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Abstract. Web services are emerging as a promising technology for the
development of next generation distributed heterogeneous software sys-
tems. We define a new behavioural equivalence for Web services, based
on bisimilarity and inspired by recent advances in the theory of reactive
systems. The proposed equivalence is compositional and decidable, and
it provides a firm ground for enhanced behaviour-aware discovery and for
a sound incremental development of services and service compositions.

1 Introduction

Web services are emerging as a promising technology for the development of
next generation distributed heterogeneous software systems [1]. Roughly, a Web
service is any piece of software that makes itself available over the Internet. A
Web service is identified by a URI, it is universally accessible by means of stan-
dard protocols (WSDL, UDDI, SOAP), and it self-describes its functionalities
by exposing a public interface.

WSDL [2] is the currently employed standard for describing services. A WSDL
description details what a service provides, by listing its operations in terms of
input and output messages, and how a service can be invoked, by specifying
one or more network locations where it can be accessed. WSDL descriptions
do not include any information on the interaction behaviour of services, that
is, on the order with which messages can be received or sent by each service.
Unfortunately, the lack of behavioural information inhibits the possibility of a
priori determining whether two services have the same behaviour as well as
the possibility of verifying properties of service compositions, such as deadlock-
freedom.

Various proposals have been put forward to feature service descriptions that
include both semantics (viz., ontology-based) and behaviour information about
services. One of the major efforts in this direction is OWL-S [3], a high-level
ontology-based language for describing services, proposed by the OWL-S coali-
tion. Since OWL-S is a computer-interpretable semantic mark-up language pro-
viding all the needed information for describing services, OWL-S paves the way
for the full automation of service discovery, invocation and composition. In
particular, OWL-S service descriptions include a declaration of the interaction
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behaviour of services (the process model), which provides the needed information
for the a priori analysis and verification of service invocations and compositions.

The objective of this paper is to define a notion of behavioural equivalence
for Web services. An immediate application of such a notion is the possibility of
establishing whether syntactically different services feature the same behaviour,
and hence for instance of verifying whether the upgrade of a service S with a new
version S′ may affect the interoperability with existing clients of S. The avail-
ability of a well-founded notion of behavioural equivalence can also be exploited
to develop enhanced service discovery techniques so as to go beyond functional
matching and determine whether a given service (or service composition) fea-
tures a desired interaction behaviour. According to these aims, two fundamental
properties of any equivalence relation are computability and compositionality.
Computability is a key requirement in ensuring the viability of an equivalence
relation, that is, in allowing the development of automated software capable of
determining whether two services are behaviourally equivalent or not. Composi-
tionality permits to exploit the equivalence relation for a disciplined incremental
development of services, by means of sound compositions and replacements.

In this paper we first show how the behaviour of a Web service can be suitably
described by means of a Petri net. Petri nets [4] are one of the best known
and most widely adopted formalisms to express the concurrent behaviour of
(software) systems: besides providing a clear and precise semantics, they feature
an intuitive graphical notation, and a number of techniques and tools for their
analysis, simulation and execution are available. Petri nets have also been already
employed to model Web services (e.g., see [5,6,7]). We introduce a simple variant
of standard condition/event Petri nets (viz., CPR nets for Consume-Produce-
Read nets) to naturally model the behaviour of Web services, and in particular
the persistence of data. We then show how OWL-S process models can be directly
mapped into CPR nets, borrowing from the translation from OWL-S to place-
transition nets (P/T for short) described in [8].

