-keys U

In the proof of the matching rules, we will need each supertile's key to arrive at
three kinds of points on the boundary of the supertile: sites, endovertices, and
mesovertices. The �rst two kinds of points lie on the supertile's skeleton, and
thus are dealt with.

We require a second, independent structure|vertex wires| to send informa-
tion to the mesovertices of a supertile; more generally we can deliver information
to any rational address, de�ned momentarily.

Recall that a mesovertex v 2 V(A), A 2 S lies on boundary of A and at the
end of an edge in E(A�), but that for no n does �n(v) lie at the end of any edge
in the interior of �n(A). For each A 2 S, let Vm(A) � V(A) be the collection of
mesovertices of A, and let Vm be the disjoint union of the Vm(A) as A ranges
over S.

Lemma 2.6 Let v be a vertex of a prototile A. Then v has rational address.

Proof For all n 2 N, �n(v) is incident to exactly one tile, congruent to Xn 2 S,
and is coincident with a vertex vn 2 V(Xn) of this tile. Note that the address
of v is thus A�X1X2:::. Since V , S, are �nite and vertices are hereditary, this
address must be rational (Section 1.4), i.e., of the form A�XYYY::: where X;Y
are �nite addresses. (In fact, this is precisely the single point in the construction
at which hereditary vertices are invoked) qed

Let v 2 Vm(A). There are non-negative integers l(v), m(v) such that we
may suppose X = X1:::Xl(v) and Y = X(l(v)+1):::Xm(v), and that for j; k > l(v),

if k = j (mod(m(v)� l(v))), then �k(xj) = �j(xk) (taking v as the �xed origin),
and (vj) = (vk) 2 V . That is, we require that vk occupies the same position
and orientation in Xk as does vj in Xj (�gure 4).

Let W(v) be this sequence [(A = X0)�X1; :::;Xl(v);X(l(v)+1); :::Xm(v)]. We
will take as implicit, given Xi 2 W(v), the values of l(v) and m(v), the label
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vi 2 V(Xi), the unique successor X(i+1) (or, if i = m(v), X(l+1)) and (for i 6=
(l + 1) ) the unique predecessor X(i�1), and for X(l+1) the two predecessors xl
and xm. To make indexing easier, for any n > m, Xn will be taken to mean
Xk where l < k � m and n = k (mod(m � l)). De�ne for each Xi a set of
possible preceders{ strings drawn from XYYY::: ending in Xi, either with length
� or with length less than � and beginning with X1.

W(v) is the vertex-wire for the mesovertex v. Let W be the disjoint union
over all mesovertices of the W(v). As usual, given a w 2 W , it is implicit for
which v that w is an element of W(v).

We next de�ne for any tiling in (T , �, S) a map �U : V ! (W�R)[ fnullg
where V is the set of all epivertices of the supertiles in the tiling:

Recall Lemma 1.6.
In particular, any epivertex v of a supertile �j(B) in a tiling is either on the

exterior of any supertile to which it is incident or either incident some lower
level edge in the interior of the supertile, or is coincident to a mesovertex w
of some higher level supertile �n(A), with �R(�

n(A)) = R 2 R. In the �rst
and second cases, take �U (v) =null . Otherwise take �U (v) = (X(n�j);R) where
X(n�j) is the (n� j)th digit of the vertex wire W(w).

The possible images of epivertices are wire-keys; let U(v) � (W�R), be the
set of possible wire keys of a particular epivertex v 2 A 2 S, and let U be the
disjoint union of the U(v).

2.4 Supertile packets Q, edge- and vertex-packets P

We now summarize the classes of labels associated with each primary structure.
Packets will be certain bundles of labels associated with various structures. Edge
packets and vertex packets will, in essence, be the markings for our new tiles.

A given supertile �n(A), A 2 S will carry a key R 2 R(A) of its own and
wire keys U 2 U(v) for each of epivertex v in V(A). For each A 2 S, let Q(A)
be the supertile packets{ sets of labels for supertiles �n(A): that is sets of the
form [R;U1;U2; :::] such that R 2 R(A) and there is exactly one Ui 2 U(v) for
each epivertex v in V(A) and each Ui lies in some U(v) for some epivertex v in
V(A). Note these sets of labels are �nite and there are �nitely many such sets.

Take Q to be the disjoint union of the Q(A) over S. We also include an
extra null label in Q.
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Given a tiling [BiAi in (T , �, S), de�ne a map �Q : f�n(A) j n 2 N;A 2
S; �n(A) � [BiAig ! Qwith, for supertile �n(A) with epivertices vi, �QQ(�

n(A)) =
[�R; �U (v1 2 �n(A)); :::].

Lemma 2.7 Let [R;U1;U2; :::] be the image under �Q of some supertile in a
tiling with connected hierarchy. For each non-null Ui = [Yni ;Ri] with Yni 2
W(v), note R is either a possible preceder of Yni or terminates in a possible
preceder of length k < � of Yni . In the latter case, we further note the last
(�� k) digits of Ri are the �rst (�� k) digits of R.

Proof This follows immediately from the de�nitions. qed

The de�ning label for each edge of every tile is a label in E 00. Thus a given
edge of a tile will convey a edge packet [e;Q1, Q2, ... Q�] 2 (E 00�Q�)[fnullg of
labels, consisting of its own label e 2 E 00(X�:::X1) 2 E

00, and a �nite collection
of labels in Q. The �rst element, e, will be the header of the packet; the rest
will be the trailer.

Given a tiling in (T , �, S), let E be the set of all points of edges of tiles in
the tiling and de�ne �P : E ! (E 00 �Q�) [ fnullg:

Recall each point f 2 E of each edge either lies on an in�nite fault line
or lies in some �n(e), e 2 E 00(X�:::X1), and thus lies within up to � skeletons
�(n+k�1)(EXk ), � 2 K � f1; :::; �g, with 1 2 K (This is given by �E00(f)). In
the �rst case let �P(f) =null; in the second let �P(f) = [e;Q1;Q2; :::;Q�], where
Qi = �Q(�

(n+k�1)(Xk)) for i 2 K and Qi =null otherwise.

The image of E under �P will be edge packets P .
Thus given edge will carry a packet in P , which amounts to a label in E 00 for

the lowest level skeleton to which the edge belongs and � keys for supertiles of
the next � levels in the hierarchy, and any wire keys these supertiles are in turn
transmitting.

The following amounts to a long lemma with trivial proof following imme-
diately from the construction:

Any packet in [e;Q1, Q2, ... Q�] 2 P , e 2 E
00(X�:::X1) satis�es:

Let each non-null Qi = [Ri;Ui1;Ui2; :::]. We must have R1 = X�:::X1.
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For each pair of non-null Qi; Qj , Rj = X(�;j):::X(1;j), Ri = X(�;i):::X(1;i) with
1 � j < i � � in a packet for label e 2 E 00, we have X(k�i;i) = X(k�j;j) for
i < k � j + � and e 2 E 00(R1). That is, we can de�ne, for well formed edge
packets, a longer address Xj :::X�:::X1 of some length j, � � j � (2� � 1) such
that for any 1 � k � j, 1 � i � k, Xk = X(i;k�i); the Ri are in e�ect snippets of
this longer address. (The length j depends on which Rj and Qj are not vacant,
that is, on which higher level skeletons e serves.)

Given the longer address Xj :::X�:::X1, it is clear by examining �
j(Xj) exactly

how the vertices of any Xk, 1 � k � � coincide with vertices of any other Xl,
1 � l � �. We note the Uij do not con
ict at these vertices:

In particular, suppose vk is an epivertex of Xk, with corresponding Uki,
incident to an epivertex vl of Xl, with corresponding Uli. Then Uki is null in
U(vk) if and only if Uli is null in U(vl); if neither is null, let Uki = (Ynki 2
W(vki);Rki), and Uli = (Ynli 2W(vli);Rli). Then we must have vki = vli 2 Vm,
nki + l = nli + k (mod(m(vki)� l(vki) and Rki = Rli.

