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Résumé - Une partie substantielle de la théorie des quasi~cristaux dépend sur la
dualisation des “multigrids". L'article présent veut traiter ce sujet
systématiquement. En particulier on considere la question si les parallélépipedes
de la dualisation actuellement couvrent tout I’espace uniquement.

Abstract ~ A substantial part of quasicrystal theory depends on the dualization’
of multigrids. The paper attempts a systematic treatment, and in particular
discusses the question of global non-overlapping.

1. INTRODUCTION

1.1. The main result of the author’s paper [1] on Penrose patterns was that the patterns can be
obtained as the duals of very simple figures, called pentagrids. The construction of the duals can
at once be extended to n ~dimensional situations, giving rise to an abundance of quite regular {but
in most cases non-periodic) space coverings by means of parallelotopes (n -dimensional parallelo-
grams).

1.2. In a recent paper [2] an extensive study was made about multigrids and their Fourier
transform. The present paper reports about some of this work, generalizing and specializing it
occasionally. In one respect the present paper goes beyond [2]: we investigate the question of
whether the parallelotopes generated by the multigrid method actually cover the whole space
without overlap. It will be explained that the multigrid dualization has a continuous analog
where the non-overlapping is guaranteed by a theorem of Hadamard about differentiable maps
with a non-vanishing Jacobian.

1.3. The paper tries to be systematic, starting on a general basis, and introducing specializations
only when needed. The author thinks that matters can be obscured by bringing in things lke
orthogonality and symmetry at an early stage.

So much has been written about the dualization of grids that it is impossible to avoid dupli-
cation. In particular the reader will find that the presentation of section 3 is very close to the one
of Géhler and Rhyner in [3]. These authors also formulate the condition (3.2) and claim that it
guarantees local non-overlapping in 3-space. In the particular two-dimensional case of [1] it was
shown to give global non-overlapping. In the one-dimensional case there is no diff erence between
local and global non-overlapping,

1.4. Since the subject of matching conditions cannot be easily treated in a general setting, the
paper will not treat it. Nevertheless something may be said here in this introduction.

In the case treated in [1] it was shown that Penrose’s simple matching condition for the two
kinds of rhombuses enforce the pentagrid solutions, but for most other cases such a simple thing
does not seem to hold. As a test-case F. Beenker [4] took the squares and the 45° rhombuses in
the plane, and was able to show that there does not exist a matching condition that enforces the
grid solutions ("matching condition” now means: a condition involving only a finite number of
direct or indirect neighbors of each piece). In that sense Beenker's case was as disappointing as the
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one-dimensional case (see [5]). But there is hope for the three-dimensional icosahedral case (with
space coverings by means of two kinds of rhombohedra, a thick one and a thin one). Some inves-
tigators seem to be quite optimistic about it (although it will be much more complicated than the
Penrose case).

1.5. In connection with these thin and thick rhombohedra we draw attention to a publication by
Miyazaki and Takada [6], who in a pictorial way describe space-fillings with them. They also
had a picture of a piece of a Wieringa roof (see [1], section 6), which projects into a Penrose pat-
tern. ‘

Another early publication, where duals (but no duals of grids) were considered in order to
get tilings by rhombuses, is H. Crapo’s paper [7]. ‘But no doubt the history of the idea goes much
further back. :

2. NOTATION

If m and n are positive integers then M,, , is the set of all real matrices with m rows and n
columns. The set of all real column vectors with m entries is denoted as R™ ; it can be identified
with M, ;.  Furthermore, Z™ is the subset of R™ _consisting of ail vectors with integral entries.
The elements of R™ will sometimes be called points, sometimes vectors.

The length (euclidean norm) of a vector x is denoted by Ix 1.

The transpose of a matrix A will be writtenas A7 .

’ The inner product of vectors p ‘and ¢ will be written as (p,¢), ‘which is the same thing as
pq. .
If'z is a real number, then [ (the "roof" of ) is the smallest integer 3> 7.

3. MULTIGRIDS AND THEIR DUALS

3.1. "The notjon of a skeleton and its dual, as described in [1] for the plane, can be generalized at
once to higher dimensions. Rather than irying to define the most general situation, we start from
the particular case of a multigrid (for a somewhat more general case we refer to section 4.10).