Our next step is the identification of a suitable behavioural equivalence for
our class of nets. Indeed, the dynamics of a Petri net, as well as those of most
functional and process calculi, is usually defined in terms of reduction relations
among its markings (i.e., the states of a system). Despite its simplicity, the main
drawback of reduction semantics is poor compositionality, in the sense that the
dynamic behaviour of an arbitrary stand alone net may become unpredictable
whenever it becomes a part of a larger net. Recently, Leifer and Milner [9] de-
viced a methodology for distilling from a reduction relation a set of labels satis-
fying suitable requirements of minimality, in order to build a labelled reduction
relation, such that the associated behavioural notion of bisimilarity is a compo-
sitional equivalence. The methodology has been later applied to P/T nets [10]
as well as to their condition/event variant [11] (C/E for short). Thus, after dis-
cussing a motivating example, we define a novel notion of net equivalence, based
on bisimilarity and inspired by the recent theoretical advances we just mentioned
above. We show that this new equivalence relation is indeed compositional (i.e.,
that is a congruence), and that it is also decidable.
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The main contribution of this paper is therefore the definition of a decidable
behavioural congruence for Web services, which paves the way for the deploy-
ment of behaviour-aware discovery mechanisms and for a sound incremental
development of services and service compositions.

2 Modeling Web Services with Petri Nets

Before describing how Petri nets can be employed to model Web services, we
recall the essence of OWL-S, a high-level ontology-based language for describing
Web services. An OWL-S service advertisement consists of three documents: the
service profile, providing a high-level specification of the service by describing its
functional (i.e., inputs and outputs) and extra-functional attributes; the process
model, describing the service behaviour by providing a view of the service in
terms of process composition; and the service grounding, stating how to interact
with the service by specifying protocol and message format information.

In the paper we focus on the OWL-S process model, as it details the be-
havioural information needed to represent a service as a Petri net. More precisely,
the process model describes a service as a composite process which consists, in
turn, of composite processes and/or atomic processes. An atomic process can not
be decomposed further and it has associated inputs and outputs, while a com-
posite process is built up by using a few control constructs: sequence (i.e., se-
quential execution), choice (conditional execution), split (parallel execution),
split+join (parallel execution with synchronization), any-order (unordered
sequential execution), repeat-while and repeat-until (iterative execution).

In [8] the second and third author proposed a mapping from OWL-S service
descriptions to P/T nets with the objective to exploit the Petri net representation
of services for a behaviour-aware service discovery. Given a query specifying the
inputs and outputs of the service to be found, first the functional attributes of the
available services are considered, in order to discover a composition capable of
satisfying the query functionally. Next, the found composition is translated into
a P/T net and analysed in order to verify properties such as deadlock-freedom.

The mapping presented in [8] takes into account the fact that an OWL-S
atomic operation can be executed only if all its inputs are available and all the
operations that must occur before its execution have been completed. Hence,
atomic operations are mapped into transitions, and places and transition firing
rules are employed to model both the availability of data (i.e., the data flow) and
the executability of atomic operations (i.e., the control flow). Indeed, an atomic
operation T is modelled as a transition t having an input/output data place for
each input/output of T , an input control place to denote that t is executable as
well as an output control place to denote that t has completed its execution.

However, the specific features concerning the Web service framework (already
emphasised in [8]) suggest more specific nets. In this paper we introduce a simple
variant of standard Petri nets [4] as a tool for properly modelling Web services.
Given a net N modelling a Web service, we first of all noted that the portion of
N restricted to transitions and control places should behave as a classical C/E
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net, that is, only one token should occur at most for each place. Furthermore, we
opted for a model stressing the persistence of data, meaning that, once a data
has been produced by some service operation, it has to be kept available for all
the service operations that input it. In other words, whilst control places can be
produced and consumed, data places can be read, produced but not consumed.
Hence, the portion of N restricted to data places behaves as a contextual net [12].

To encompass into the same structure the different net behaviour determined
by data and control places, we introduce our own particular flavour of contextual
C/E nets, which is going to be formally introduced in the following subsection.

2.1 Consume-Produce-Read Nets

This subsection introduces consume-produce-read nets. These are a slight exten-
sion of standard Petri nets, since they are equipped with two disjoint sets of
places, namely, the control places (to be consumed and produced) and the data
places (to be produced and read) .

Definition 1 (CPR net). A consume-produce-read net (simply, CPR net) N
is a five-tuple (CN , DN , TN , FN , IN ) where

– CN is a finite set of control places,
– DN is a finite set of data places (disjoint from CN ),
– TN is a finite set of transitions,
– FN ⊆ (CN × TN ) ∪ (TN × CN ) is the control flow relation,
– IN ⊆ (DN × TN) ∪ (TN × DN ) is the data flow relation.