Suppose vk is an epivertex of Xk, with corresponding Uki, incident to some
mesovertex v of vl of Xl; then Uki must not be null. Let Uki = (Ynki 2
W(vki);Rki). We require Rl = Rki, v = vki, and Ynki , the (nki)th digit of
W (vki).

We are not particularly concerned with endovertices incident to vk at this
moment.

Note that for supertiles �n�1(B) � �n(A), B 2 A+, the above conditions on
the Qi satis�ed by a well-formed edge packet will hold, takingQ1 = �Q(�

n�1(B))
and Q2 = �Q(�

n(A)).

If � = 1, we can compare the packet Q1 = [A;U11;U12; :::] conveyed by a
daughter tile to the packet Q2[B;U21;U22; :::] of its parent. We will say Q1 and
Q2 are paired if A 2 B+ and the conditions on the Uij must be satis�ed as above.

In practice, the well-formed packets are not so di�cult to list, merely tedious.
The restrictions simply ensure the packets are not so malformed as to never arise
in an actual tiling. Let P(E 00) be the collection of these well-formed edge packets.

We similarly de�ne vertex packets [v;Q1, Q2, ... Q�] of labels, consisting of
a vertex label v 2 V 00(X�:::X1) 2 V

00, and a �nite collection of labels in Q. We
only de�ne such packets for vertices V 00(X�:::X1) incident to the skeleton of X1.

As above, let v be the header of the packet [v;Q1, Q2, ... Q�] and the Qi

the trailer of the packet. Note that our description of well-formed edge-packet
made no real use that the �rst item in such a packet is a edge label in E 00; we
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thus make the same restrictions in de�ning well-formed vertex packets and let
P(V 00) be the collection of all well formed vertex packets. For each element of
P(V 00) we can also de�ne a longer address as we did for the P(E 00).

A given edge will carry a packet in P , which amounts to a label in E 00 for
the lowest level skeleton to which the edge belongs and � keys for supertiles of
the next � levels in the hierarchy, and any wire keys these supertiles are in turn
transmitting.

Finally, we de�ne, given a tiling in (T , �, S), a map �F mapping the points
of each 1-facet of each edge of each tile of a tiling into ([0; 1] � F) [ fnullg, as
follows:

Every edge of every tile f in the tiling either lies on a in�nite fault-line or
lies in a unique �n(e), e 2 E 00. In the �rst case, take �F (h) =null.

In the second case every 1-facet h of f may or may not lie within a 1-facet of
�n(e). If it does not, take �F (h) =null (this only occurs when n > 2). Otherwise,
h lies within a 1-facet sigman(h0) of �n(e), h0 2 F(e) (Section 2.2.3). Recall
h0 has an assigned orientation in e (an arrow pointing from one end of h to the
other); let h inherit this orientation from �(e).

Thus h has a \high end" and a \low end", lying towards the head and tail,
respectively, of the arrow on �(h0). Let �F linearly map h to [0; 1]� fh0g with
the high end of h mapped to 1, the low to 0.

This last map will serve to orient our labeling in the tiling; recall that the
set of 1� facets of the tiles in the tiling is connected.
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3 Creating tiles and markings

We will de�ne new prototiles T 0 and matching rules M for piecing them to-
gether.

We will then explicitly de�ne a labeling of (T , �, S). In e�ect, on either
side of each edge in a tiling we will mark with the appropriate edge packet; the
middle of each tile will be marked with an appropriate supertile packet.

We will then show this new matching rule tiling (T 0, M) reconstructs the
labeling.

We will describe three 
avors of proto-tile, and then markings derived from
the various sets of labels. Here we use the �niteness of V to ensure that we can
�nd a �nite collection of standard tiles employing a �nite collection of matching
rules.

As a point of interest, we could merely take for T 0 the labelings of our
original prototiles, but this technique is as well de�ned and results in a huge
reduction in the number of tiles required.

3.1 Creating new unmarked tiles

Lemma 3.1 Given a substitution tiling (T , �, S), there exist "; � > 0 such that
every point in any prototile of T that is less than " from more than one 1-facet
of a prototile is less than � from a vertex of the prototile; and such that no point
in a tile is within 2� of more than one vertex of the tile.

Note that n = 2, the 1-facets of the prototile are the prototile's edges. When
n > 2, note that the lemma implies that if a point is within " of more than one
edge of the prototile, the point is within " of a 1-facet of the prototile (recall
the the k�facets of the prototile all lie within k-planes in En.

Proof Because the vertices are �nite and hence discrete and the edges are
con�ned to (n � 1)-planes, for each vertex v of each prototile A 2 T , there is
some �v such that every other vertex of A, and every edge A not meeting v lies
outside an open n-ball of radius �v . Take 2� to be the minimum of the �v as v
ranges over all the vertices of all the prototiles (Since the set of these vertices
is �nite, this minimum is attained).

With � �xed, if n > 2, for each pair of 1-facets e; f in a prototile A 2 T ,
there is an "e;f such that if a point x 2 A lies less than "e;f of both e and f ,
then x lies within � of some vertex of A. Take " to be the minimum of the "e;f
as e and f range over all pairs of 1-facets in each prototile. qed
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We de�ne a set ��1(@) of points in each tiling as follows (this set will both
de�ne the boundaries of our new tiles T 0 and begin to de�ne our labeling �):

First, any point in any tile in any supertile in any tiling that lies on the
boundary of the tile, exactly � from a vertex of a tile or exactly " from one edge
or equidistant to two or more edges of the tile, such that this distance is less
than " and no edge is closer and no closer than � to any vertex of the tile will
be labeled \@". This will mark the boundaries of our new tiles.

Note that the closures of the components of any tiling less the points marked
@ fall into a �nite collection of congruence classes: we partition these classes
into unmarked vertex hulls, edge tiles, and small tiles, depending on if they were
originally within � of a vertex, " of an edge but further than � from a vertex, or
further than " from an edge and � from a vertex.

Note of course that the unmarked vertex hulls are exactly that{ congruent
to vertex hulls in V 00 with the markings wiped o�.

We will de�ne vertex-tiles as the union of such hulls shortly; vertex-tiles will
be marked n-balls (disks) or sectors of n-balls.

Because of problems with vertices and edges of level less than zero, we will
ultimately coalesce small tiles into big tiles, derived from supertiles of level �.

In �gure 14 the triangle tiling of �gure 7 has been carved up into small tiles,
edge tiles and vertex hulls. The vertex hulls have not yet been assembled into
vertex tiles. None of these tiles have yet been marked.

The out-side of an edge-tile is the image of the boundary of the original tile
from whence it was derived; the in-side of an edge-tile are the points on the
boundary of the edge-tile that are " from the image of the boundary of the
original tile. The ends of an edge-tile are the remaining points on the boundary
of the tile. The edge tiles are marked by @ on their boundaries and labels
in P(E 00) [ fnullg in their interior, encoded by any convenient scheme, and by
[0; 1]� F [ fnullg on the one-dimensional facets of edges of the tile that allow
us to identify the orientation of the tile (note each 1-facet of the tile itself may
have several labelings in [0; 1]�F). We call these images of [0; 1]� fhg, h 2 F
a sided arrows (the sided refers to the arrow being associated with a particular
\side" of the tile{ a certain 1-facet of a certain edge). The head of the sided
arrow lies at the image of 1� fhg, the tail at the image of 1� fhg.
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Figure 14: Small tiles, edge tiles and vertex hulls

3.2 Vertex tiles and vertex markings

The markings for the vertex tiles are somewhat more complicated since a single
tile may carry several markings. An edge has a speci�c level, the level of the
supertile it bounds. A vertex might be the endpoint of many di�erent levels of
edge and so has no speci�c level of its own. Instead labels in V 00 lie at speci�c
levels and are the basis for our markings. Every vertex has �nite valence and
there are a �nite number of vertex con�gurations; thus there is a bound on
the number of markings required. We allow all combinations with the correct
valences, satisfying certain compatibility requirements given below. The com-
patibility rules ensure a great degree of redundancy and in practice, one can
sort out the actual combinations of marking that are required.

Recall from Section 2.2.3 that the labels V 00 each have some de�ned hull, an
n-ball or a portion of a n-ball. The labels in P(V 00) and the hulls of their headers
will form the basic vertex markings. Unions of these markings will form vertex
tiles.

