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t. It is known that any two rhombus tilings of a polygon are�ip-a

essible, i.e. linked by a �nite sequen
e of lo
al transformations
alled �ips. This paper 
onsider �ip-a

essibility for rhombus tilings ofthe whole plane, asking whether any two of them are linked by a possiblyin�nite sequen
e of �ips. The answer turning out to depend on tilings, a
hara
terization of �ip-a

essibility is provided. This yields, for example,that any tiling by Penrose tiles is �ip-a

essible from a Penrose tiling.Introdu
tionA rhombus tiling of D ⊂ R
2 is a set of rhombus-shaped 
ompa
t sets, namelyrhombus tiles, whose interiors are disjoint, whi
h meet edge-to-edge and whoseunion is D. Fig. 1 depi
ts 
elebrated rhombus tilings of D = R

2 (see also [6℄).

Fig. 1. Rauzy-dual, Ammann-Beenker and Penrose rhombus tilings (from left to right).



2 Then, the �ip is a well-known lo
al transformation over rhombus tilings whi
hjust ex
hanges three rhombus tiles sharing a vertex (see e.g. [1, 2, 5, 9, 11, 15℄, andalso Fig. 2). Flips rise the question of �ip-a

essibility : 
an a given rhombus tilingbe transformed into another one by performing a sequen
e of �ips?
Fig. 2. A �ip is an ex
hange of three rhombus tiles sharing a vertex.A motivation for studying �ip-a

essibility for rhombus tilings 
omes fromstatisti
al physi
s. Indeed, rhombus tilings appeared to be a suitable model forthe stru
ture of re
ently dis
overed quasi
rystalline alloys (see [14℄). Moreover,elementary transformations of real quasi
rystal, 
alled phasons, seem being ef-�
iently modeled by �ips (see [10℄). This led to study �ip dynami
s, thus thepreliminary question of �ip-a

essibility.In the 
ase of rhombus tilings of a polygon, it is proven in [9℄ that any tworhombus tilings are linked by a �nite sequen
e of �ips. In other words, rhom-bus tilings of a polygon are all mutually �ip-a

essible. Many results 
on
erning�ip dynami
s, in parti
ular random sampling, have been obtained (see e.g. [5,11℄). The 
ase of rhombus tilings of the whole plane is more 
ompli
ated. First,note that it is natural to 
onsider �ip-a

essibility in terms of possibly in�nitesequen
es of �ips. Then, even with this de�nition, tilings turn out to be notalways �ip-a

essible. Thus, answering the question of �ip-a

essibility amountsto 
hara
terize �ip-a

essibility between pairs of tilings.The paper is organized as follows. In Se
tion 1, we more formally de�ne rhom-bus tilings of the whole plane and the 
orresponding notion of �ip-a

essibility.We also show that rhombus tilings are naturally asso
iated with a useful higher-dimensional notion, namely stepped surfa
es. Se
tion 2 then states the mainresult of this paper, that is, a 
hara
terization of �ip-a

essibility in terms ofshadows (Theorem 1). As a 
orollary, we show that there is a large 
lass ofrhombus tilings, namely the 
anoni
al proje
tion tilings, from whi
h any otherrhombus tiling over the same set of rhombus tiles is �ip-a

essible. The last se
-tion is devoted to the proof of this 
hara
terization. In parti
ular, we rely on thede Bruijn lines of [3℄ to introdu
e de Bruijn 
ones, a tool whi
h 
ould be usedfor a
hieving e�
ient algorithms in the �nite 
ase.1 General settingsLet us �rst de�ne rhombus tilings of the whole plane. Let v1, . . . , vd be d ≥ 3non-
olinear unit ve
tors of R

2. Rhombus tiles are the (

d
2

) 
ompa
t sets of non-



3empty interior de�ned for 1 ≤ i < j ≤ d by:
Tij = {λvi + µvj , 0 ≤ λ, µ ≤ 1}.Then, for x ∈ ⊕iZvi, we denote by x + Tij the rhombus tile obtained by trans-lating Tij by x. Note that there is no loss of generality by 
onsidering rhombustiles translated in ⊕iZvi (instead of the whole R