Our nets behave as standard C/E nets with respect to control places; while, as
we are going to see, data places are never emptied, once they are inhabited.

As for standard nets, we associate a pre-set and a post-set with each transition
t, together with two additional sets, called read- and produce-set.

Definition 2 (pre-, post-, read-, and produce-set). Given a CPR net N ,
we define for each t ∈ TN the sets

�t = {s ∈ CN | (s, t) ∈ FN} t� = {s ∈ CN | (t, s) ∈ FN}
•t = {s ∈ DN | (s, t) ∈ IN} t• = {s ∈ DN | (t, s) ∈ IN}

which denote respectively the pre-set, post-set, read-set and produce-set of t.

Fig. 1 depicts our chosen graphical notation. Diamonds represent control places,
while circles and rectangles represent data places and transitions, respectively.
For instance, the transition shown in Fig. 1 reads the data places labelled
I1, I2, . . . , In (this is represented by a straight line) and produces the data places
labelled O1, . . . , Om (this is represented by a pointed arrow). In doing so, the
control flow passes from the left-most to the right-most control place.

Definition 3 (marking). Given a CPR net N , a marking M for N is a finite
set of places in PN = CN ∪ DN .
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Fig. 1. Modelling atomic operations as CPR net transitions

A marking of the net N coincides with a subset of its set PN of places, since each
place can contain at most one token. The evolution of a net is given by a relation
over markings. A transitions t is enabled by a marking M if the control places
which belong to the pre-set of t as well as the data places which belong to the
read-set of t are contained in M , and no overlap (as defined later) between M
and the post-set of t occurs. In this case a firing step may take place: t removes
the tokens from the control places which belong to the pre-set of t and adds a
token to each place which belongs to the post- and produce-set of t.

Definition 4 (firing step). Let N be a CPR net. Given a transition t ∈ TN

and a marking M for N , a firing step is a triple M [t〉M ′ such that (�t∪ •t) ⊆ M
and (M ∩ t�) ⊆ �t (M enables t), and moreover M ′ = (M \ �t) ∪ t� ∪ t•.

We write M [〉M ′ if there exists some t such that M [t〉M ′.

The enabling condition states that (i) all the tokens of the pre-set of a transition
have to be contained in the marking, and (ii) that the marking does not contain
any token in the post-set of the transition, unless it is consumed and regenerated.
The second condition usually characterizes C/E nets. Note instead that data
places act as sinks, hence, any token can be added and only the occurrence of a
token is checked. The read-only feature of data places is reminiscent of the work
on so-called contextual C/E nets by Montanari and Rossi [12].

2.2 From OWL-S to CPR Nets

After formally defining CPR nets, we can show how OWL-S service descriptions
can be mapped into CPR nets.

Let us define a service as a triple (i, P, f) where P denotes the CPR (sub)net
representing the service and i and f denote the initial and the final control
places of P , respectively. To define compositional operators is sufficient to prop-
erly coordinate the initial and final control places of the employed services. For
instance, let us consider the sequential composition of two services (i1, P1, f1)
and (i2, P2, f2). This is a CPR net consisting of the two services and a transition
whose starting control place is f1 and the final control place is i2. By doing so,
P1 has to be completed before P2 can start.

For lack of space, we do not give a formal semantics of the sequence operator
and of the other OWL-S control constructs. Anyway, the reader can intuitively
understand how OWL-S composite operations can be mapped into CPR nets by
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observing Fig. 2. The PX-labelled boxes represent (ix, PX, fx) services, the dark
gray rectangles identify empty transitions, and the light gray diamonds denote
the starting and final control places of the resulting nets. To simplify reading
we omitted data places from the nets of Fig. 2. Yet, it is important to note that
the PX-boxes can share data places to simulate the exchange of data amongst
services, as we will formally define in Section 4.1.