We will also view a vertex tile as the co-dimension 1 projection of a stack of
these markings from an (n+1)th dimension. The relative height of two markings
corresponds to their relative height in the hierarchical structure on the tiling.
Such stacks have bounded height. If we literally allow the stacking of tiles, and
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take the vertex markings as tiles, the number of tiles needed drops dramatically.
The compatibility rules, de�ned shortly, are in e�ect vertical matching rules
describing permitted stacks of markings. We will instead project these stacks
down into disks or sectors, marked with many markings ranked by height, and
take these as our vertex tiles.

A label v 2 V 00 belongs to one of several classes. Let v 2 V 00(X�:::A).

i) either v is internal and lies in the interior of A or is external
and lies on the boundary of A.

ii) v arose as any or all of:
a) the endpoint of edges of relative level 1. Some of these
will be among the sites serving A.

b) a site serving a lower level tile, an element of A+.
c) the endpoint of some edge �(k��)(e), e 2 E 0(Xk);
in particular, this may be a point where the skeleton of �k(Xk), 1 < k � �
departs E(A) into some element of A+.

d) if v is external, a site for some �k(Xk), 1 � k � �
e) an isolated vertex on the boundary of A.

Note that all of the internal vertices and some of the external vertices of
�n(A) labeled in V 00(A) are terminals of the �(n�1)(A+).

A vertex marking is a label P 2 P(V 00), with the hull of its header, oriented
so that the position of all edges incident to the header can be determined. The
hull of a vertex marking is just the hull of its header. The dark edges of a vertex
marking are the edges darkly marked in the hull of the marking. Recall that
the hull of a vertex in V 00 is marked with the positions, labels in E 0 and relative
levels of its dark edges, and the 1-facets of each edge have been labeled in F
and oriented with arrows.

If the hull includes no dark edges of relative level 1 the trailer is null. If the
header of P includes a dark edge of relative level 1 we regard this edge as being
marked in P(E 00) with the header of this marking corresponding to the label in
E 0 of this edge; we further take the trailer of this marking and the trailer of P
to be the same.

Similarly, the light edges of a vertex marking are the lightly marked edges in
its hull; the 
at sides of a vertex marking are the 
at sides of the hull.

One more vertex marking is possible, an overpass; this is simply a join for
extending edges inde�nitely. Such an overpass is a sector of an n-ball; each 
at
side must consist of a single k-plane, 0 < k < n. Such an overpass is to be only
the highest vertex marking in a stack of markings.

If the sector has two 
at sides of dimensions j; k, these must share at least a
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common (n� j � k)-plane of intersection in the boundary of the sector (hence
when n = 2, an overpass has only one 
at side). This line must be marked with
the orientations and labels in F of the 1-facets of the edges propagated by the
overpass.

Along this line, an overpass propagates the boundary between higher level
edges in the tiling, and also carries the orientations and labels in F of the 1-
facets of these higher level edges. (Such a structure is necessary anyway, and
helps us avoid de�ning tiles for every dimension from zero up through n, instead
of just for dimensions 0, (n� 1) and n).

3.3 Compatibility rules

We specify how we allow the vertex markings to stack:

First, the disk markings are given an order in height. The higher markings
correspond to higher-level vertex hulls; they thus will be at least a large as
portion of a n-ball than the lower markings. The highest marking must either
be an overpass or a complete n-ball; the lowest markings must be unmarked
sectors arising from hulls in V 00 meeting no edges. In between, we require that
each 
at side of a hull must lie exactly beneath a 
at side or a edge of the next
marking up; that edges and the 
at sides of a hull must lie above the 
at side
of the hull of the next marking down; and that every light edge must be above
some dark edge with the same marking in E 00.

Suppose two vertex markings P1; P2 2 P(V 00) contain dark edges that co-
incide when the stack is projected to a single tile; let the �rst dark edge have
relative level j to P , the second relative level k to Q. We require the edges' sided
arrows must be oriented the same way and have the same labels in F and the
edges' labels in E 0 must be the same; jj�kj must be less than �. Furthermore, if
both P1; P2 have non-null trailers, say [:::;Q11;Q12; :::;Q1�], [:::;Q21;Q22; :::;Q2�]
we require that Q2(i+j) = Q1(i+k) for 0 � i � (�� jj � kj � 1).

Finally, consider the vertex marking P 2 P(V 00), where the header v of
P arose as a site serving a tile B � �(A), v 2 V 00(Xk :::AB). If � = 1, the
trailers of the packets must be paired, as de�ned in Section 2.4. Otherwise, let
P = [v;Q1; :::Q�]. The hull of the marking must be a sector. Immediately above
this sector must be a marking labeled P 0 with header w 2 V 00(X(�+1);X�; :::;A)
and P = [w;Q2; :::;Q�;Q(�+1)]. By the de�nitions of E

00, V 00, these two markings
have at least one edge that coincide when the stack is projected to a tile; thus
we are assured that w and v are appropriately matched (as they are endpoints
of these edges, and the orientations and labels in F of the 1-facets match). The
point is that a vertex tile serving as a site for a supertile must connect what
appears to be the appropriate edge for the lower level skeleton to what appears
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to be the appropriate edge for the higher level skeleton, that the orientations
and labels in F of the 1-facets of these edges are correct, and that the packets
on these skeletons are appropriate as the packets of child and parent supertiles.

The choice of Q(�+1) is the engine of aperiodicity.

We now de�ne vertex tiles: given a stack of vertex hulls satisfying the com-
patibility rules, project the stack to a n ball or sector. Mark all the images of
the edges of hulls with @. In an " neighborhood of these marks by @, mark the
edge packet of the lowest dark edge above the projection.

3.4 Small tiles

We de�ned small tiles, above, as simply prototiles with vertex and edge tiles cut
away. We label these with packets in Q, for small tiles are really just marred
little supertiles. If a small tile's packet contains any non-null U 2 U , U = [X;R],
then the tile has a terminator, the label W in W corresponding to the vertex
wire determined by U, the label R carried by U and the position and orientation
of X with respect to X1 2 W . The label v in V such that W 2 W(v) is implied.
The terminators are the whole motivation for vertex wires.

Recall that small neighborhoods about vertices have been deleted from the
original prototiles. Thus, if X = Xi 2W(v), then the terminal is marked on the
boundary of a neighborhood of vi in X; the terminal is an orientation �xing the
position of v and a marking with the supertile packet R and vertex label v.

For any A 2 T , there is some k such that for all n, if an edge e in �n(A) meets
a vertex �n(v), v 2 V(A), then there is an edge �(k�n)(e) meeting �k(v) 2 �k(A);
that is, after some number k of subdivisions, no further edges are incident to
the vertices of A. Lightly mark ��k(e) � A, for all e � �k(A) such that e is
incident to a vertex �k(v). Given Q 2 Q(A), the edge packets are �xed for each
such e; mark these on A as well. (This is unnecessary, really, but makes the
matching rules more straightforward).

3.5 Matching Rules M and tiles T 0

We de�ne T 0 as the marked edge tiles, vertex tiles and small tiles.

The terminal matching rule: a terminator marked R = Xk:::X2X1 and v must
be incident to a vertex tile with a terminal vertex marking v00 2 V(X2) such that
(v 2 �(X2)) = �(v00 2 X2) and that v00 is aligned correctly with the orientation on
the boundary of the terminator.
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We give the remaining rules. Essentially these are just that edges and vertices
should �t together properly. The rules are edge to edge, and once all our labels
our de�ned, it really is just a matter of matching markings. Of course, additional
rules have already been encoded in the compatibility rules for the vertex-tile
markings, the de�nition of well formed packets in P , the rede�nition of big
tiles, the listing of the vertex hulls, and the de�nition of the vertex wires.

The edge matching rule: The end of an edge tile marked [e;Q1; :::; Qk] must
meet a vertex tile such that with a vertex marking [v;Q1; :::Qk] with e marked as
a dark edge of relative level 1; the orientations and labels in F of the sided arrows
must match as well. The in-side of an edge tile must meet a small tile (or big tile,
de�ned shortly). Any point on the interior of the out-side of an edge tile must meet
the 
at side of a vertex tile (an overpass) with the same marking and orientation,
but opposite sidedness, or a vertex tile marked with an overpass marked with the
same orientation and marking and opposite sidedness.