2) be
ause we are here interestedin �ip-a

essibility; this restri
tion will be useful in Prop. 1, below. Let us nowde�ne rhombus tilings of the whole plane:De�nition 1. A d→ 2 rhombus tiling is a set T of translated rhombus tiles ofdisjoint interiors, meeting edge-to-edge4 and whose union is the whole plane R
2.For example, Fig. 1 depi
ts d→ 2 rhombus tilings for, respe
tively, d = 3, 4, 5.Let us now de�ne �ip-a

essibility for d→ 2 rhombus tilings. Introdu
ed in[15℄ for �nite domino or lozenge tilings, �ips are similarly de�ned for rhombustilings (see Fig. 3).
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xFig. 3. A �ip is a lo
al ex
hange of three rhombus tiles sharing a vertex.Clearly, performing a �ip on a rhombus tiling yields a (new) rhombus tiling.This also holds for a �nite sequen
e of �ips, but we need to be more pre
isein the 
ase of an in�nite sequen
e of �ips. Let us de�ne the distan
e d(T , T ′)between two tilings T and T ′ by:
d(T , T ′) = inf{2−r | T|B(0,r) = T ′

|B(0,r)},where T|B(0,r) denotes the set of rhombus tiles in T whi
h belong to the 2-dimensional ball of 
enter 0 and radius r. This allows us to indis
riminately
onsider �nite or in�nite sequen
es of �ips for de�ning �ip-a

essibility:De�nition 2. Let T and T ′ be two rhombus tilings of the whole plane. If thereis a sequen
e (Tn)n≥0 of rhombus tilings su
h that T0 = T , Tn+1 is obtained byperforming a �ip on Tn and d(Tn, T ′) tends towards 0, then one says that T ′ is�ip-a

essible from T , and one writes:
T

flips
−→ T ′4 that is, two interse
ting tiles share either a point x or an edge {x +λvi, 0 ≤ λ ≤ 1}



4 Last, let us show how rhombus tilings and �ips 
an be seen from a higher-dimensional viewpoint. This will be very useful in the following se
tions.Let (e1, . . . , ed) be the 
anoni
al basis of R
d. For 1 ≤ i < j ≤ d and x ∈ Z

d,the unit fa
e of type tij lo
ated at x is the subset of R
d de�ned by:

(x, tij) = {x + λei + µej , 0 ≤ λ, µ ≤ 1}.Let then Ψ : R
d → R

2 be the linear map de�ned by:
Ψ(x1, . . . , xd) =

d
∑

i=1

xivi.We are now in a position to introdu
e so-
alled stepped surfa
es :De�nition 3. A d→ 2 stepped surfa
e is a set S of unit fa
es of R
d su
h that

Ψ is a homeomorphism from the union of these unit fa
es onto R
2.A stepped surfa
e is thus a sort of fairly rugged subset of R

d homeomorphi
 to aplane. Rhombus tilings and stepped surfa
es turn out to be naturally 
onne
ted:Proposition 1. If S is a d→ 2 stepped surfa
e, then Ψ(S) is a d→ 2 rhombustiling. Conversely, if T is a d→ 2 rhombus tiling, then there is a d→ 2 steppedsurfa
e S su
h that Ψ(S) = T , and S is unique up to a translation in ker(Ψ)∩Z
d.Proof. Let S be a stepped surfa
e. First, Ψ 
learly maps unit fa
es onto rhombustiles whose verti
es belong to ⊕iZvi. Then, note that unit fa
es are of disjointinteriors and meet edge-to-edge: this still holds by applying the homeomorphism

Ψ . Last, Ψ is onto R
2. This shows that Ψ(S) is a rhombus tiling of R

2.Conversely, let T be a rhombus tiling of R
2. Let x0 be a vertex of T . Sin
e

x0 ∈ ⊕iZvi (by de�nition), there is some y0 ∈ Z
d su
h that Ψ(y0) = x0, and y0is unique up to a translation in ker(Ψ) ∩ Z

d. One then de�ne a fun
tion h fromthe verti
es of T to Z
d as follows:

h(x0) = y0 and x
′ = x + vi ⇒ h(x′) = h(x) + ei.A
tually, h is nothing but a height fun
tion, and is thus 
onsistent (see e.g. [4℄).Here, note that Ψ(h(x)) = x for any vertex x of T , and let us de�ne the followingset of unit fa
es:

S = {(h(x), tij) | x + Tij ∈ T }.It follows from the 
onstru
tion of S that the restri
tion of Ψ to the union of unitfa
es of S, denoted by Ψ|S , is a bije
tion onto R
2. It is 
ontinuous as Ψ does, andits inverse is also 
ontinuous sin
e Ψ|S is 
losed. Thus, Ψ is a homeomorphismfrom S onto R

2, that is, S is a stepped surfa
e. Last, S is unique up to the initial
hoi
e of y0, that is, up to a translation in ker(Ψ) ∩ Z
d. ⊓⊔In other words, stepped surfa
es are nothing but rhombus tilings seen froma higher-dimensional viewpoint. A
tually, this is just a generalization of ideas



5introdu
ed in [15℄ for �nite domino or lozenge tilings. Note also that the 
ase
d = 3 
orresponds to the notion introdu
ed in [8℄, where the 3-dimensional view-point is very natural (see, for example, the leftmost tiling of Fig. 1).The notion of �ip is then de�ned over stepped surfa
es so that if a steppedsurfa
e S′ is obtained by performing a �ip on a stepped surfa
e S, then therhombus tiling Ψ(S′) is obtained by performing a �ip on the rhombus tiling
Ψ(S) (it su�
es to repla
e vi by ei on Fig. 3). If, moreover, one says that twostepped surfa
es S and S′ are at distan
e less than 2−r if they share the same setof unit fa
es within the d-dimensional ball B(0, r), then this leads to a notionof �ip-a

essibility for stepped surfa
es whi
h satis�es:Proposition 2. For two stepped surfa
es S and S′, one has:

Ψ(S)
flips
−→ Ψ(S′) ⇔ ∃a ∈ ker(Ψ) ∩ Z

d s.t. S flips
−→ a + S′,where a + S′ denotes the stepped surfa
e obtained by translating S′ by a.Fig. 4 illustrates the notion of �ip-a

essibility. Note that, 
ontrarily to the
ase of rhombus tilings of a polygon, �ip-a

essibility does not always holds, andis moreover even not symmetri
.2 Chara
terization by shadowsThe aim of this se
tion is to provide a 
hara
terization of �ip-a

essibility forstepped surfa
es (whi
h 
an be then restated in terms of rhombus tilings a

ord-ing to Prop. 1 and 2). Let us �rst de�ne the following maps, for 1 ≤ i < j ≤ d:

πij :
R

d → R
2

(z1, . . . , zd) 7→ (zi, zj)In parti
ular, πij maps the unit fa
e (x, tkl) onto a unit square if i = k and
j = l, onto a unit segment if i = k or j = l and onto a point otherwise. We thenuse these maps to de�ne the shadows of a stepped surfa
e (see e.g. Fig. 4):De�nition 4. The shadows of a d→ 2 stepped surfa
e S are the (

d

2

) subsets of
R

2 de�ned, for 1 ≤ i < j ≤ d, by:
πij(S) =

⋃

(x,t)∈S

πij(x, t).A simple but fundamental property of shadows is that they are invariant byperforming a �ip (this 
an be easily 
he
ked on Fig. 3). This also holds for �nitesequen
es of �ips, but we have only a weaker property for in�nite sequen
es:Proposition 3. If a stepped surfa
e S′ is �ip-a

essible from a stepped surfa
e
S, then the shadows of S′ are in
luded in the shadows of S:

S
flips
−→ S′ ⇒ ∀i, ∀j, πij(S

′) ⊂ πij(S).
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Fig. 4. Four pat
hes of 3 → 2 stepped surfa
es and their shadows (see Def. 4, below).Flip-a

essibility is represented by arrows: the top two stepped surfa
es are mutually�ip-a

essible (by a �nite sequen
e of �ips), and the bottom two stepped surfa
esare �ip-a

essible from them (by an in�nite sequen
e of �ips reje
ting the �
orner� toin�nity in one of the two possible dire
tions). The bottom two stepped surfa
es aresort of dead ends: no �ip 
an be performed on them. It is worth noti
ing that a steppedsurfa
e is �ip-a