Fig. 2. Modelling OWL-S composite operations as CPR nets

3 Motivating Examples

The ultimate objective of this paper is to introduce a decidable notion of equiv-
alence between Web services represented as CPR nets. This notion establishes
whether two service behaviours are equivalent and it can be employed to suitably
address the following issues:

1) incremental development of services — to check whether two different ver-
sions of a service are equivalent;

2) matching services — to check whether a (composition of) service(s) matches
a query that specifies the behaviour of the desired service (composition) to
be found (viz., the notion of equivalence needed by [8]);

3) replaceability of services — to check whether a service s which takes part in a
composition C[s] can be replaced with a different service r without changing
the behaviour of C, i.e., guaranteeing the equivalence between C[s] and C[r].

We can hence outline the main features that a suitable notion of equivalence
should have, that is, weakness and compositionality. It has to be weak as it must
equate services with respect to their externally observable behaviour. Indeed,
it is reasonable that two versions of a service differently implement the same
operations (1), as well as we can imagine that a simple query can be satisfied
by a complex service composition (2). Therefore, this notion of equivalence has
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Fig. 3. Example of (non-)equivalent services

to be abstract enough to equate services that differ only on internal transition
steps. Furthermore, (3) also asks for compositionality, and if two services are
equivalent, then they can be always used interchangeably.

Let us now consider some examples (inspired by [13]). Fig. 3 illustrates the
CPR nets of seven services, where rectangles, circles and diamonds represent
transitions, data places and control places, respectively. Note the boxes that
limit each service. As we will formalise in the following section, a box represents
the outer interface of a service, that is, the set of places which can interact
with the environment. Hence, those places that in Fig. 3 lie on the box are the
ones that can be observed externally. Consider the services WS1 and WS2 of
Fig. 3. As one may note, WS1 and WS2 have the same behaviour with respect to
the notion of trace equivalence. Indeed, they have identical sets of traces, since
after producing A they may alternatively read either B or C. Consider now
the context C1[−], depicted in Fig. 3, which represents a possible environment
in which WS1 and WS2 can be embedded. Note the gray area contained in
C1[−]. Its border is the inner interface of C1[−]. As formalised in Section 4.1,
a service WS can be inserted inside a context C[−] if the outer interface of
WS and the inner interface of C[−] coincide. The resulting composition C[WS]
consists of the fusion of such interfaces, as well as of the fusion of the data places
and the union of the transitions of WS and C[−]. We note that C1[−] inputs
A, produced by WS1, and yields B or C, taken as input by WS1. Hence, the
composition C1[WS1] works and finishes properly. Now, in order to test if the
trace equivalence is the notion suitable for our purpose, we replace WS1 with the
trace equivalent service WS2 and we check whether the composition C1[WS2]
works properly as well. Yet, C1[WS2] produces a possibly deadlocking system.

Let us now describe a second example arguing the need of weakness. Con-
sider the services WS3 and WS4. For instance, WS4 could be a composition
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candidate to satisfy the query represented by WS3. Although WS3 and WS4
appear different as they perform a different number of transitions, they both
produce B or C. Namely, WS3 and WS4 have identical externally observable
behaviour, and they indeed should be considered equivalent.

By taking into account the requirements briefly outlined in this motivating
section, we define a novel notion of equivalence based on bisimilarity which
features weakness, compositionality and decidability.

4 A Congruence for Open CPR Nets

In the previous section we argued about the relevance of a behavioural equiva-
lence, formally characterizing the notion of replaceability, and we motivated why
such an equivalence should be both compositional and weak.

A first step for defining compositionality is to equip nets with a notion of
interface and context. Next, we introduce two notions of equivalence: the first is
conceptually the correct one, even if it turns out to be quite hard to reason about,
while the second provides a simple, decidable characterization of the former.

4.1 Open CPR Nets and CPR Contexts

For the sake of presentation, a chosen net N = (CN , DN , TN , FN , IN ) is assumed.