The tiling rule: The tiles must cover the plane and have disjoint interiors.

This last rule forces vertex tiles to �t in the disk-shaped holes in the small
tiles. Edges to �t along the sides of the small tiles.8

We will give one �nal rule momentarily, after we formally de�ne our labeling.

3.6 The labeling �

Recall that we have de�ned:

�Q : f�n(A) j n 2 N;A 2 S; �n(A) � [BiAig ! Q.
�P : E ! P where E is the set of all points of edges of tiles in a tiling in

(T , �, S).
�F : F ! ([0; 1]�F)[ fnullg, where F is the set of points of each 1-facet of

each edge of each tile in a tiling in (T , �, S).

These maps allow us to de�ne explicitly a labeling � of any tiling in (T , �,
S): Recall we described ��1(@) above. The remaining points are unambiguously
in the interiors edge tiles, vertex tiles and small tiles corresponding to edges in
the tiling, vertices in the tiling, and level-0 supertiles. Label each point in an
edge-tile with the image under �E of the closest point in the out-side of the

8We could actually do away with the other rules entirely, for our labels can all be converted
into a set of bumps and nicks that �t together only when the corresponding labels match.
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edge-tile (or by @ if this is ambiguous), its 1-facets with their images under
�F , each small tile with its image under �Q and markings at the curved edges
derived as described in Section 3.4 (determined by the header of the label in
Q), and each vertex tile with the edge packets and orientations in F matching
the edge tiles and small tiles to which it is incident.

Note every supertile can only be marked in �nitely many ways, since each
supertile can only be marked in �nitely many places and their are only �nitely
many possible markings. So this procedure does in fact provide a labeling of
(T , �, S).

Note, we marked in�nite edges with the null marking, and any in�nite vertex
wires carry the null supertile key.

As mentioned in Section 1.3, we have now de�ned our well-formed supertiles,
con�gurations of tiles in T 0 that are precisely the possible labeled supertiles in
tilings in (T , �, S).

3.7 Big tiles

We must �nesse a certain point and de�ne our �nal matching rule.

Edge tiles lying on k-level edges, k � � � 1, of a tiling in (T , �, S) have
been given a single marking, but lower level edge tiles might have two or more,
changing at positions corresponding to skeletons of level less than � crossing
into the tiles themselves, or to sites for 0-level skeletons in the interiors of the
tiles.

In some sense, this issue arises because our structures really are arbitrarily
�ne, but the tiles impose a certain \resolution" at which we view them. We
simply impose a �nal matching rule resolving this issue:

The big tile matching rule: every tile in every tiling in (M, T 0) must lie in a
unique well-formed supertile of level �

We call these well-formed supertiles of level � big tiles.

Now we have de�ned M, T 0 and (M, T 0); every tiling in (T , �, S) can be
parsed into a tiling in (M, T 0); we next attempt to show the converse.
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4 The proof of Theorem 1

We turn now to the space (M, T 0) of matching rule tilings. With all this work
behind us, the task is relatively simple:

Recall from Section 1.3 we de�ned a well-formed n-level supertile to be a
con�guration of tiles in T 0 that is the image of a supertile in some labeling.

That is, in a well-formed supertile, we do not need to be too careful about
whether this supertile lies in a labeled tiling in (T , �, S) or in a tiling in (M, T 0):
our well-formed supertiles have skeletons, sites and wires clearly marked, and
these structures carry packets that are consistent across the entire con�guration.

We are to show that every point in the interior of a tile in an tiling in
(M, T 0) lies in a unique n-level well formed supertile for each level. We would
like to induct. However, this is not quite possible: in an induction, we cannot
be sure of the consistency of the packets for a particular skeleton until the
skeleton is completely formed; however, because a skeleton may span several
levels, there may be a lag of several steps of the induction between a skeletons
�rst appearance and the point at which it is connected. Thus, we de�ne instead:

A con�guration C of tiles in T 0 is an almost-well-formed n-level supertile there
is a congruence B 2 G to a well-formed n-level supertile C 0, such that every tile
in C is congruent under B to a tile in C 0; and such that for any packet labeling
a tile in C, all information of level n or lower is the same in the packet of the
corresponding tile in C 0. That is, an almost-well-formed n-level supertile di�ers
only from a well-formed n-level supertile in that the consistency of information
concerning higher level structures has not yet been checked for.

Speci�cally we note the (n�1)-level edges of the almost-well-formed supertile
must all share the same packet P because of the compatibility rules and the fact
that the skeleton of the almost-well-formed supertile is connected. Because the
supertile is well-formed, it is clear which edges on the boundary of the almost-
well-formed supertile are meant to lie in the interior of the supertile's parent;
moreover, on each such edge there is exactly one site serving the supertile, a
marking at a vertex-tile v on the supertile's boundary; moreover, all vertices
�n(v), v 2 V(B) such that v is incident to an edge in E(A) are either meso- or
endo- vertices of �(A) and are unambiguously identi�ed with either a terminal
or a vertex in V 00(A).

Since our big tiles are themselves almost well-formed supertiles of level �,
the following proposition, with Lemma 4.2, completes an inductive proof of the
Theorem.
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Proposition 4.1 If any almost well-formed supertile of level j, j � n lies in
an almost well-formed supertile of level n, every almost well formed supertile of
level j, j � n lies in an almost well- formed supertile of level n+ 1.

Proof We proceed by induction and may assume that n > � and that every tile
lies in an almost well-formed supertile of each level k < n.

But we have gone to a great deal of trouble already: the work is already
done! Consider an almost well-formed n-level supertile, congruent to �(X1)
for some X1 2 S, and let X2inX

�
1 (�gure 6). We must show our almost well-

formed supertile lies in an almost well-formed supertile congruent to �(n+1)(X2).
We must check that our original supertile and its siblings form the correct
con�guration and that the markings on the skeleton and vertex wires of of
�(n+1)(X2) are correct.

Suppose an almost well-formed supertile has supertile key Q = [X�:::X1; :::] 2
Q. At each site �n�1(z) serving the skeleton of the supertile the compatibility
rules (Section 3.3) ensure that immediately above the site's marking is a vertex
hull in V 00(X2), with edges marked with supertile key Q0 where Q, Q0 are paired
(Section 2.4). Moreover, at this site the edges corresponding to the n-level edges
in the skeleton of �n+1(X2) are all correctly labeled and oriented.

Now the matching rules ensure that at least next to v, the appropriate edges
of the parent skeleton set forth in the right orientations, following the boundary
of our n-level supertile.

The edge must propagate along the boundary of the n-level supertile, aided
by vertices with overpass markings. Note that as the edge propagates, the higher
level markings on the vertices of the n-level supertile are correlated with one
another, by the edge matching rule (Section 3.5).

The edge will propagate along the (n � 1) face of the underlying polyhe-
dron until meeting vertex markings in V 00(X2). But these markings have been
anticipated and lie at �xed locations on the boundary of �(X1). That is, the
edge cannot propagate beyond its intended boundaries nor fall short of these
boundaries, as these vertices are �xed.

Because the original tiling is sibling edge-to-edge, these terminals must be
terminals for the edges of neighboring supertiles; moreover, these edges must
convey the same trailer of the packet in P . However, the nature of these neigh-
boring supertiles, and their precise alignment is not yet determined.
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In particular, we must eventually come across the site lying to the other side
of the edge; this site must be adjacent to some big tile; this big tile must lie
in some well-formed n-level supertile. Since this supertile must share the same
vertices as �n(X1), its position and nature are �xed: it is indeed the appropriate
sibling of �n(X1), in the correct position.

Now note that information concerning level higher than n supertiles in the
packet in the tiles in �n(A) and �(C) must be correlated by this edge. And so
we can walk our way about, showing each sibling in turn is in its place.