essible from another one if and only if the shadows of the latter arein
luded in the shadows of the former (this illustrates Th. 1, below).Proof. Let Sn be a sequen
e of stepped surfa
es, obtained by performing �ipson S, whi
h tends towards S′. Let z ∈ πij(S′): z belongs to the proje
tionof a fa
e (x, t) ∈ S′. Let r ∈ R su
h that (x, t) ⊂ B(0, r) and N ∈ N su
hthat d(SN ,S′) ≤ 2−r. In parti
ular, (x, t) ∈ SN . Sin
e SN is obtained from
S by performing a �nite number of �ips, both have the same shadows. Thus,
z ∈ πij(x, t) ⊂ πij(SN ) yields z ∈ πij(S). This proves πij(S′) ⊂ πij(S). ⊓⊔In the previous proposition, in
lusions of shadows 
an be stri
t (see, forexample, Fig. 4). A
tually, the main result of this paper is that the 
onverse ofthis proposition also holds:Theorem 1. A stepped surfa
e S′ is �ip-a

essible from a stepped surfa
e S i�the shadows of S′ are in
luded in the shadows of S:

S
flips
−→ S′ ⇔ ∀i, ∀j, πij(S

′) ⊂ πij(S).Th. 1 is proven in the following se
tion. Before this, let us provide an inter-esting 
orollary. We need the following de�nition:



7De�nition 5. Let u and v be two ve
tors of R
d with non-zero entries. The

d→ 2 stepped plane Pu,v is de�ned as the set of all unit fa
es whi
h lie (entirely)in the following �sli
e� of R
d:

Ru + Rv + [0, 1]d.Roughly speaking, the stepped plane Pu,v is an approximation by unit fa
esof the real plane Ru+Rv (this 
orresponds to a viewpoint developed in dis
retegeometry, see e.g. [12℄). A
tually, stepped planes are nothing but the stepped sur-fa
es whi
h are asso
iated by Prop. 1 with so-
alled 
anoni
al proje
tion tilings.These are rhombus tilings obtained by the 
ut and proje
t method (see [7, 13℄).For example, the Rauzy-dual, Ammann-Beenker and Penrose tilings depi
ted onFig. 1 are 
anoni
al proje
tion tilings asso
iated with d→ 2 stepped planes for,respe
tively, d = 3, 4, 5 (see [6℄).Now, let us note that πij(Ru+Rv) = R
2. This easily yields that πij(Pu,v) =

R
2. In parti
ular, the shadows of the stepped plane Pu,v 
ontain the shadows ofany other stepped surfa
e. We thus obtain as an immediate 
orollary of Th. 1:Corollary 1. Any stepped surfa
e is �ip-a

essible from a stepped plane.In terms of rhombus tilings, this means that any rhombus tiling is �ip-a

essible from a 
anoni
al proje
tion tiling over the same set of rhombus tiles.3 Proof of the 
hara
terizationThis se
tion provides a proof of the 
hara
terization stated in Theorem 1. Thene
essary 
ondition is proven by Prop. 3. Let thus S and S′ be two steppedsurfa
es su
h that the shadows of S′ are in
luded in the shadows of S, and letus prove that S′ is �ip-a

essible from S.Sin
e the proof is not so short, it is worth giving a brief outline. The generalidea is to transform S into S′ by moving one by one unit fa
es. More pre
isely, for

(x′, tij) ∈ S′, in
lusion of shadows ensure that there is a unit fa
e (x, tij) ∈ Ssu
h that πij(x
′, tij) = πij(x, tij). We would like to move (x, tij) to (x′, tij).We pro
eed as follows. While there is k su
h that xk < x′

k, we 
hoose su
h a
k and we de�ne a set F ∗

k (x, tij) su
h that, by performing a �nite number �ipsover this set, we 
an translate (x, tij) by ek (Lem. 1, 2 and 3). Similarly, we
an translate (x, tij) by −ek for k su
h that xk > x′
k. Hen
e, we 
an move

(x, tij) ∈ S to (x′, tij) ∈ S′ by performing a �nite number of �ips. The last stepwill be to show that we 
an, in this way, obtain unit fa
es of S ′ over growingballs 
entered in 0 (Lem. 4), that is, that S′ is �ip-a

essible from S (see Def. 2).Let us now start the proof. We �rst de�ne a useful tool:



8De�nition 6. Let S be a stepped surfa
e, k ∈ Z and 1 ≤ i ≤ d. If not empty,the following set of unit fa
es de�nes the k-th de Bruijn se
tion of type i of S:
Si,k = {((x1, . . . , xd), tij) ∈ S | xi = k}.It is easily seen that Si,k is an in�nite stripe of unit fa
es two by two adja
entalong ve
tors ei. Then, removing Si,k naturally splits S into the two following
onne
ted sets of unit fa
es (see Fig. 5):

T +
i,k = {((x1, . . . , xd), t) ∈ S | xi > k} and T−

i,k = S\(Si,k ∪ T +
i,k).

