Density of Sphere Packings

The Problem Motivations

A packing is a set of interior-disjoint spheres in R”.
Its density is

Error correction codes. Information is divided into packets encoded by well-
chosen points in Z". Each point of Z" will then be considered as an alteration
(transmission errors) of the coding point it is closest to. Maximizing the number
of correctable packets at a given packet size therefore comes down to maximiz-

volume of [—k, k| inside the spheres ing the density of a packing of equal spheres in R".

.
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Material sciences. Elementary particles (atoms, nanoparticles...) assemble
under the effect of attractive forces. Experimentally, the densest assemblies
often seem to be favored. Can we predict how spherical particles of a given size
will assemble? Can we design sizes so as to obtain new materials?

What is the maximal density?
What are the densest packings?

Experimental assembly of (cylindrical) nanoparticles.

One Disk

Theorem (Fejes Té6th, 1943)
The maximal density of a packing of equal disks in R? is o=~ 0.91. Proof:

Proof of step 4:

e consider a triangle ABC and assume A
is its largest angle;

1. consider king of unit disks: ~
r CCI0E de 2 ol 3 Ot U e d 5 o A > % otherwise the sum of the three

angles would not reach 7;

. assume it is saturated, that is, no disk can be added; _
e if A > 27 then the smallest angle, say

5 . 0 o B, is at t Z;
. consider the Delaunay triangulation of the centers of the disks; © et s
e the diameter of the circumscribed circle

- AC -
s AC > ;
is == >2 (law of sines);

. prove that the largest angle of any triangle is between % and 2?7“;

e there is no disk center in the interior of
this circumscribed circle (Delaunay);

. deduce that the area of any triangle is at least v/3;
e a disk centered as this circumscribed cir-

L . since each triangle contains half a disk, this yields density at most % cle can be added to the packing;

e this contradicts saturation ~» A < %’T
The hexagonal packing reaches the maximal density.

In 1610, Kepler conjectured that, with a density of 3L\/§ ~ 0.74,

What if there are two sizes of disks? Can we hexagonal layers maximize the density among packings of equal spheres.

find denser packings? For which size ratios?

Theorem (Hales-Ferguson, 1998)
The Kepler conjecture is true.

What can be said about the maximal density
d(r) of packings of disks of size 1 and r < 17

e it is bounded from below by 2”%;

e this lower bound is reached (7 to I);

e every “good packing” yields a lower
bound, which can be extended by con-
tinuous deformations (green line);

e it is (Lipshitz) continuous but not de-
creasing (and the limit in 0 is not 1);

lower bound

A long history:

e upper bounds have been proven “by

t latti ki G 1831
hand” in the 1960’s (dotted black line) e true among lattice packings (Gauss, )

e 18th Hilbert problem (1900)

e as well as by a computer assisted proof
in the last 20 years (red line);

sketch proof by Hales (1992)

e its exact value is known for some very
specific values of r (r; to r9)...

6 preprints (300 pages—+137000 lines of code) by Hales (1998)

e 13 reviewers, 4 years, 799% certain” (1999-2003)
e Formal proof (flyspeck project) (2003-2014)

More Sizes and more Dimensions

What are the densest packings of k£ different disks?
What if we allow every sizes in [u,1]? What is the
largest u which allows density higher than the hexag-
onal packing of equal disks?

Some ternary packings proven to maximize the density.

What about packings with two sizes of spheres?
In particular, in the optimal packing of unit spheres,
spheres of radius v/2 — 1 can be inserted in the holes
between two layers. This yields the ubiquous fcc-
structure and is conjectured to maximize density.
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Some “problematic” configurations of spheres of size 1 and v/2 — 1.

Proof Strategy 1

The Kepler conjecture and packing of disks have
been proven by the localization method. Sketch:

. partition R™ in uniformly bounded sets (cells);

. if some cells are “too dense”: redistribute
density excess among “close” cells;

. we show that, eventually, the density of every
possible cell is low enough.

A bit more details:

1. typical cells are a combination or modification
of Voronoi cells and Delaunay simplices;

. the redistribution has to be very local (typi-
cally around cells sharing a vertex) to avoid an
unmanageable case study;

. interval arithmetic is used to prove inequal-
ity on an infinite but compact set of cells.

rVsage: pi=RealDoubleField() (4*arctan(1l)) Y
sage: pi
3.141592653589793
sage: sin(pi)
1.2246467991473515e-16
sage: pi=ReallntervalField() (4*arctan(1))
sage: pi
3.1415926535897947
sage: pi.endpoints()
(3.14159265358979, 3.14159265358980)
sage: sin(pi).endpoints()
\f—3.21624529935328e—16, 1.224646799147366-162J

Interval arithmetic with SageMath.

x=RIF(1,2)
y=RIF(-3,-2)
I=x*y+3*x+2*y
J=(x+2) *(y+3)-6

All expressions are equal,
but some are more equal
than others. ..

rhef is_f_positive_over_X(f,X):
if £(X).lower()>0:
return True
elif f(X).upper()<=0:
return False
else:
(X1,X2)=X.bisection()
return self(f,X1) and self(f,X2) y

Checking an inequality over a compact set.

For equal spheres in higher dimension, some good
candidates to maximize the density are known.
Many are based on laminated lattice A,, that is
a lattice which admits A, _; as a sublattice, with
Ay = 7Z. Indeed, Fejes Téth and Hales-Ferguson
proved the optimality of Ay and As. And further:

Theorem (Vyazovska, 2016)
The Gosset lattice Ag and the Leech lattice Agy
maximize the density.

The density has no reason to be always reached by a
lattice or even a periodic packings. . .

What for very high dimensions? On the one hand,

Theorem (Kabatiansky-Levenshtein, 1978)
Any packing of equal spheres in R™ has density at
most 2795997,

On the other hand, any saturated packing of equal
spheres in R™ has density at least 27". Indeed,
doubling the radius multiplies the volume by 2™ and
cover the whole space.

This has (hardly) been improved to n2~" (1992),
Sn27" (2011), nlogn2™™ (2023)...But no explicit
packing that yields density at least 27" is known
for n > 520 (current record).

Proof Strategy 11

Theorem (Cohn-Elkies, 2003)
Assume f : R™ — R satisfies the conditions:

1. f(x) <0 for |z| > 2;

~

2. f(t) >0 for all ¢.

Then, the density of a packing of unit spheres in R” is at most B,, ==,
where B,, = 2%Bn_z is the volume of the unit sphere.

Cohn and Elkies used that to get new upper bounds forn =4, ..., 24.

Proof:

1. Periodic packings get arbitrarily close to
the maximal density.

2. Consider a periodic packing of unit
spheres centered on A + V', where A is a
lattice and V' = {v1,...,vn} are in R™.

f (0) 3. Poisson summation formula yields,
for any v € R™:
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4. Left hand side summed over V — V:

ZZf(x—i—Uj — vg).

For n = 8 and n = 24, their bounds were within a factor less than 1.001 o o

from the conjectured values. Vyazovska later relied on modular forms

to obtain two (explicit) optimal functions.

Optimal functions may not exist for other values of n, in particular

for n = 3 (or even for n = 2).

No sphere overlap ~» |z + v; — vg| > 2,
except when x = 0 and j = k. Condi-
tion 1 yields the upper bound N f(0).

5. Right hand side summed over V — V:

2
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The technique has been extended to several sizes of spheres. In partic-

ular, an upper bound has been obtained for sizes 1 and v/2 — 1 (within
a factor 1.3 of the conjectured maximal density).

Condition 2 allows to bound fr0m2bAelow
by the summand for ¢ =0, i.e. %f( ).