Finally, because the skeleton EX2 is connected, we have that the supertile
key is consistent across all of �n+1(X2); moreover all structures are correctly
placed and oriented. Thus, our original almost well-formed supertile of level n
lies in an almost well-formed supertile of level n+ 1.

qed

The following lemma completes the proof of the theorem.

Lemma 4.2 If every point in the interior of every tiling in (M,T 0) lies in a
unique almost well-formed supertile of each level n 2 N then every point in the
interior of every tiling in (M,T 0) lies in a unique well-formed supertile of every
level n.

Proof This is simply because any almost well-formed supertile of level n in an
almost well-formed supertile of level greater than n+ � is in fact a well-formed
supertile. qed

We used the condition in the statement of the theorem very strongly: we
needed a mechanism{ vertex wires{ to �x the position of the vertices of �(A) and
thus keep edges from propagating beyond their intended borders. The vertex
wires required vertices to be hereditary. Secondly, to �x the position of sibling
supertiles relative to some initial supertile, we need some point in each we can
say they share{ they are forced to share vertices.

Other mechanisms can be devised, exploiting other conditions one could
make. However it is not clear if an example exists in which the relative positions
of sibling tiles cannot be �xed at all.

Note that we have speci�cally shown that every tile in an M- tiling lies in
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arbitrarily large well-formed supertiles. This is the de�nition we have taken for
enforcement. Note though, that if the tiling in (M, T 0) has an in�nite fault,
we have no control over the edge-label propagated down the fault; similarly a
vertex wire might serve no highest level supertile. We also have no control over
slippage along such a fault. In the vertex to vertex case, we can sti�en this
structure up considerably.

In Appendix C we point out that the correspondence between the tilings in
(M, T 0) and tilings in (T , �, S) is one-to-one, except on a set of measure zero
in any translation invariant probability measure on (T , �, S).

We also reiterate that, given a substitution tiling, we produce a tiling with
matching rules that encode the addresses generated by the substitution system.
If the addresses do not correspond to unique substitution tilings { in particular,
if the substitution tilings can be periodic{ then our correspondence with (M,
T 0) cannot be exact. Also, if the tiles have some particular symmetry, our
algorithm produces tiles in which the symmetry has been broken.
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A Survey of substitution tilings

We �rst give a quick history of the problem, then survey a variety of substitu-
tion tilings, many of which have not been previously published. This appendix
may give the reader a feel for some of the technical issues that arise in the
construction.

A.1 History

If a set of prototiles admits no tiling that is invariant under an in�nite group
of congruences in our space, the prototiles are aperiodic. The possibility of an
aperiodic set of prototiles, in the plane or elsewhere, was essentially ignored
until H. Wang and R. Berger began investigating connections between tilings
and undecidability.

In the early 1960's Wang encoded arbitrary Turing machines as tilings of the
plane. However he required a somewhat awkward restriction{ the placement of
a \seed" tile to begin the computation. In 1964 Berger removed this restriction
by constructing an underlying hierarchical structure9; this structure provided
arbitrarily large, enclosed domains for the run of the machine [Ber].

Berger thus could answer that the \Domino Question" is undecidable; that
is, there is no an algorithm to decide whether any given set of prototiles admit
a tiling. Berger's tiles admitted a tiling if and only if the underlying Turing
machine did not halt.

If every set of prototiles admitting some tiling admits a periodic tiling, one
can produce an algorithm to check whether any given set of prototiles actually
admits a tiling. Thus Berger produced an unexpected corollary{ there are sets
of prototiles that do tile the plane, but cannot do so aperiodically! He gave such
a set, of some 20,000 tiles.

By 1971 Robinson had produced a much smaller set of six prototiles and
streamlined Berger's general result as well in an especially lovely and readable
paper [Rob]. R. Penrose found his celebrated tiles in 1972 [Pen] and many
other sets have been found since. R. Amman in particular has contributed
many beautiful examples [GrSh].

9Interestingly, Berger called this structure a \skeleton".
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N.G. De Bruijn pointed the way to another interpretation in 1981: aperiodic
tilings could arise as projections of slices through a higher dimensional lattice
[dBr]. This \slice and project" method of constructing aperiodicity has been
very much studied. Recently matching rules have been given for a wide class
of such tilings [Le]. One wonders if every slice-and-project tiling enforceable by
matching rules has a hierarchical structure.

In 1984, physical materials were found sharing the peculiar Fourier spectrum
of aperiodic tiles with icosahedral symmetry, adding physical relevance to these
studies. An enormous amount of inquiry into possible structures for these ma-
terials was undertaken (cf. [StO], [Luc]). M. Senechal has provided a readable
and comprehensive survey [Sen].

Robinson's set of prototiles enforced aperiodicity by ensuring a speci�c struc-
ture was formed: an in�nite hierarchy of similar square lattices in the plane
(�gure 15). The collection as a whole is aperiodic, since no translation can leave
every scaled lattice invariant.

Since then, virtually every set of aperiodic prototiles produced either has
made use of such a hierarchical structure to ensure aperiodicity, or has been
derived by the slice-and-project method, with the notable exception of the recent
Schmitt-Conway-Danzer tiling [Dan].

Often this hierarchical structure is produced through a substitution system.
A standard method of showing that a set of prototiles is indeed aperiodic is to
show the set enforces a uniquely decomposable substitution structure.

Although Robinson's original tiles form hierarchical tilings, they do not
overtly arise from a substitution process. They can, however, be parsed into
a substitution tiling, as described in [GS].

We would like to give a variety of two, three, and higher dimensional exam-
ples of substitution tilings. All of these fall within the realm of our Theorem,
and can be enforced by matching rules. Clearly substitution tilings are abun-
dant; it is not known if there are uncountably many combinatorially distinct
substitution tilings.

The substitution tiling on the left of �gure 16 is periodic and does not have
unique decomposition.

However, if we mark our tiles, we may �nd aperiodicity and unique decompo-
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Figure 15: An aperiodic collection of square lattices and Robinson's tiling

53



sition! Eight di�erent congruences could have used to place each daughter tile;
any gives periodic structures if the tiles are unmarked, but generically, marked
tiles should give aperiodic structures. The tiling on the right of �gure 16 is
aperiodic and does have unique decomposition.

Figure 16: Two quite distinct substitution tilings

A.2 Well known examples

In �gure 17 are a number of well known examples, clockwise from upper-left:
the \Sphinx", discussed at length in [Godr] with matching rules provided by
E.A. Robinson [RobE]; the \Pinwheel", found by Conway with matching rules
provided by Radin [Rad]; a \Dimer" tiling, with matching rules found by E.A.
Robinson; and the \Half-hex", with matching rules provided by Socolar [Soc].

Note that the pinwheel can be generalized in many ways: one family of
tilings has for every unordered pair of natural numbers p; q 2((p

2
�p+q2�q)=2)

distinct \pinwheel-like" tilings with right triangles with legs of length p; q and
in
ation by a factor of

p
p2 + q2. (Here p; q = 2; 1). L. Sadun [Sad] has given a

generalization parameterized by the rational numbers (in fact, he corresponds
the irrationals to tilings too, but requires in�nite congruence classes of prototiles
in this case).

A.3 Triangles

Triangles provide many interesting examples. The �rst example in �gure 18 is
due to Robinson and is equivalent to the Penrose tiling.
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Figure 17: The Sphinx, the Pinwheel, the Half-Hex and the Dimer
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The example at upper right is due to the author; the modulus of the in
ation
is the real root of s3 � s � 1. Danzer has generalized this: for each j; k there
is one real solution s > 1 of s(2j+k) � sj � 1; each such root is the modulus of
an in
ation for a family of tilings [Dan]. In particular, in each case there is one
free, real parameter (although in the case j = k = 1 explored by the author,
this parameter gives only �nitely many combinatorially distinct tilings.)

The example at lower left is due to Danzer [Dan]; in this particular variation
the tiles appear in an in�nity of orientations, as with the pinwheel. A similar
example will be examined more closely in Appendix B. The �nal example is a
simple variation of the third: one congruence in the substitution rule has been
re
ected.

Danzer has also produced an in�nite family of triangle substitution tilings
with in
ation through the roots of sk � s2 � 1, as well as many other beautiful
examples. All in all, this suggests that perhaps this is the palest shadow of the
full situation.