Ti, k
+

Ti, k

_ Si, k

ei

Fig. 5. A de Bruijn se
tion Si,k, here represented by a broken line 
rossing its unitfa
es, splits a stepped surfa
e into two 
onne
ted sets of unit fa
es, T−

i,k and T+

i,k.A
tually, de Bruijn se
tions turn out to be the set of unit fa
es asso
iated byProp. 1 with the well-known de Bruijn lines introdu
ed in [3℄. In other words,
Si,k is a de Bruijn se
tion of S i� Ψ(Si,k) is a de Bruijn line of the rhombustiling Ψ(S). In parti
ular, two de Bruijn se
tions share at most one fa
e, aswell as de Bruijn lines. In su
h a 
ase, they are said to interse
t. Note that,if (x, tkl) = Si,n ∩ Sj,m, then k = i, l = j, xi = n and xj = m. In parti
ular,only se
tions of di�erent types 
an interse
t, although they 
an also not interse
t.We use de Bruijn se
tions to de�ne so-
alled de Bruijn triangles :De�nition 7. For (x = (x1, . . . , xd), tij) ∈ S and 1 ≤ k ≤ d, k 6= i, k 6= j, thede Bruijn triangle Fk(x, tij) is the set of unit fa
es of S de�ned by:

Fk(x, tij) = (Si,xi
∪ T εi

i,xi
) ∩ (Sj,xj

∪ T
εj

j,xj
) ∩ (Sk,xk

∪ T−
k,xk

),where εi and εj respe
tively denote the signs of entries of vk in the basis (vi, vj).Roughly speaking, Fk(x, tij) is the triangle de�ned by the three �lines� Si,xi
,

Sj,xj
and Sk,xk

(see Fig. 6, left). Note that it 
ould be in�nite, sin
e the deBruijn se
tions Si,xi
or Sj,xj

do not ne
essarily interse
t Sk,xk
. We will later



9avoid this 
ase (Lem. 3). Intuitively, for translating (x, tij) by ek, we �rst needto translate by ek the unit fa
es in Fk(x, tij). However, moving a unit fa
e of
Fk(x, tij) requires, in turn, to move some others unit fa
es before. Therefore, weextend de Bruijn triangles by so-
alled de Bruijn 
ones (see also Fig. 6, right):De�nition 8. With the 
onvention Fk(A ∪B) = Fk(A) ∪ Fk(B), we de�ne:

F 0
k (x, tij) = (x, tij) and Fn+1

k (x, tij) = Fk(Fn
k (x, tij)).Then, the de Bruijn 
one F ∗

k (x, tij) is de�ned by:
F ∗

k (x, tij) =
⋃

n≥0

Fn
k (x, tij).

Sk x, k

Si x, i

Sj x, j

Sk x, k

Si x, i

Sj x, j

Fig. 6. A de Bruijn triangle Fk(x, tij) (the shaded unit fa
es, left) and its 
losure, thede Bruijn 
one F ∗

k (x, tij) (right). Re
all that one has always (x, tij) = Si,xi
∩ Sj,xj

.Let us now show that (x, tij) 
an be translated by performing �ips overF ∗
k (x, tij):Lemma 1. If F ∗

k (x, tij) is �nite, then one 
an translate (x, tij) by ek by per-forming 
ard(F ∗
k (x, tij)\Sk,xk

) �ips over F ∗
k (x, tij).Proof. Def. 8 yields, for any unit fa
es (y, t) and (y′, t′):