) A multigrid is the union of a finite number (we take m ) grids, and a grid is a set of parallel
(n — 1)-dimensional hyperplanes in the n -dimensional space R®, The grid directions are given
by m vectors dy,...,d, in R*, all = 0. A hyperplane of the j-th grid is given by a real
nuiber c: it is the set of all z € R™ for which the inner product (d;,z) equals c. The possible
values of ¢ in the j -th grid are given by a set C; of real numbers. We make the restriction that

every C; has the form C , : ]
{+eeye(,=1), ¢(j,0), c(j,1), ~~-} -,
where ¢ (j,& = 1) < ¢(j, k) for all integers &, and ¢ (j ,& )& — 1ifk - too .
The set of ali z € R* with
c(j ik =1)<(dy,2) <c(j,k)

can be called the X -th slice of the j-th grid. We next take integers & 13-+, Kp, Which can be
considered as the entries of a single vector £ € Z™ . We define the set £(k ) as the intersection of
the &;-st slice of the first grid, the k,-nd slice of the second grid , ..., the k,, -th slice of the
m-th grid. It sometimes happens that E(k) is non-empty. Then we say that X satisfies the
mesh condition, and that E(k ) is a mesh of the multigrid. '

3.2. We next explain the notion of the topological dual of a multigrid. These duals will not be
presented in the general topological form, but in the special form of parallelotope coverings of R*
(we use the term parallelotope as the n ~-dimensional version of a parallelogram; forn = 3 itisa
parallelopiped). So we are misusing. the word "dual": the topological duality relation loses its
symmetry since we give a very special form to the objects on both sides of the relation: "mul-
tigrids” and "parallelotope coverings”. . :

We start taking m vectors vy,...,v,, (all in R™); the vector v ; will be attached to the
j-thgrid. If k (k € Z™) satisfies the mesh condition, then to E(k ) we attach the sum
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k1V1+ v e +kmvm (3.1)

This is.-a point of R™. The set of all points we get this way will become the set of vertices in our

parallelotope covering, but we have to make restrictions on the d’s and v’s first. These are the

following. : )

(i) Thevectorsdy,..., d,, span R™.

(ii) No point of R™ belongs to more than n grid hyperplanes, and the intersection of any n grid
hyperplanes is never more than a single point.

(iii) Whenever iy ,...,.I, satisfy 1< i; < -+ <i, $m and det(d;i,,..., i, )= 0

we have : .

det(d;iy,..., ip)det(viiy,..., ,)>0 . (3.2)
The notation det(d;i;,..., i,) means the determinant of the n Xn matrix of which the
‘columns are the vectors ifsevvs di,-

These conditions (i), (ii), (iii) guarantee that the points (3.1) form the vertices of .a paral-
lelotope covering of R™. The parallelotopes correspond to the points of the multigrid where n
grid hyperplanes intersect. At such an intersection we have iy ,..., i, (the indices of the n
grids involved) and k;, ,- -, k;, (the hyperplane belonging to grid i, is the set of all z with
(d;,,z) = c(iy, k;,); similarly for i,,..., i,). Now the parallelotope corresponding to that
intersection point consists of all points

Xyvy b XV, o,

where k; £x< ky + 1if j is one of the indices iy ,..., i, , but, if j differs from all these,
then x; equals the index (in the j ~th grid) of the slice to which the intersection point belongs.
With this description we have provided the parallelotope with some parts of its boundary,
in such a way that we need not make exceptions when we state that the conditions (1), (ii), (iii)
guarantee that every point of R™ belongs to exactly one of ‘the parallelotopes. :
‘We shall not prove this here, but in section 5 we shall explain how this space covering can
be obtained as the limit of a continuous analog. ) '

4. COMMENTS ON THE DEFINITION OF DUAL
4.1. Condition (i) of section 3.2 hasm = n asa consegquence.

4.2. Usually one specializes to periodic grids. We can describe this by taking c(j,k)= k — Y
where y; is a real number. So the hyperplanes of the j -th grid are given by {d 1,2)+y; € Z
Further material about periodic grids can be found in sections 4.12 and 4.13. - - :

4.3. Let us use the matrices D and V (both in M,; ) to describe the vectors d; and v;. D is
the matrix whose rows aredy ,..., df,and V hasrowsv{ ,..., vI.