Figure 18: Four substitution tilings with triangles
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A.4 Higher dimensional examples

Multidimensional examples should be in even richer abundance. In �gure 19
is one example; simple matching rules were given in [GS]. Cubes oriented in
varying directions, in the mode of the example in �gure 16 , and products of
symbolic substitution systems, as in �gure 20, also give families of examples in
En.

Radin and Conway recently constructed an interesting example [Rad2]; the
orientations of the tiles are dense in SO(3). Examples such as this should be
generic, as is suggested by the known in�nite families of the triangle tilings in
the plane.

The author knows of one special example in E4, based on the stellations
of the 120-cell, and a few three dimensional examples, but for the time being,
the higher dimensional terrain is basically unexplored. It is unknown even if
a single similarity class of tetrahedron can serve as prototiles in an aperiodic
substitution tiling. Such an example would be very interesting.

Figure 19: An example in each En, n > 1

A.5 Products of symbolic dynamical systems

Symbolic dynamics provides examples readily; Mozes gave matching rules for
tilings derived as the product of two one-dimensional symbolic substitution sys-
tems [Moz]. Clearly such substitution tilings can be generalized to arbitrary
dimension. Note that Mozes actually used square tiles with non- homogeneous
in
ation. However, Kenyon [Ken] points out that any one dimensional sym-
bolic substitution system is isomorphic to a substitution tiling in E1, acting on
line segments of varying lengths. Thus we can adjust Mozes' tiles{ the product
of such 1-dimensional systems{ making them marked rectangles, such that an
expanding linear map acts on the tiles.
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Figure 20: A product of one dimensional substitutions

A.6 Non- vertex-to-vertex examples

An important notion is that of vertex-to-vertex. A substitution tiling is vertex-
to-vertex if there is a discrete set of vertices for the prototiles such that if vertex
of one tile meets another tile, it is coincident with a vertex of the other tile.
Radin points to the \Pinwheel Sandwich" as an example of a tiling that cannot
be vertex-to-vertex [Rad2]. Two versions of the pinwheel are layered; on the
right in �gure 21 is an illustration of how part two such layers meet after only
three substitutions{ the situation already seems out of hand! The pinwheel
sandwich does meet the condition in our Theorem however.

L. Sadun [Sad] has given a substitution tiling in E2 he can prove is not
vertex-to-vertex. Danzer maintains there are many 2-dimensional examples of
substitution tilings that cannot be vertex-to-vertex.

One hopes to know eventually how, given a substitution tiling, one can
produce a set of vertices if there is one, or anticipate that there should be a set
of vertices, or prove that there can be no set of vertices such that the tiling is
vertex-to-vertex.

A.7 Unique decomposition

A substitution tiling has unique decomposition if every tiling under the substi-
tution has a uniquely de�ned hierarchy. Clearly if a tiling is periodic it cannot
have a unique hierarchy, but until very recently nothing was none about the
converse.
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Figure 21: The "Pinwheel Sandwich", not vertex-to-vertex

B. Solomyak [Sol] recently showed that { if the tiles have exactly as much
symmetry as the supertiles{ then non-unique decomposition implies the substi-
tution tiling is periodic. His result is sharp with respect to this condition:

The degenerate example of �gure 22 is aperiodic and has non-unique decom-
position if the tiles are unmarked; however the tiles have more symmetry than
the supertiles in this case. The same tiling with fully marked tiles is uniquely de-
composable. The non-uniqueness arises because there are two reasonable ways
to mark the tiles in the tiling{ each leading to a di�erent decomposition.

To show the congruences in the substitution rules, we must very lightly mark
the tiles. However in the tiling, we give the unmarked tiles and indicate two
possible supertiles.

A.8 Out of our realm

We should examine some tilings that deserve to be called substitution tilings
but are not addressed by our theorem.

First, we need that our tiles have only �nite congruence classes, in order
to have �nite classes of labels. There might be two natural generalizations:
(a) simply allow the matching rules to have the same cardinality as the set of
prototiles (but retain the requirement that they be local, e.g. bounded, so that
there is still substance to the enforcement). In this case, the techniques of this
paper should give a strong analogue to our main theorem. (b) one might allow
�nite similarity classes and in�nite congruence classes. In this second case, our
techniques give a strong analogue to the theorem only if the scales of similar
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Figure 22: An aperiodic example with two decompositions

prototiles lie within some narrow range; otherwise one cannot control how �nely
a particular well-formed supertile is divided.

There are many examples of substitution tilings for both generalizations.
Stellations of polytopes, in particular, naturally lead to substitution tilings;
usually these require a �nite collection of similarity classes of tile, but an in-
�nite collection of congruence classes. For example, a construction based on
the stellations of the heptagon is given in �gure 23 (rules are given for each
similarity class).

L. Sadun has given a di�erent, uncountable collection of tilings falling into
this category [Sad].

Second, we need that our tiles are polyhedra; this is so that we can be sure
to have various structures to enlist for transporting information{ edges to carry
information from one place to another and vertices to keep the local structure
of our information well formed.

Thurston [Thu] and Kenyon [Ken] have given many interesting examples of
self-similar tilings for which the tiles are decidedly not polyhedral; furthermore,
although these tilings all allow a single similarity class of tile, many require
in�nitely many congruence classes of tile, and so are doubly disquali�ed. How-
ever, it seems very likely that the techniques we use can be extended to cover
this type of tiling{ for the primary properties of edges are that they are self-
similar, the vertices are discrete and at rational points; indeed the boundaries
of Thurston and Kenyon's tiles admit analogues to both vertices and edges.

A very famous example{ the Penrose tiles{ does not fall into the category
we describe herein, for the in
ated tile is not strictly congruent to the con�g-
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Figure 23: Not a substitution tiling, for our purposes

uration of daughter tiles replacing it (�gure 24). However, the Penrose tiling
is equivalent to the substitution tiling by Robinson triangles (�gure 18), and
it seems exceedingly likely that if this sort of more general substitution yields
tilings that are vertex-to-vertex, then the tiles can be recomposed into tiles re-
siding in our setting. (Also, in vertex-to-vertex tilings, a much stronger notion
of enforcement may be taken: slipping along in�nite faults can be eliminated).

Figure 24: Not a substitution tiling, for our purposes
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B A simple example

We illustrate the construction with a variation of Danzer's tiling from the lower
right of �gure 18; this example has the distinction of being one of the very
simplest possible examples with which to work. (This is because mostly because
S is small, the skeletons are exceedingly simple, and � = 1.)

We take the substitution illustrated below. In �gure 25, T = fX;Yg, S =
fA;B;C;Dg, �, �6(X), �6(Y) are illustrated.

X Y

X Y

σ σ

σ6(X)
σ6(Y)

(scaled down) (scaled down)

Figure 25: T , � and S

We next begin de�ning structures for the construction (�gure 26). As in
Section 2.1.1 we de�ne

V(A) = f1A; 2A; 3Ag,
V(B) = f4B; 5B; 6Bg,
V(C) = f1C; 2C; 3Cg,
V(D) = f4D; 5D; 6Dg and V = V(A) [ V(B) [ V(C) [ V(D).

Note that 2A, 6B, 4D, and 1C are mesovertices; 3A, 4B, 3C and 5D are endover-
tices and the rest are epivertices.

We next de�ne: E(X) = f+i;�ig � �(X), E(Y) = f+ii;�iig � �(Y) and
E = f+i;�i;+ii;�iig.

We turn to sites (�gure 27, Section 2.1.2). Each edge meets a suitable site
after only one in
ation. Moreover, the edges in E(X), E(Y) are connected. So
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σ(Y)σ(X)

1A

2A

3A

6B 5B

4B 

6D

4D5D

1C

2C

3C

+i 
+ii- i
- iiendo

meso
epi

Figure 26: V , E

we are fortunate enough to have � = 1 (Section 2.1.3)10. We take
Z(A) = f3A = z(�i)g,
Z(B) = f4B = z(+i)g,
Z(C) = f3C = z(�ii)g, and
Z(D) = f5D = z(+ii)g.