(y, t) ∈ F ∗
k (y′, t′) ⇒ F ∗

k (y, t) ⊂ F ∗
k (y′, t′).This naturally leads to de�ne the following partial order over F ∗

k (x, tij):
∀(y, t), (y′, t′) ∈ F ∗

k (x, tij), (y, t) � (y′, t′) ⇔ F ∗
k (y, t) ⊂ F ∗

k (y′, t′).Let us now 
onsider a unit fa
e (y, t) ∈ F ∗
k (x, tij)\Sk,xk

whi
h is minimal for thisorder. It is not hard to 
he
k that F ∗
k (y, t) is a set of three unit fa
es on whi
ha �ip 
an be performed (see, for example, Fig. 6, right). By performing this �ip,

(y, t) is translated by ek, so that the obtained fa
e does no more belongs to
F ∗

k (x, tij), whi
h thus de
reased (Fig. 7, left). This 
an be indu
tively repeated,up to translate by ek the unit fa
e whi
h was originally maximal in F ∗
k (x, tij),that is, (x, tij) itself (Fig. 7, right). Sin
e there is one �ip performed for ea
htranslated unit fa
e, there is a total of 
ard(F ∗

k (x, tij)\Sk,xk
) �ips performed. ⊓⊔
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Sk x, k

Si x, i

Sj x, j

Sk x, k

Si x, i

Sj x, j

Fig. 7. Three �ips have been performed on the minimal elements of the de Bruijn 
oneof Fig. 6 (left). This 
an be repeated, redu
ing the de Bruijn 
one up to only three unitfa
es (right), on whi
h performing a �ip will translate the unit fa
e (x, tij) by ek.Although the de�nition of de Bruijn 
ones by transitive 
losure su�
es toprove the previous lemma, the following stronger property a
tually holds:Lemma 2. One has F ∗
k (x, tij) = F 2

k (x, tij).Proof. Let (y, t) ∈ F 2
k (x, tij). If Fk(y, t) is not in
luded in F 2

k (x, tij), then a
ase study (relying on the fa
t that two de Bruijn se
tions interse
t at moston
e) shows that one of the two de Bruijn se
tions 
ontaining (y, t), say Sk′,yk′
,ne
essarily interse
ts Fk(x, tij). Let thus (y′, t′) ∈ Sk′,yk′

∩ Fk(x, tij). One has
Fk(y, t) ⊂ Fk(y′, t′), and (y′, t′) ∈ Fk(x, tij) yields Fk(y′, t′) ⊂ F 2

k (x, tij).Hen
e, Fk(y, t) ⊂ F 2
k (x, tij). Sin
e this holds for any (y, t) ∈ F 2

k (x, tij), thisproves F 3
k (x, tij) ⊂ F 2

k (x, tij). The result follows. ⊓⊔We are now in a position to prove that one 
an 
hoose k0 su
h that F ∗
k0

(x, tij)is �nite and (x, tij) should be translated by ek0
(the 
ondition k0 ∈ D below).Lem. 1 then yields that (x, tij) 
an be e�e
tively translated by ek0

.Lemma 3. Let (x′, tij) ∈ S′ and (x, tij) ∈ S su
h that πij(x
′, tij) = πij(x, tij).If D = {k | x′

k > xk} 6= ∅, then there is k0 ∈ D su
h that F ∗
k0

(x, tij) is �nite.Proof. We �rst prove that Fk(x, tij) is �nite for any k ∈ D, and then that thereis k0 ∈ D su
h that F ∗
k0

(x, tij) = F 2
k0

(x, tij) is �nite.Let k ∈ D. Note that Fk(x, tij) is �nite i� both Si,xi
and Sj,xj

interse
t Sk,xk
.Suppose that Si,xi

does not interse
t Sk,xk
. Thus, Si,xi

⊂ T−
k,xk

. Then, sin
e theshadows of S′ are in
luded in the shadows of S, there is (z, t) ∈ S su
h that
πik(x′) ∈ πik(z, t). This yields zi = x′

i = xi and zk = x′
k > xk. In parti
ular,

z ∈ Si,xi
∩ T +

k,xk
. Sin
e this 
ontradi
ts Si,xi

⊂ T−
k,xk

, we dedu
e that Si,xiinterse
ts Sk,xk
. Similarly, Sj,xj

interse
ts Sk,xk
. The �rst result is proven.Let us now 
hoose k0 ∈ D being minimal in D for the following partial order:

n � m ⇔ T +
m,xm

⊂ T +
n,xn

.