In [2] the condition (3.2) did not play a role, but instead of it, we had the weaker condition
that V¥ D is non-singular. This weaker condition is a consequence of the conditions (i) and (iii)
of section 3 (by a theorem of Binet, the determinant of VZ D is obtained by summation of the
left-hand side of (3.2) over all possible combinations of iy, ..., i, ). Non-singularity of V7 D
was shown (in [2]) to be a satisfactory basis for the evaluation of the Fourier transform (for the
case of periodic grids). It guarantees that the points (3.1) are relatively dense in R™ (this means
that there is a number r such that every sphere of radius r contains at least one point of the
form (3.1)), but it does not guarantee that the parallelotopes cover R® without overlap. It is
easy to give a counterexample withn = 2, m = 3.

4.4. Condition (iii) of section 3.2 is obviously satisfied if v;=d; forall j.

4.5. If allv; have the same length, all our parallelotopes are rhombohedra.

4.6. It is not hard to study symmetry properties of the parallelotopé pattern, on the basis of
properties of the multigrids and the v’s. We refer to [2], section 16. g
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4.7. Sometimes the condition VI D = I (I is the unit matrix in M, ) plays a role. In the case
of a periodic grid (see 4.2) it has the consequence that the parallelotope vertex corresponding to a
mesh is never far from that mesh. To be more precise: there is a constant s with the following
property. If & satisfies the mesh condition, and z is any point of the mesh E(k ), then we have
1vIDz — vTk 1 <s. Here VTt is the parallelotope vertex corresponding to the mesh, and
VT Dz = z. We refer to [2], section 10.

4.8. In many interesting cases we have both V = D and V7D = I. This implies that the
dy,..., d can be obtained as follows. Embed R" into R™, take an orthogonal set of m vec-
tors ¢y, ...,C, (each having length 1) in R™, and project that set orthogonally onto R”.

4.9. The construction of 4.8 is related to a classical way to obtain symmetry groups. Let G be a
finite group of orthogonal transformations in R™, such that (i) each -/ € G maps the set
{c1,-++) Cu»—Cy1 ..., —Cp}into itself, and such that (ii) each H € G transforms the embed-
ded R™ (see section 4.8) into itself. Then the restrictions of the H’s to R™ form a group of
orthogonal transformations in~ R"™, and its ® elements transform the set
{d19"" dm,_dl,..., —dm}intoitself.

If we take v; = d; for all j, these d ’s and v’s lead to attractive multigrids, with a small
number of different parallelotopes.

4.10. The dualization from multigrid to parallelotope coverings can be extended by taking,
instead of a multigrid, an arbitrary set of hyperplanes in R®. We have to require that any finite
line segment in R™ intersects at most a finite number of these hyperplanes, and that every half-
line intersects infinitely many. Conditions (1), (ii), (iil) of section 3.2 can be formulated with
infinitely many d’s instead of just m,and then they guarantee that the dual is a non-overlapping
set of parallelotopes, covering the whole space, at least as long as we are able to prove
lx]iiI—I’l tf (x)1 = oo for the functions by which we approximate the grid (see section 5.3).

4.11. In [1] quite some attention is paid to cases (with n = 2) where more than 2 lines pass
through a point. In those cases we used perturbed multigrids, which can be considered as what
we get by shifting the grids over infinitesimally small distances. It was very essential to include
those cases there, for otherwise it would not be true that all Penrose patterns arise from mul-
tigrids.

Needless to say, perturbed multigrids can also be used in n dimensions, in order to keep
parallelotope coverings in cases where sometimes more than n hyperplanes pass through a point.

4.12. In the case of periodic grids-(see section 4.2) we can go into some more detail {cf. [2], sec-
tion 10). We introduce the unit cube Cu(m ), which is the set of all x ¢ R™ whose entries

satisfy0< x; < 1,...,0<x, < 1. Fork € Z™, the set £(k) is the set of all z € R™ with
k —Dz —yeCulm) . {4.1)
For D -see section 4.3; y is the vector in R™ with entries y; ,..., ¥, . So the mesh condition

E(k) = o can be expressed as the existence of z such that (4.1) holds.

If & satisfies the mesh condition then V7% is a parallelotope vertex in the dual.

