Density of sphere packings

Thomas Fernique

Outline

[The problem](#page-2-0)

[Motivations](#page-15-0)

[Some results](#page-19-0)

Outline

[The problem](#page-2-0)

[Motivations](#page-15-0)

[Some results](#page-19-0)

Oranges in a box \rightarrow Unit spheres in the Euclidean space \mathbb{R}^3 .

Oranges in a box \rightarrow Unit spheres in the Euclidean space \mathbb{R}^3 .

Packing: union of interior-disjoint spheres (no overlap).

Oranges in a box \rightarrow Unit spheres in the Euclidean space \mathbb{R}^3 .

Packing: union of interior-disjoint spheres (no overlap).

Density of a packing:

 $\delta := \limsup$ $k\rightarrow\infty$ volume of $[-k, k]^3$ inside the spheres volume of $[-k, k]^3$.

Oranges in a box \rightarrow Unit spheres in the Euclidean space \mathbb{R}^3 .

Packing: union of interior-disjoint spheres (no overlap).

Density of a packing:

 $\delta := \limsup$ $k\rightarrow\infty$ volume of $[-k, k]^3$ inside the spheres volume of $[-k, k]^3$.

Conjecture (Kepler, 1610)

For equal spheres in \mathbb{R}^3 , the maximal density is $\frac{\pi}{3\sqrt{2}} \approx 74\%$.

What if we have oranges and mandarins, i.e., different sphere sizes?

What if we have oranges and mandarins, i.e., different sphere sizes?

Conjecture (Rock salt) For sizes 1 and $\sqrt{2} - 1$, the maximal density is $(\frac{5}{3} -$ √ $(2)\pi \approx 79\%$.

What if we have oranges and mandarins, i.e., different sphere sizes?

Conjecture (Rock salt) For sizes 1 and $\sqrt{2} - 1$, the maximal density is $(\frac{5}{3} -$ √ $(2)\pi \approx 79\%$.

What if we pack spheres in \mathbb{R}^n for other values of n?

What if we have oranges and mandarins, i.e., different sphere sizes?

Conjecture (Rock salt) For sizes 1 and $\sqrt{2} - 1$, the maximal density is $(\frac{5}{3} -$ √ $(2)\pi \approx 79\%$.

What if we pack spheres in \mathbb{R}^n for other values of n?

Theorem (Viazovska, 2016) For equal spheres in \mathbb{R}^8 , the maximal density is $\frac{\pi^4}{384} \approx 25\%$.

Outline

[The problem](#page-2-0)

[Motivations](#page-15-0)

[Some results](#page-19-0)

Materials science

Materials science

Materials science

Slicing higher dimensional packings may also be interesting!

Outline

[The problem](#page-2-0)

[Motivations](#page-15-0)

[Some results](#page-19-0)

Consider a packing of unit disks.

Consider the Delaunay triangulation of the disk centers.

Consider the Delaunay triangulation of the disk centers.

Lemma (Chan-Wang, 2010)

Densest possible triangle: three pairwise tangent disks.

Theorem (Thue 1910, Tóth 1943)

For equal disks, the maximal density is $\frac{\pi}{2\sqrt{3}} \approx 91\%$.

Consider a packing of disks with, e.g., two sizes.

Consider the Delaunay triangulation of the disk centers.

Theorem (Florian, 1960)

Densest triangle: two small and one large pairwise tangent disks.

Frustration: Florian's triangles do not tile the plane!

Frustration: Florian's triangles do not tile the plane! Around a small disk: $k > 4$ angles α , k even $\Rightarrow k \geq 6 \Rightarrow \alpha \leq \frac{\pi}{3}$ $\frac{\pi}{3}$.

Theorem (Bédaride-F., 2022)

Each of these nine (periodic) packings maximizes the density.

Theorem (Rogers, 1958)

Density upper bound: tetrahedron of pairwise tangent spheres.

Theorem (Rogers, 1958)

Density upper bound: tetrahedron of pairwise tangent spheres. Regular tetrahedra do not tile the space \rightsquigarrow frustration.

Theorem (Rogers, 1958)

Density upper bound: tetrahedron of pairwise tangent spheres. Regular tetrahedra do not tile the space \rightsquigarrow frustration.

Kepler's packings: stacked layers of spheres on a triangular grid

Theorem (Rogers, 1958)

Density upper bound: tetrahedron of pairwise tangent spheres. Regular tetrahedra do not tile the space \rightsquigarrow frustration.

Kepler's packings: tilings of regular tetrahedra and octahedra.

Theorem (Rogers, 1958)

Density upper bound: tetrahedron of pairwise tangent spheres. Regular tetrahedra do not tile the space \rightsquigarrow frustration.

Kepler's packings: tilings of regular tetrahedra and octahedra.

Theorem (Rogers, 1958)

Density upper bound: tetrahedron of pairwise tangent spheres. Regular tetrahedra do not tile the space \rightsquigarrow frustration.

Kepler's packings: tilings of regular tetrahedra and octahedra.

Theorem (Rogers, 1958)

Density upper bound: tetrahedron of pairwise tangent spheres. Regular tetrahedra do not tile the space \rightsquigarrow frustration.