Definition 5 (Open CPR net). Let N be a CPR net. An interface for N is
a triple 〈i, f, OD〉 such that i �= f and

– i is a control place (i.e., i ∈ CN ), the initial place;
– f is a control place (i.e., f ∈ CN ), the final place; and
– OD is a set of data places (i.e, OD ⊆ DN), the open data places.

An interface is an outer interface O for N if there exists no transition t ∈ TN

such that either i ∈ t� or f ∈ �t. An open CPR net N (OCPR for short) is a
pair 〈N, O〉, for N a CPR net and O an outer interface for N .

The condition characterizing outer interfaces requires that the initial place has
no incoming transition and the final place has no outgoing transition. Hence,
OCPR nets recall the Work-Flow (WF) nets1 proposed by van der Aalst [14].

The components of a specific interface or open net are often denoted by adding
them a subscript. Given an open net N , Op(N ) denotes the set of open places,
which consists of those places occurring on the interface, initial and final places
included. Furthermore, the places of N not belonging to Op(N ) constitute the
closed places. It is important to note that open places are crucial for the definition
of observational equivalence that we propose in the next subsection.

Fig. 4 shows the graphical notation used to represent OCPR nets. The bound-
ing box of the OCPR net WS1 represents the outer interface of the net. Note
the initial and final places used to compose the control of services (as suggested
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Fig. 4. Two open nets, a context and a composite net

in Fig. 2) as well as the open data places employed to share data. Next, we
symmetrically define an inner interface for N as an interface such that there is
no transition t ∈ TN verifying either f ∈ t� or i ∈ �t.

Definition 6 (CPR context). A CPR context C[−] is a triple 〈N, O, I〉 such
that N is a CPR net, I = 〈iI , fI , ODI〉 and O = 〈iO, fO, ODO〉 are an inner
and an outer interface for N , respectively, and iI �= fO, iO �= fI.

A context C[−] is shown in Fig. 4. Substantially, it is an open net with an
hole, represented there by a gray area. The border of the hole denotes the inner
interface of the context. As for open nets, the bounding box is the outer interface.
The only difference between inner and outer interfaces is that the initial place
of the former has no outgoing transitions (and vice versa for final places).

Contexts represent environments in which services can be embedded, i.e.,
possible ways they can be used by other services. An OCPR net can be inserted
in a context if the net outer interface and the context inner interface coincide.

Definition 7 (CPR composition). Let N = 〈N, O〉 be an OCPR net and
C[−] = 〈NC , OC , IC〉 a CPR context, such that O = IC . Then, the composite net
C[N ] is the OCPR net (CN 	O CNC , DN 	O DNC , TN 	TNC , FN 	FNC , IN 	INC )
with outer interface OC .

In other words, the disjoint union of the two nets is performed, except for those
places occurring in O, which are coalesced: this is denoted by the symbol 	O.
Moreover, OC becomes the set of open places of the resulting net.

Consider e.g. the net WS1, the context C[−] and their composition, denoted
by C[WS1], as illustrated in Fig. 4. The places on the outer interface of WS1 are
1 More precisely, our nets lack the connectiveness requirement, see e.g. [14, Sect. 2.2].

Note however that, even if this is not made explicit, the property holds for all the
nets obtained by modeling OWL-S composite operations.
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coalesced with the ones on the inner interface of C[−]. The output interface of
C[WS1] is the outer interface of C[−]. Note that the data place A is open in WS1
and closed in C[WS1]: this example highlights the capability of hiding places,
removing them from the outer interface of an open net. Indeed, this feature is
reminiscent of the restriction operator of process calculi, such as CCS [15].

It is worth observing that contexts can be composed with contexts as well:
CPR contexts form a category where interfaces are objects and contexts are
arrows going from the inner interface to the outer interface2 (and OCPR nets
are arrows whose source is the empty interface and target is the outer interface).

4.2 Saturated Bisimilarity for OCPR Nets

This section addresses the question of the equivalence between nets. Our answer
relies on an observational approach, equating two systems if they can not be told
apart from an external observer. More precisely, the observer can only examine
the open places of a net, which is otherwise a black box, and those places may
be checked for verifying if they are actually inhabited or if they are empty.