“We can transform the mesh condition by means of the method of [1]. We take a matrix W
in My, ,py—n with rank m — n-and with WTD = 0 (the columns of W span the orthogonal com-
plement of the space spanned by the columns of D). Then the existence of z with the property
(4.1) can be translated into

Wik —y)e WICu(m) 4a.2)

(see [2], formula (10.7)). Defining the set P(W,y) as the set of all W7y with y € R™,
y — v € Cu(m), we find that the mesh condition can be rewritten as

Wik e PW,y) . ' 4.3

The closure of P(W,y) is the closed polytope which is the convex hull of the set of all points
W7T (i + ), where 4 runs through the set of vertices of the cube Cu(m ).
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From (4.3) we infer that the set of vertices in the dual (in [2] this was called the crystal
pattern) is

{(Vik ik e Z™, WTk ¢ P(WW,y)} . 4.4)

The evaluations of the Fourier transform given by Elser (8], [9]), Duneau and Katz ([10]), Gahler
and Rhyner ([3]), as well as the one in [2] all make implicit or explicit use of (4.4).

Apart from [3] and [2], most authors restrict themselves to the case that V = D and
VID =TI (sece section 4.8). In that case we can take W such that D and W form an orthogonal
matrix N (€ My, , ): the first n columns of it are those of V, the last m — n columns are those
of W.

Thus far we studied the vertices of the parallelotopes in the dual, but the idea involved in
(4.3) can also be used to treat the faces of various dimensions. In order to avoid complicated
notation, we explain our intention by means of an example. .

Let ¢ and b be two unit vectors; we takea = (10 --- 0,5 = (010 --- 0)7. We look
for all k € Z™ such that V'k, VI(k +a), VI +5), VI(k +a + b) form a two
dimensional face of one of the parallelotopes of the dual. The set of such k& is given by (4.4), if
we only replace P(W,y) by P, ;(W,y), defined as the set of all W'y with y e R™,
y—y € Cu, (m). And the latter set is the set of all x € R™ whose entries satisfy x, = 1,
x,=1,0<x%x3<1,..,0<zx, <L.

If we had taken @ = (—100 - -- 0) instead of the above value, this would have resulted
inx1 =0 insteadofxl = 1.

We can also get to more complicated questions this way. For example, the intersection of
P,5(Q,v) and P, .(W,7y) gives us the vertices where two of such prescribed faces meet simul-
taneously. In this way we get the kind of results that were described in [1], section 8. The sets of
vertices we single out this way, are open to Fourier transforms if we just apply the Fourier
transforms of the new polytopes.

4.13. In 4.12 we presented the duality as something describing (by means of the V& with &
satisfying (4.1)) the vertices of the polytopes, but we might also like to have formulas that give
the edges, and more generally the higher dimensional faces. To this end we introduce a f unction
A, defined on the real line, whose function values are subsets of the real line. If 7 is not an
integer then A(z ) will be the set consisting of the single point [t]: ¥t is an integer, then A(z)
will be the open interval from ¢ to ¢ + 1.

By means of A we construct the function {, defined on R™; its values are subsets of R™. If
x € R™ has the entries x4 , ..., x, then Q(x ) is the Cartesian product

Q)= Alxy)x -+ xA(x,) . (4.5)

The duality of the multigrid and the parallelotope covering can be seen as a relation between
a point z € R™ (we might say that it lies in the multigrid space) and a point w € R* (in what
we might call the parallelotope covering space, or the crystal space). To an h -dimensional face of
a mesh there corresponds an (n — % )-dimensional face of a parallelotope in the dual (here "0
dimensional face" means "vertex", and "n -dimensional face® means "the full interior"). And the
relation we want to express is "z and w lie on corresponding faces”. This duality relation can be
expressed in a single formula by

weViQDz +vy) . 7 (4.6)

In particular, if z lies inside a mesh E (£ ), then Dz + vy lies in the cube & — Cu(m ) (see (4.1)),
where tzbe value of Q is the set consisting of the single point &, so in that case (4.5) just means
w=V'k.

We shall not explain (4.6) any further, but just remark that it can also be obtained by the
limit procedure of section 5.3.

4.14. In section 3.1 the restriction was made that c(j,k)k - 1 if £k - *oo. This anyway
covers the cases of periodicity or almost periodicity of the C P ]
The reason why this restriction was made is connected with condition (5.2) that was
imposed in order to make theorem 5.2 work. It is, however not hard to weaken (5.2). In particu-
lar, if V = D things are easier: then theorem 5.2 can be proved with condition (5.2) replaced by
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hj(t)—» ~c (t = — o), hj(l‘)—-boo t — o). 4.7

The author does not know whether (4.7) is still adequate when the condition V = D is
dropped.