Our skeletons (Section 2.1.4) will just be the edges E , but within elements
of �(S). We de�ne the vertices and edges of the skeletons:

V 0(A) = fIA; IIA;VIA;VIIAg � �(A),
V 0(B) = fIIIB; IVB;VB;VIIIBg � �(B),
V 0(C) = fIC; IIC;VIC;VIICg � �(C),
V 0(D) = fIIID; IVD;VD;VIIIDg � �(D),
and V 0 = V 0(A) [ V 0(B) [ V 0(C) [ V 0(D).

E 0(A) = fiiAg � �(A),
E 0(B) = fiBg � �(B),
E 0(C) = fiiCg � �(C),
E 0(D) = fiDg � �(C), and E 0 = E 0(A) [ E 0(B) [ E 0(C) [ E 0(D).

Since � = 1, R = S (Section 2.2.1), and the elements of E 00 and V 00 are just
those of E 0 and V 0. However, the elements of V 00 are identi�ed with their hulls
(Section 2.2.2), shown in �gure 28. Recall the hulls are marked with dark edges
and light edges. The dark edges are black; those of relative level one are thick;
those of relative level zero are thin. The light edges are gray.

At this point we orient the one-facets of our edges with arrows; to collapse
the notation, \side" our arrows: for example, the hook on the head of each
arrow on a pair of edges +e, �e points to �e; we will consequently compound
�e for each e 2 E 00. (These arrows �rst appear in �gure 27 since E 0 = E 00).

10Again, this is unexceptional{ most well known examples have � = 1
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σ(A)

σ(B)

σ2(X)σ2(Y)

z(-i)

z(+i)

z(-ii)

z(+ii)

iiA
IA IIA

σ(D)

iD

IIID

VD

iB

IIIB

VB

σ(C)

iiC

IC

IIC

VIIA

VIIC

VIA

IVB IVD
VIIIB

VIIID

VIC
κ=1

Figure 27: Z , V 0, and E 0

are same
as 

hulls:

iiA

IIAiD

iiC

iiA

IA

iD

IIC

iiC

iD

iiC

iiC

IC

iD

iB

VB
VD

iB

iD

iD

iiA

iD

VIIA VIIC

VIA

IVB
IVD

VIC

VIIIB

VIIID

IIID

iB

IIIB

iiA

iD iB

Figure 28: Vertex hulls for elements of V 00

64



We next de�ne vertex wires for the mesovertices 2A, 6B, 1C and 4D (�gure
29 and Section 2.3). Thus

W(2A) = [A2A�C2A],
W(6B) = [B6B�A6B;D6B],
W(1C) = [C1C�D1C;A1C],
W(4D) = [D4D�B5B].

Recall that the elements of W(v) for any mesovertex v are elements of S,
but with additional information{ the orientation of the tile and the mesovertex
served.

l(2A) = l(6B) = l(1C) = l(4D) = 0;
m(2A) = m(4D) = 1, and m(6B) = m(1C) = 2.

Recall the de�nition of vn given mesovertex v. Thus
2A0 = 2A and 2A1 = 2C2A,
6B0 = 6B, 6B1 = 1A6B and 6B2 = 6D6B,
1C0 = 1C, 1C1 = 6D1C and 1C2 = 1A1C, and
4D0 = 4D and 4D1 = 5B4D.

Thus, for epivertices 1A, 5B, 6D and 2C we de�ne U
U(1A) = f(W(6B)1 = A6B; B); (W(1C)2 = A1C;C)g,
U(6D) = f(W(6B)2 = D6B; B); (W1C)1 = D1C;C)g,
U(2C) = f(W(2A)1 = C2A; A)g, and
U(5B) = f(W(4D)1 = B4D; D)g.

We next turn to the packets any given supertile may have to carry (Section
2.4). Since our wires are short, our epivertices few, and k = 1, these are blessedly
few. We'll collapse the notation as we go, reusing our labels in W as names of
supertile packets.

Q(A) = f[A; (W(6B)1 = A6B; B)] = A6B; [A; (W(1C)2 = A1C;C)] = A1Cg,
Q(B) = f[B; (W(4D)1 = B4D; D)] = B4Dg,
Q(C) = f[C; (W(2A)1 = C2A; A)] = C2Ag,
Q(D) = f[D; (W(6B)2 = D6B; B)] = D6B; [D; (W(1C)1 = D1C; C)] = D1Cg.

Next, we give the edge packets. Again, one is relieved that the example is
simple. We provide reasonable names for the packets as we go. Possible edge
packets are:

P(E 00) = f[iiA;A1C] = iiA1C,
[iiA;A6B] = iiA6B,
[iB;B4D] = iB4D

[iiC;C2A] = iiC2A,
[iD;D6B] = iD6B; [iD;D1C] = iD1Cg.
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2A

6B

1C

2C2A

1A6B

6D1C

1A1C

6D6B

A2A B6B

C1C

D1C

A1C  

A6B

D6B

C2A

4D

5B4D

D4D

B4D

W(2A)=[A2A  C2A]
W(6B)=[B6B   A6B ,D6B ]

W(1C)=[C1C   D1C ,A1C ]
W(4D)=[D4D  B4D]

Figure 29: Vertex wires for the mesovertices
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Similarly, we de�ne vertex packets. Recall we do not bother de�ning these
for vertices unless they meet the skeleton of the tile in S to which they belong.
Thus, we do not de�ne packets for VIA, VIIA,VIIIB, IVB, VIC, VIIC, VIIID, or
IVD.
The vertex packets are:

P(V 00) = f[IA;A1C] = IA1C; [IIA;A1C] = IIA1C,
[IA;A6B] = IA6B; [IIA;A6B] = IIA6B;
[IIIB;B4D] = IIIB4D; [VB;B4D] = VB4D;
[IC;C2A] = IC2A; [IIC;C2A] = IIC2A;
[IIID;D6B] = IIID6B; [VD;D6B] = VD6B;
[IIID;D1C] = IIID1C; [VD;D1C] = VD1Cg.

We turn to the tiles. First, in �gure 30, the unmarked tiles themselves
are shown (Section 3). The vertex tiles will be made of the various sectors
illustrated; they will be half disks when fully assembled (because no element of
V lies in the interior of a �(X) or �(Y) none of our vertex tiles will be full disks).
Following this, the small tiles, marked with supertile packets and indications of
the interior edges, are shown (�gure 31).

Figure 30: The unmarked tiles

A6B

A1C

C2A
D6B

D1C
B

Figure 31: The small tiles marked with supertile packets

In the next illustration, the edge tiles are marked (�gure 32). Note that
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we allow orientation reversing isometries of our edge-tiles. If we regard the
edge packets and orientations as residing on little tiles we implant into our edge
tiles, we can reduce the number of tiles needed here from 9 � 2 � 3 = 54 to
9 + 1 + 3 = 13.

∋
∋ {iiA1C,  iiA6B,  iB1, 
  iB2,  iiC2A,  iD16B,
  iD26B,  iD11C,  iiD11C}

P

P

P

P {    } requires
3x2x9=54 tiles
Can reduce this 
to 3+1+9=13

Figure 32: Marked edge tiles

The vertex hulls are next assembled into actual vertex tiles. In this example,
there are not very many possibilities allowed by the compatibility rules (Section
3.3). In particular, there are only six basic kinds of stack allowed; each can
be capped o� by any of the 9� 4 overpass decorations (each corresponding to
an edge packet) giving two hundred sixteen vertex tiles. We can reduce this to
6 + 9 + 1 = 16 tiles by breaking the tiles up into independent pieces as shown
in �gure 33.