11In other words, k0 is 
hosen su
h that there is no se
tion Sk,xk
separating (x, tij)from Sk0,xk0

, that is, su
h that (x, tij) ∈ T−
k,xk

and Sk0,xk0
⊂ T +

k,xk
. This yieldsthat a unit fa
e (y, t) of Fk0

(x, tij) belongs to two de Bruijn se
tions whi
h bothinterse
t Sk0,xk0
. Thus, Fk(y, t) is �nite. The se
ond result follows. ⊓⊔Note that the previous lemma only proves that there is k0 ∈ D su
h that one
an (and should) translate (x, tij) by ek0

. A
tually, one 
an easily 
he
k that, for
d = 3, any k ∈ D is 
onvenient, whereas this is no more true for d > 3. Withoutgoing into details, let us just say that it is strongly 
onne
ted with the fa
t thatthe set of d → 2 rhombus tilings of a polygon forms a distributive latti
e for
d = 3, whereas not for d > 3 (see [5, 11℄).So, following the outline given at the beginning of this se
tion, we 
an now,by performing �ips, translate (x, tij) by some ek0

su
h that x′
k0

> xk0
. We 
anrepeat this up to have x′

k ≤ xk for any k. The way we 
an translate by −ek0
aunit fa
e (x, tij) su
h that x′

k0
< xk0

is similar. So, we are able to move (x, tij)to (x′, tij). The end of the proof relies on the following lemma:Lemma 4. Let (x′, tij) ∈ S′ and (x, tij) ∈ S su
h that πij(x
′, tij) = πij(x, tij).If x′

k > xk, then F ∗
k (x, tij) ∩ S′ = ∅.Proof. (sket
h) Writing down a detailed proof is rather te
hni
al and obfus
at-ing, but the underlying geometri
al idea is quite easy. Indeed, x′

k > xk yields
(x, tij) ∈ T−

k,xk
and (x′, tij) ∈ T ′+

k,xk
, as depi
ted on Fig. 8. So, suppose thatthere is a unit fa
e (y, t) ∈ Fk(x, tij) ∩ S

′. Su
h a fa
e thus should have thesame position, in S and S′, relatively to any de Bruijn se
tion. For example, if
(y, t) belongs to T +

i,xi
∩ T +

j,xj
∩ T−

k,xk
in S (as in the 
ase of Fig. 8, left), thenit should belongs to T ′+

i,xi
∩ T ′+

j,xj
∩ T ′−

k,xk
in S′. However, this last set turns outto be empty (see Fig. 8, right). Thus, Fk(x, tij) ∩ S′ = ∅. Suppose now that

(y, t) ∈ F 2
k (x, tij) ∩ S′. There is (z, tz) ∈ Fk(x, tij) su
h that (y, t) ∈ Fk(z, tz).We prove Fk(z, tz) ∩ S′ = ∅ as above, with (z, tz) instead of (x, tij). ⊓⊔

Sk, xk

e k

k, xk
S’

e i

e k
Si, x

e i

Sj, x

i

ej

j

Si, x
’

Sj, x
’

i

ej

jFig. 8. If (x, tij) must 
ross the se
tion Sk,xk
to be transformed to (x′, tij), then anyunit fa
e inside the triangle T+

i,xi
∩ T+

j,xj
∩ T−

k,xk
must also 
ross one of the se
tions

Si,xi
, Sj,xj

or Sk,xk
, hen
e is moved.



12 This lemma ensures that, on
e a unit fa
e of S′ is obtained, it is no moremoved. We thus 
an get unit fa
es of S′ over growing balls, and Th. 1 follows. Weend the paper by summing up the whole proof by the following pseudo-algorithm:for r=0 to ∞while SB(0,r) 6= S
′
B(0,r)
hoose (x, tij) in SB(0,r)\S

′
B(0,r)

(x′, tij)← S′
i,xi
∩ S′

j,xj
(πij(S′) ⊂ πij(S))while x 6= x

′
hoose k s.t. xk 6= x′
k and F ∗

k (x, tij) is �nite (Lem. 3)
xk ← xk ± 1 by performing �ips over F ∗

k (x, tij) (Lem. 1)endwhileendwhile (Lem. 4)endforReferen
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