5. A CONTINUOUS ANALOG

5.1. By C, M we denote the set of all mappings of R" into R™ of which all partlal derivatives of
the first order are continuous. An element f- of C, M is a vector with entries Fi1seees fns and
each f; is a function of n real variables x;,..., x,. The first order partial derivatives —— o
] %y
form a matrix J (belonging to M, ), and is called the Jacobian.

_Vital for our purposes will be the following theorem, that Hadamard proved in 1906:

Theorem 5.1. Let f € C, have the property that | f (x)1 — oo if Ix | = oo, and that the
Jacobian is everywhere non—singular Then f maps R™ one-to-one onto itself, and the inverse
mapping belongs again to C

For proofs and extens1ons we refer to Parthasaraty’s monograph [11]. Here we just indicate
a proof that the map is onto, and a proof of the fact that f is one-to-one for the special case that
the Jacobian J is everywhere positive definite (this will be thé case in all multigrld applications
withV = D).

- We show that- for every b ¢ R™ there is a z ¢ R® with f(x)= 5. Put
f(z)—b = g(z). Now (g(z),g(z)) is continuous, tends to oo if 1z |— oo, so it has a
minimum at some point y. ‘At y ‘the vector of the part1a1 derivatives vanishes, ' so
27%(y)g(y) = 0. Since J(y) is non-singular, we have g (y) =

Next we assume x € R®, p € R*, p =0, f(x)= f(x +p) Taking a real variable ¢
(0< ¢ £ 1) we note that the derivative of (f(x +2p),p) equals p?J(x +2p)p. This is
pos1t1ve,so(f(x) p)<(f & +p)p), whenoef(x);1= Fl+p) N

5.2, We take vectors dy,iveydpiViyeeoy vs (allin R™) satisfying conditions (i) and (iii)
of section 3.2, and we take:m real functions A;,..., h, of a single real variable, all continu-
ously differentiable (so & ; € Cq (1), with positive derivative everywhere:

: Ri@)>0 (= 1,..., m;—c0 <t < o) : (5.1)

and with ' :

’ h; (@)
Z‘

We defmeafunction feCy ® py

B 1) . (5.2)

fz)= Zhj (dj,z))vj . o o (83)

The Jacobian J(z ) of ; is easily evaluated by taking two constant vectors p and ¢ (both in
R™), and remarking that p? J (2 )¢ equals the derivative (with respect to z ) of the inner prodict
(p,f (z + tq)), evaluated at t = Q. From (5.3) we get

pTI(z)g = jf_",l(p,v,-)l_zj"((dj,z))(dj,q) ; (5.4)
so
I(z)= j)"_flv,.h,' a;,z0df . (5.5)
. The determinant of J (z ) can be expressed by means‘of Binet’s theorem.. With the abbrevia-
ion - .

ej = hj'((dj,z)dj



and with the notation of section 3.2
detJ = Fdet(v;iy,...,
where the summation runs over all sets i 1o

can now prove

Theorem 5.2. Let hAy,...
dl”"’ dm,vl,...
Then the mapping f (defined by (5.3)) maps R”

» b,

Proof. From (5.1) we see that
det(e;iy,...

yip)=cedet(d;iq,..

C3-15.

i)det(e; iy, ..., i,) (5.6)

»

iy With1€ i3 <iy< ++- <i, < m. We

be elements: of C{V satisfying (5.1) and (5.2). Let
» ¥ be vectors of R™ satisfying conditions (i) .and (iii) of section 3.2.

one-to-one onto itself.

(5.7

oy i)

with ¢ > 0. Now section 3.2 (iii) says that all terms in (5.6) are non—négative,vand with the
extra information of section 3.2 (i) we see that at least one term is positive. So we have

det(J(z)) > O forallz € R™.
tive definite. . - :
-~ By theorem 5.1 it now suffices to show that

‘We note-that if

PG = fG)-F W@zl = £ )-VIDz .
=1 - ‘

VID is non-singular (see section 4.3), so
IVIDz 1 2 3cIz| forallz € R™. Next we put

cy =

V-= D 1t can even be shown that J(z) is ‘posi-
[f (x)1 - oo for x| — co. Define p(z) by
(5.8)

there is a positive constant ¢ such that

C

1+ v D
i=1

From (5.2) we infer that a constant ¢, exists such that

forallz e R*,j=1,...,m. We now get -

IfEN> 1IVIDzi—1p(z)I > clzl

and hence 1 f (z)] — oo if 12 | — oo.

