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Packing oranges in a box
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Thinking outside the box

Oranges in a box → Unit spheres in the Euclidean space R3.

Packing: union of interior-disjoint spheres (no overlap).

Density of a packing:

δ := lim sup
k→∞

volume of [−k , k]3 inside the spheres

volume of [−k , k]3
.

Conjecture (Kepler, 1610)

For equal spheres in R3, the maximal density is π
3
√
2
≈ 74%.

5/15



Thinking outside the box

Oranges in a box → Unit spheres in the Euclidean space R3.

Packing: union of interior-disjoint spheres (no overlap).

Density of a packing:

δ := lim sup
k→∞

volume of [−k , k]3 inside the spheres

volume of [−k , k]3
.

Conjecture (Kepler, 1610)

For equal spheres in R3, the maximal density is π
3
√
2
≈ 74%.

5/15



Thinking outside the box

Oranges in a box → Unit spheres in the Euclidean space R3.

Packing: union of interior-disjoint spheres (no overlap).

Density of a packing:

δ := lim sup
k→∞

volume of [−k , k]3 inside the spheres

volume of [−k , k]3
.

Conjecture (Kepler, 1610)

For equal spheres in R3, the maximal density is π
3
√
2
≈ 74%.

5/15



Thinking outside the box

Oranges in a box → Unit spheres in the Euclidean space R3.

Packing: union of interior-disjoint spheres (no overlap).

Density of a packing:

δ := lim sup
k→∞

volume of [−k , k]3 inside the spheres

volume of [−k , k]3
.

Conjecture (Kepler, 1610)

For equal spheres in R3, the maximal density is π
3
√
2
≈ 74%.

5/15



Beyond oranges

What if we have oranges and mandarins, i.e., different sphere sizes?

Conjecture (Rock salt)

For sizes 1 and
√

2− 1, the maximal density is (53 −
√

2)π ≈ 79%.

What if we pack spheres in Rn for other values of n?

Theorem (Viazovska, 2016)

For equal spheres in R8, the maximal density is π4

384 ≈ 25%.
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Materials science

Slicing higher dimensional packings may also be interesting!
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Equal disks

Consider a packing of unit disks.
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Equal disks

Consider the Delaunay triangulation of the disk centers.
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Equal disks

Lemma (Chan-Wang, 2010)

Densest possible triangle: three pairwise tangent disks.
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Equal disks

Theorem (Thue 1910, Tóth 1943)

For equal disks, the maximal density is π
2
√
3
≈ 91%.
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Unequal disks

Consider a packing of disks with, e.g., two sizes.

11/15



Unequal disks

Consider the Delaunay triangulation of the disk centers.
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Unequal disks

Theorem (Florian, 1960)

Densest triangle: two small and one large pairwise tangent disks.
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Unequal disks

Frustration: Florian’s triangles do not tile the plane!

Around a small disk: k > 4 angles α, k even ⇒ k ≥ 6 ⇒ α ≤ π
3 .
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Unequal disks

Strategy: local redistribution of density excesses. . .
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Strategy: local redistribution of density excesses. . .
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Unequal disks

Theorem (Bédaride-F., 2022)

Each of these nine (periodic) packings maximizes the density.
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Equal spheres

Theorem (Rogers, 1958)

Density upper bound: tetrahedron of pairwise tangent spheres.

Regular tetrahedra do not tile the space  frustration.

Kepler’s packings: tilings of regular tetrahedra and octahedra.

Theorem (Hales-Ferguson, 1998-2014)

For equal spheres in R3, the maximal density is π
3
√
2
≈ 74%.

12/15



Equal spheres

Theorem (Rogers, 1958)

Density upper bound: tetrahedron of pairwise tangent spheres.

Regular tetrahedra do not tile the space  frustration.

Kepler’s packings: tilings of regular tetrahedra and octahedra.

Theorem (Hales-Ferguson, 1998-2014)

For equal spheres in R3, the maximal density is π
3
√
2
≈ 74%.

12/15



Equal spheres

Theorem (Rogers, 1958)

Density upper bound: tetrahedron of pairwise tangent spheres.

Regular tetrahedra do not tile the space  frustration.

Kepler’s packings: stacked layers of spheres on a triangular grid

Kepler’s packings: tilings of regular tetrahedra and octahedra.

Theorem (Hales-Ferguson, 1998-2014)

For equal spheres in R3, the maximal density is π
3
√
2
≈ 74%.

12/15



Equal spheres

Theorem (Rogers, 1958)

Density upper bound: tetrahedron of pairwise tangent spheres.

Regular tetrahedra do not tile the space  frustration.

Kepler’s packings: tilings of regular tetrahedra and octahedra.

Theorem (Hales-Ferguson, 1998-2014)

For equal spheres in R3, the maximal density is π
3
√
2
≈ 74%.

12/15



Equal spheres

Theorem (Rogers, 1958)

Density upper bound: tetrahedron of pairwise tangent spheres.

Regular tetrahedra do not tile the space  frustration.

Kepler’s packings: tilings of regular tetrahedra and octahedra.

Theorem (Hales-Ferguson, 1998-2014)

For equal spheres in R3, the maximal density is π
3
√
2
≈ 74%.

12/15



Equal spheres

Theorem (Rogers, 1958)

Density upper bound: tetrahedron of pairwise tangent spheres.

Regular tetrahedra do not tile the space  frustration.

Kepler’s packings: tilings of regular tetrahedra and octahedra.

Theorem (Hales-Ferguson, 1998-2014)

For equal spheres in R3, the maximal density is π
3
√
2
≈ 74%.

12/15



Equal spheres

Theorem (Rogers, 1958)

Density upper bound: tetrahedron of pairwise tangent spheres.

Regular tetrahedra do not tile the space  frustration.

Kepler’s packings: tilings of regular tetrahedra and octahedra.

Theorem (Hales-Ferguson, 1998-2014)

For equal spheres in R3, the maximal density is π
3
√
2
≈ 74%.

12/15



Unequal spheres

No tight bound, though very interesting for materials science. . .

Conjecture (Rock salt)

For sizes 1 and
√

2− 1, the maximal density is (53 −
√

2)π ≈ 79%.
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Higher dimensions

Only equal spheres packing have been considered.

Tight bound in dim. 8 mentionned. Similar result in dim. 24.

For (many) other dimensions, only bounds or conjectures.

Theorem (easy but not constructive)

There are packings of unit spheres in Rn with density at least 1/2n.

Theorem (Kabatianskiy-Levenshtein, 1978)

Any packing of unit spheres in Rn has density at most 1/20.599n.
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Density plot for two disks
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Interval arithmetic

x ∈ R  representable interval X = [x , x ].

Interval Arithmetic library:
Given f : R→ R and an interval X , computes an interval fX s.t.

I ∀x ∈ X , f (x) ∈ fX (correctness);

I the smaller X , the smaller fX (accuracy).

Attention: fX is usually much larger than f (X ) = {f (x) | x ∈ X}:

X = [0, 1]  X − X = [−1, 1].

Used to prove inequalities over intervals:

f (X ) ≥ 0 ⇒ ∀x ∈ X , f (x) ≥ 0.

Usually, 0 ∈ f (X ) and we cannot conclude. Refine by dichotomy!.
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