Kepler's packings: tilings of regular tetrahedra and octahedra. Theorem (Hales-Ferguson, 1998-2014) For equal spheres in \mathbb{R}^3 , the maximal density is $\frac{\pi}{3\sqrt{2}} \approx 74\%$.

Unequal spheres

No tight bound, though very interesting for materials science. . .

Unequal spheres

No tight bound, though very interesting for materials science. . .

Conjecture (Rock salt) For sizes 1 and $\sqrt{2} - 1$, the maximal density is $(\frac{5}{3} -$ √ $(2)\pi \approx 79\%$.

Higher dimensions

Only equal spheres packing have been considered.

Tight bound in dim. 8 mentionned. Similar result in dim. 24.

For (many) other dimensions, only bounds or conjectures.

Higher dimensions

Only equal spheres packing have been considered.

Tight bound in dim. 8 mentionned. Similar result in dim. 24.

For (many) other dimensions, only bounds or conjectures.

Theorem (easy but not constructive)

There are packings of unit spheres in \mathbb{R}^n with density at least $1/2^n$.

Higher dimensions

Only equal spheres packing have been considered.

Tight bound in dim. 8 mentionned. Similar result in dim. 24.

For (many) other dimensions, only bounds or conjectures.

Theorem (easy but not constructive)

There are packings of unit spheres in \mathbb{R}^n with density at least $1/2^n$.

Theorem (Kabatianskiy-Levenshtein, 1978) Any packing of unit spheres in \mathbb{R}^n has density at most $1/2^{0.599n}$.

Outline

[The problem](#page-2-0)

[Motivations](#page-15-0)

[Some results](#page-19-0)

Density plot for two disks

 $x \in \mathbb{R} \rightsquigarrow$ representable interval $X = [\underline{x}, \overline{x}].$

 $x \in \mathbb{R} \rightsquigarrow$ representable interval $X = [\underline{x}, \overline{x}]$.

Interval Arithmetic library:

Given $f : \mathbb{R} \to \mathbb{R}$ and an interval X, computes an interval f_X s.t.

$$
\blacktriangleright \forall x \in X, \ f(x) \in f_X \ \text{(correctness)};
$$

In the smaller X, the smaller f_X (accuracy).

 $x \in \mathbb{R} \rightsquigarrow$ representable interval $X = [\underline{x}, \overline{x}]$.

Interval Arithmetic library:

Given $f : \mathbb{R} \to \mathbb{R}$ and an interval X, computes an interval f_X s.t.

$$
\blacktriangleright \forall x \in X, \ f(x) \in f_X \ (\text{correctness});
$$

In the smaller X, the smaller f_X (accuracy).

Attention: f_X is usually much larger than $f(X) = \{f(x) | x \in X\}$:

$$
X=[0,1] \quad \leadsto \quad X-X=[-1,1].
$$

 $x \in \mathbb{R} \rightsquigarrow$ representable interval $X = [\underline{x}, \overline{x}]$.

Interval Arithmetic library:

Given $f : \mathbb{R} \to \mathbb{R}$ and an interval X, computes an interval f_X s.t.

$$
\blacktriangleright \forall x \in X, \ f(x) \in f_X \ (\text{correctness});
$$

In the smaller X, the smaller f_X (accuracy).

Attention: f_X is usually much larger than $f(X) = \{f(x) | x \in X\}$:

$$
X=[0,1]\quad \rightsquigarrow\quad X-X=[-1,1].
$$

Used to prove inequalities over intervals:

$$
\underline{f(X)}\geq 0 \quad \Rightarrow \quad \forall x\in X, \ f(x)\geq 0.
$$

 $x \in \mathbb{R} \rightsquigarrow$ representable interval $X = [\underline{x}, \overline{x}]$.

Interval Arithmetic library:

Given $f : \mathbb{R} \to \mathbb{R}$ and an interval X, computes an interval f_X s.t.

$$
\blacktriangleright \forall x \in X, \ f(x) \in f_X \ (\text{correctness});
$$

In the smaller X, the smaller f_X (accuracy).

Attention: f_X is usually much larger than $f(X) = \{f(x) | x \in X\}$:

$$
X=[0,1]\quad \rightsquigarrow\quad X-X=[-1,1].
$$

Used to prove inequalities over intervals:

$$
\underline{f(X)}\geq 0 \quad \Rightarrow \quad \forall x\in X, \ f(x)\geq 0.
$$

Usually, $0 \in f(X)$ and we cannot conclude.

 $x \in \mathbb{R} \rightsquigarrow$ representable interval $X = [\underline{x}, \overline{x}]$.

Interval Arithmetic library:

Given $f : \mathbb{R} \to \mathbb{R}$ and an interval X, computes an interval f_X s.t.

$$
\blacktriangleright \forall x \in X, \ f(x) \in f_X \ (\text{correctness});
$$

In the smaller X, the smaller f_X (accuracy).

Attention: f_X is usually much larger than $f(X) = \{f(x) | x \in X\}$:

$$
X=[0,1]\quad \rightsquigarrow\quad X-X=[-1,1].
$$

Used to prove inequalities over intervals:

$$
\underline{f(X)} \geq 0 \quad \Rightarrow \quad \forall x \in X, \ f(x) \geq 0.
$$

Usually, $0 \in f(X)$ and we cannot conclude. Refine by dichotomy!.