z)1 < catcylzl

(iz1 > )

Cz
C1

0

5.3. We shall now explain how the dual of a multigrid can be obtained as the limit of what we
have expressed in theorem 5.2. We shall restrict ourselves to the case of multigrids composed of
periodic grids (see sections 4.2 and 4.12), although the general case can be treated in the same

way. And theorems of the type of theorem 5.2
cated in section 4.10. R

can be used for the treatment of cases as indi-

For any natural number x we select some function ¢ w €C 1(1) ‘that satisfies
[t1 <@ <[t +uN+pt , ¢,6)>0

for all real 7, and such that ¢,(z) — 7 is periodic mod 1. And,
function ¥, € C 1(1) » periodic mod 1, with the following properties:

v.)=0 (wl<r<1—2s7Y.

¥, )=1 Q—-pig
<

=N
¥,(¢) decreases for0 < ¢ <
¥,(¢) increases for 1 — 2u~1
‘We now specialize (5.3) by taking

fp(z)= £¢“((dj,z)+‘yj)vj
j=1

t<1)

e
<

’

1

’

t<1—put

(5.9)

-

assuming x> 3, we select a
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and we define the real-valued function g, : R™ — R by
m
g.z)= YT ¥lld;z2)+y;) . (5.10)
ji=1

By thecrem 5.2 f,, has an inverse f, -1 and we define the function 6, : R® — R by
» o #
0,(z) = g,(f7iz) . (5.11)

The parallelotope pattern generated by the method of section 3.1 can be considered as the
limit of this function if # — oo. This is meant in the following way. If z lies in a vertex of a
parallelotope, then 6,(z) — O. If z lies on a 1-dimensional edge, then 0,(2) > 1.Ifz lieson a
2-dimensional face, then 6,(z) — 2, etc. Finally, if z lies in the interior of a parallelotope then
0,(z)>n.
g This idea can be used to show that the parallelotopes of section 3 cover R™ uniquely (in the
sense stated at the end of section 3.2). :

5.4. The functions 0 . studied in section 5.3 can be shown 1o be uniformly almost periodic.

We recall the definition (see Besicovitch [12]). A continuous mapping f of R™ into R™ is
called uniformly almost periodic (abbreviated to w.a.p.) if for every positive number ¢ the set of
e-translation vectors is relatively dense. An e-translation vector is a vector p € R™ such that
IfGx +p)—f(x)! < e forall x ¢ R*. And a subset S of R™ is called relatively dense if
there exists a positive number r such that for every x € R™ there is an s € § with
lx—sl <r. : .

The function f defined by (5.9) is not w.a.p.; we first have to subtract a linear part. Intro-
ducing F, by

F(z)=fz)—VTDz (5.12)
we can show
Theorem 5.3. F, and g, are uniformly almost periodic.
Proof. Putting
n.0)=¢,2)—1 (5.13)
we have (cf. (5.8))

m
F#(Z)= Z(ﬂ,,,((dj,z)+71)+‘)’j)vj .
j=1
For every j the function m,((d;,2)+y;) is va.p.. It has a relatively dense set of periods (and a

period is always an € -translation vector): every p € R™ with(d;,p) € Z aperiod. Andasum
of finitely many u.a.p. functions is again w.a.p.. The proof for g, is similar. o

Theorem 5.4. For every ., the function 6, (defined by (5.11)) is uniformly almost periodic.
Proof. We first show that the Jacobian of f,, has a bounded inverse. The partial derivatives of
f,. are bounded since they can be expressed by means of the derivatives of the periodic function
n, (see (5.13)). So it suffices to show that det(J(z)) has a positive lower bound. This can be
obtained from the beginning of the proof of theorem 5.2. For the number ¢ of (5.7) we can take
the n-th power of the lower bound of all derivatives of the A ‘(z )’s. In the particular case of f,,
where (5.3) is specialized to (5.9), this lower bound is positive. We recall that ¢, has a positive
derivative and that ¢,(t ) — ¢ has period 1, so that the lower bound of @, can be evaluated in
an interval of length 1. Hence it is positive. ‘ :

Since ¥, is continuous and periodic, we now infer that 0 . has bounded derivatives, so there
exists a positive number ¢ such that

10,(2,) — 68,(z)1 S clzy — z,l

forall z,,z, inR™.