For the sake of presentation, a chosen OCPR net N = 〈N, O〉 is assumed.

Definition 8 (observation). Let N be an OCPR net, and M a marking of N .
The observation on N at M is the set of places Obs(N , M) = Op(N ) ∩ M .

Thus, an observer looks at the evolution of the system by observing if tokens
are produced or consumed in the open places. Accordingly, two OCPR nets N
and N ′ with the same outer interface and with initial markings M and M ′ are
considered equivalent if Obs(N , M) = Obs(N ′, M ′) and if every state reachable
from M in N is equivalent to a state reachable from M ′ in N ′ (and vice versa).

The previous remark is formalized by the definition below, where MN denotes
the set of all OCPR nets with markings and �N denotes the reflexive and
transitive closure of the firing relation [〉 for the net N underlying N .

Definition 9 (naive bisimulation). A symmetric relation R ⊆ MN × MN
is a naive bisimulation if whenever (N , M) R (N ′, M ′) then

– ON = O′
N ′ and Obs(N , M) = Obs(N ′, M ′), and

– M �N M1 implies M ′ �N ′ M ′
1 & (N , M1) R (N ′, M ′

1).

The union of all naive bisimulations is called naive bisimilarity.

The equivalence above is “naive” in the sense that it clearly fails to be com-
positional. Indeed, consider the OCPR nets WS1 and WS2 in Fig. 4. They are
trivially equivalent since none of them can fire. However, they are not equivalent
anymore whenever they are inserted into a context (such as the one on that same

2 CPR nets and their morphisms (not defined here) form an adhesive category [16].
The category of CPR contexts is the cospan bicategory over such category [17], thus
it is amenable to the borrowed context technique [18] for distilling a set of labels
from a reduction relation. That technique is implicitly exploited in the next section.
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Fig. 4) containing a transition that generates a token in the initial place and in
the data place A. Indeed the former can now produce a token on B reaching the
final state f , while the latter can not move.

The solution out of the impasse, which is quite standard both in functional
languages and process calculi, is to allow the observer to perform more complex
experiments, inserting a net into any possible context.

Definition 10 (saturated bisimulation). A symmetric relation R ⊆ MN ×
MN is a saturated bisimulation if whenever (N , M) R (N ′, M ′) then

– ON = ON ′ and Obs(N , M) = Obs(N ′, M ′), and
– ∀C[−].M �C[N ] M1 implies M ′ �C[N ′] M ′

1 & (C[N ], M1) R (C[N ′], M ′
1).

The union of all saturated bisimulations is called saturated bisimilarity (≈S).

Clearly, ≈S is by definition a congruence. Indeed, it is the largest bisimulation
that preserves compositionality, as stated below.

Proposition 1. ≈S is the largest bisimulation that is also a congruence.

The above proposition ensures the compositionality of the equivalence, hence,
the possibility of replacing one service by an equivalent one without changing the
behaviour of the whole composite service. Moreover, the equivalence is “weak” in
the sense that, differently from most of the current proposals, no explicit occur-
rence of a transition is observed. The previous definition leads to the following
notion of equivalence between OCPR nets, hence, between services.

Definition 11 (bisimilar nets). Let N , N ′ be OCPR nets. They are bisimilar,
denoted by N ≈ N ′, if (N , ∅) ≈S (N ′, ∅).

The choice of the empty marking guarantees that the equivalence is as general
as possible. Indeed, the presence of a token in an open place can be simulated
by closing the net with respect to a transition adding a token in that place, and
if any two nets are saturated bisimilar with respect to the empty marking, they
are so also with respect to any marking with tokens in the open places.

The negative side of ≈ is that this equivalence seems quite hard to be auto-
matically decided because of the quantification over all possible contexts. In the
following subsection we introduce an alternative equivalence, easier to reason
about and to automatically verify, and we prove that it coincides with ≈S .