Note that we thus have a grand total of six small tiles, �fty-four edge tiles,
and two hundred sixteen vertex tiles, for a total of 276 tiles altogether, or if
we break the tiles up further, six small tiles, three blank edge-tiles, nine edge-
packet tiles, one tiles indicating orientation of the edges, and six vertex tiles,
for a total of twenty �ve tiles. With imagination we might reduce this number
even further.
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iiC

iiA

iD

iiC

iiA

iD

iiC

iiC

iD

iB

IIIB4D

VB4D
VB4D

IIIB4D

iiA

iD iB

iB

iD

iD

iiA

IIA6B

IA6B

IIC2A IC2A

IIC2A

IIC2A

IA1C

VD6B

VD1C

VD1C

VD1C

IIID6B

IIID6B IIID6B

IIID1C

IIA1C

IIA6B

iB

iD

iD

iiA

P
∋

∋
{        }

P
 requires 6x9x4=216 tiles

or 6+9 + 1= 16  {iiA1C,  iiA6B,  iB1, 
  iB2,  iiC2A,  iD16B,
  iD26B,  iD11C,  iiD11C}

Figure 33: Marked vertex tiles, overpasses
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C Formalisms

Here we give formal, set theoretic de�nitions of tilings, enforcement, etc.

C.1 Prototiles T

Let N be the natural numbers, f1; 2:::g. We take for our space and congruences,
n-dimensional Euclidean space En, 1 < n 2 N. G will be the set of Euclidean
isometries on En.

A prototile A is a n-dimensional compact set � 2 En, endowed with a map
�A : � ! X to some set X of combinatorial information11 � will be called the
underlying set of A. Generally, X will be built from labels, as in Sections 2, 3
and 3.5. In Section 1.2 we place further restrictions on � if the prototiles are
for a \substitution tiling".

A tile is a congruent image BA, B 2 G of a prototile A. We extend � to act
on tiles: �BA(x) = �A(B

�1(x)).

A tiling [BiAi of X � En by prototiles T satis�es:
X = [BiAi,
for i 6= j, BiAi and BjAj have disjoint interiors,
and if x 2 BiAi \ BjAj , then �BiAi(x) = �BjAj (x).

If we do not specify X , we assume X = En. The last condition assures that �
can be de�ned on a tiling: �[BiAi(x) = �BjAj (x) for any BjAj containing x.
The last condition is in fact a \matching rule", but is weaker than we would
like in general.12 Note that � is de�ned on any congruence C 2 G of a tiling:
�C[BiAi(x) = �[BiAi(C

�1x) = �[CBiAi(x).
A set of tilings of X by prototiles T , perhaps with further restrictions, is a

species of tilings. 13

11such as color (as in �gure 2), the position of each point in a tile, the speci�c facet of � to
which each point belongs, etc. We place no restrictions on X and � could have a very rich or
very simple structure.

12Actually, the de�nitions so far are su�cient to de�ne rules that involve matching
\notches", as with a jig-saw puzzle, or matching colors on edges, as in Wang's papers. More-
over, such rules are su�cient for our construction. However, the condition is too weak to de�ne
local matching rules in much generality: in particular, some rules may involve complicated
matchings across edges in tilings that are not \edge-to-edge", or may require a local atlas.
The de�nition of � also allows us to precisely de�ne when a \matching rule tiling enforces a
substitution tiling".

13We primarily use � to de�ne equivalence between species of tilings. Roughly speaking,
two tilings are to be equivalent if they give the same map � from the points of the tilings to
some combinatorial space X .
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\Con�gurations" are often de�ned as a tiling of some compact X , but for
later convenience we take: A con�guration is a subset D � [BiAi of points in a
tiling; thus � is also de�ned on points in a con�guration: �D = �[BiAi jD. For
any con�gurations C;D, the symbol \�" in C � D connotes not only that for
all x 2 C, x 2 D, but also that �C(x) = �D(x). Note, of course, that tilings are
con�gurations.

A matching rule for a tiling of X with prototiles T is simply a bounded
con�guration.

A tiling [BiAi satis�es a set M of matching rules if and only if there exist
congruences of the matching rules fCjDjg, fCjg � G and fDjg � M, such
that [BiAi � [CjDj and �[BiAi(x) = �CjDj

(x) for all x 2 [BiAi, for all CjDj
containing x.

A matching rule tiling (M, T 0, X , �), orM-tiling, is the species of tilings of
En, with prototiles T 0 with �A : A ! X for each A 2 T 0, that satisfy matching
rules M.

For example, in �gure 2, we have two tiles in T 0, X = fBlack, Gray, White,
Borderg; � takes points marked "black" in the �gure to Black, etc.; points on
the boundary between colors are sent to Border and points on the thick lines are
sent to Bold. As the price of formality, our rules are no longer quite so simple;
we can take small neighborhoods as shown, plus the interiors of our tiles, plus
small neighborhoods of the vertices in a tiling.

C.2 Enforcement and labelings

We now de�ne \enforcement" of a substitution tiling by matching rules. The
following approach is meant to include any reasonable de�nition of enforcement
and no others. In particular, we have tried to avoid ambiguity in any of our
terms.

Let (T , �,S) be a substitution tiling and X some arbitrary set, with a
projection � : X ! T [f@g. Recall that the �A, A 2 T have not been explicitly
chosen, but conditions have been made on these �A.

A labeling of the substitution tiling (T , �,S) is a set X as above and a set
of maps �[BiAi : [BiAi ! X , de�ned for all tilings [BiAi 2 �, such that:
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i) �(�[BiAi(x)) = �[BiAi(x) for all x 2 [BiAi, for all tilings [BiAi 2 �;

ii) for each supertile �n(A), let �(�n(A)) = f�[BiAi jB�n(A)B : �n(A)! X j �n(A) �
[BiAi 2 �g; then we require j�(�n(A))j 2 N.

Once we have a labeling for (T , �,S), we de�ne a well-formed supertile of
level n in (M, T 0, X , �0) to be a con�guration X of tiles in T 0, satisfying M,
such that there exist A 2 T , B 2 G, and �0 2 �(�n(A)) with

BX = �n(A) and for all x 2 X,
�0�n(A)(Bx) = �0X(x).

A matching rule tiling (M, T 0, X , �0) enforces a substitution tiling (T , �, S)
if and only if one can de�ne a labeling on (T , �, S) such that for every n 2 N,
every point in the interior of any tile in any tiling in (M, T 0, X , �) lies in a
unique well-formed supertile of level n.

A substitution tiling (T , �,S) is enforced by matching rules if and only if there
is a �nite set of matching rules M, and a �nite set T 0 of prototiles endowed
with maps �0A with images in some X such that (M, T 0, X , �0) enforces (T , �,
S).

C.3 Equivalence

We point out that our de�nition of enforcement is substantially the same as
those used elsewhere{ particularly by Mozes [Mos] and Radin [Rad].

The following is adapted from [Mos]. To make sense of this, we assume that
every tiling has some vertex at the origin of En; thus there are only countably
many translations of a tiling.

Lemma C.1 In any (T ,�, S) with unique decomposition, under any G-invariant
probability measure on (T ,�, S), the set of tilings with connected hierarchy has
measure 1.

Proof For any set S � En, let T (S) be the set of tilings for which S is the
boundary between in�nite level supertiles. If T (S) is not empty, S must include
a k-plane, 0 � k < n, from which radiate (n � 1)-dimensional sectors (this
follows from examining the boundary of an in�nite level supertile). The T (S)
are disjoint and their union is the set of all tilings in (T ,�, S) with disconnected
hierarchy. Let m be any G-invariant probability measure on (T ,�, S). For any

72



S, there is a countable collection of translations fBig � G none of which leaves
S invariant. So T (BiS) is disjoint from T (BjS) for all i 6= j; but m(T (BiS)) =
m(T (BjS)) for all i; j 2 N. And since the total measure is 1, and the measure
of each T (BiS) must be zero. This is regardless of the choice of S, and so the
set of tilings with connected hierarchy has measure 1. qed

Lemma C.2 Any tiling in (T , �, S) that has unique and connected hierarchy
is in unique correspondence with a tiling in (M,T 0).

That is, if the hierarchy is unique, and there are no in�nite fault lines, only
one tiling satisfying the matching rules will correspond to the tiling in (T , �,
S).

Proof In such a tiling every tile lies in a unique supertile of level n, for all n 2 N;
moreover every pair of tiles lies in some supertile of some level. In particular,
any matching rule tiling corresponding to our tiling in (T , �, S) must have every
edge label �xed, since the edge must lie in the interior of some supertile and
thus must lie on some skeleton. qed
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