Let us take any positive € and put 8 = ¢/(1+c). We shall show that if p is a 8-
translation vector for F, as well as for g, then ¢, defined by ¢ = VI Dp, is an e-translation
vector for 6.
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Lety € R™. We put
x=f7lo) w=flx +p), v=y+gq
We have, by (5.12),
wov=f +p)-flx)—g¢=F,x +p)—F,(x) ,
so lw —vi <8, Now
10,(v) =0,y < 19,(w)— 0,01 + 16,(v)~8,(w) <
k Igulx +p)—g,(x) +c8 < e .

From the general theory we know that if two functions are u.a.p. then they are simultaneously
U.a.p., so the set of possible p’s is relatively dense. Since VI D is non-singular, we conclude that
the set of ¢ ’s is relatively dense. : -0

mesh of the multigrid we assign a positive number to be called its tolerance, and in formulating
the property of the e-translation vectors we only admit points arising from mesl/xs with toler-
ance exceeding e. We refer to [2], section 17, for details.

5.6. The strict periodicity of the grids is not essential for the multigrids being v.a.p. The end of
the proof of theorem 5.3 shows that it suffices that the m,,’s are almost periodic. And if the ¥'s
are almost periodic, we can get theorem 5.4 again.

5.7. That notion of tolerance also plays a role in the matter of approximate equality of two mul-
tigrids. If both are defined by means of the same D and V, but one with a vector <y, and one
with a vector y’, then the following statement holds (see [2], section 17; some special cases in a
preprint "Quasicrystals II" by J.E.S. Socolar and P.J. Steinhardt, 1985). If 8 = Yy — v', and if for
allh € Z(n) with A’ D = O wehave h7B ¢ Z, then the two are approximately equal. -

For the case of the pentagrid of [1] this reduces to the condition Yit - +y,€Z.In
[1] the Teason for having that condition was an entirely different one: the duals of these particu-
lar pentagrids were exactly those that can be turned into arrowed rhombus patterns.

6. FOURIER TRANSFORMS

The set of vertices of the dual of a multigrid can be turned into a generalized f unction, if we just
put a Dirac delta function at each vertex. Let us restrict ourselves to the case of periodic grids,
where the representation of section 4.12 can be used. The sum of the delta functions is }'§,,
where y runs through the set (4.4), and it is this sum we want to have the Fourier transform of.

The case with general D and V was extensively treated in [2]. Here we shall not go into
analytical fundamentals and details, but just display a few formulas related to the simple situa-
tion V = D,VTD = I, mentioned at the end of section 4.12. Most authors who have written on
the Fourier transform had that special case in mind.

In this case we can have the matrix N (see the end of section 4.12) orthogonal, which gives
a substantial simplification in the fundamental theorem 11.1 of [2]. Let us take smooth functions
S and in R™™", where f is the complex Fourier transform of 4 :

f(x)= fe—ZWI(x,y)h(y)dy .

In [2] this smoothness was taken in a particular sense of a set § with very smooth f unctions, but
it would be good enough to require that all derivatives of f and A (of any order), even after
multiplication with arbitrary polynomials, tend to zero at infinity. Then with
F= ¥ fW'k)8:, ., H= T RWTE)Syr,
kezm kezm
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H is the Fourier transform of F'.
If we make a sequence of f’s, converging to the characteristic function of the polytope
P(W,v), we get the Fourier transform of the crystal pattern (cf. (4.3)).
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COMMENTS AFTER THE N.J. DE BRULJN TALK :

M.V. JARIC.- In connection with your emphasis .that the fundamental
(unit) tiles for the penrose +tiling can be congruently deformed to
give ‘alternative pairs of tiles. I would like to.mention a fact which
I believe is  ‘important when attempting to represent "real"
quasicrystals as decorations of penrose tilings : a decoration of
given unit tiles is not in general equivalent to a unigue ‘decoration
of different, congruently deformed, unit tiles. In the view of this,
it .seems to me that our studies ' of guasicrystals should-shift the
focus from tilings to gquasilattices. :

I would also -like to ‘remark that the exact degeneracies of infinite
singular -and exceptionally -singular  penrose tilings, mentioned by
Professor - DE BRUIJN, - occur in every finite portion of every penrose-
tiling. A "real" quasicrystal would be such a finite portion of the
tiling. - T