4.3 An Equivalent Decidable Bisimilarity

Saturated bisimulation seems conceptually the right notion, and this is further
argued in the following section. However, it seems quite hard to analyze (or
automatically verify), due to the universal quantification over contexts. In this
section we thus introduce semi-saturated bisimilarity, based on a simple labelled
transition system (LTS) distilled from the firing semantics of an OCPR net.

The introduction of an LTS is inspired to the theory of reactive systems [9].
This meta-theory suggests guidelines for deriving a LTS from an unlabelled one,
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choosing a set of labels with suitable requirements of minimality. In the setting
of OCPR nets, the reduction relation is given by [〉, and a firing is allowed if
all the preconditions of a transition are satisfied. Thus, intuitively, the minimal
context that allows a firing just adds the tokens needed for that firing.

Definition 12 (labelled transition system). Let N be an OCPR net, and
let Λ = {τ} ∪ ({+} × PN ) ∪ ({−} × CN ) be a set of labels, ranged over by l. The
transition relation for N is the relation RN inductively generated by the set of
inference rules below

o ∈ Op(N ) \ (M ∪ {f})
M

+o→N M ∪ {o}
f ∈ M

M
−f→N M \ {f}

M [〉M ′

M
τ→N M ′

where M
l→N M ′ means that 〈M, l, M ′〉 ∈ RN , and i, f denote the initial and

the final place of N , respectively.

Thus, a context may add tokens in open places in order to perform a firing, as
represented by the transition +o→N . Similarly, a context may consume tokens from
the final place f . A context can not interact with the net in any other observable
way, as the initial place i can be used by the context only as a post condition,
and all the other open places are data places whose tokens can be read but not
consumed. Likewise, τ transitions represent internal firing steps, i.e., steps that
do not need any additional token from the environment.

The theory of reactive systems ensures that, for a suitable choice of labels,
the bisimilarity on the derived LTS is a congruence [9]. However, often that
bisimilarity does not coincide with the saturated one. In [19] the first author,
together with König and Montanari, discusses this problem and introduces the
notion of semi-saturated bisimilarity that coincides with the saturated one.

Definition 13 (semi-saturated bisimulation). A symmetric relation R ⊆
MN × MN is a semi saturated bisimulation if whenever (N , M) R (N ′, M ′)

– ON = O′
N ′ and Obs(N , M) = Obs(N ′, M ′),

– M
+o→N M1 implies M ′ ∪ {o} �N ′ M ′

1 and (N , M1) R (N ′, M ′
1),

– M
−f→N M1 implies M ′ \ {f} �N ′ M ′

1 and (N , M1) R (N ′, M ′
1),

– M
τ→N M1 implies M ′ �N ′ M ′

1 and (N , M1) R (N ′, M ′
1).

The union of all semi-saturated bisimulations is called semi-saturated bisimilar-
ity (≈SS).

The key theorem of the paper is stated below.

Theorem 1. ≈S=≈SS.

Thus, in order to prove that two OCPR nets are bisimilar, it suffices to exhibit
a semi-saturated bisimulation between the states of the two nets that includes
the pair of empty markings. Most importantly, though, this search can be auto-
matically performed, since the set of possible states of an OCPR net are finite.
Hence, the result below immediately follows.

Corollary 1. ≈S is decidable.
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5 Related Works

The successful introduction of observational equivalences for process calculi in
the early 1980s spawned similar researches on nets, as witnessed3 by the sur-
vey [20]. According to the taxonomy there, saturated bisimilarity is a state-based
equivalence, since it encompasses a notion of interface (a set of observable places)
and it is dictated by the way the firing relation crosses the interfaces. Indeed,
our bisimilarity is reminiscent of ST-equivalence, as in [20, Def. 4.2.6].

This section does not try to survey the field: first of all, the literature is
very large, and its retelling is not suitable for a conference paper. Moreover,
our CPR nets have distinctive features, since data places act as sinks, thus any
comparison should take that fact into account, putting an additional layer of
complexity. Furthermore, our main interest is in a compositional equivalence,
thus restricting the area of possible intersection with former works.

In the rest of the section we then focus on two issues that are closely related
to the novelties introduced in our framework: the use of the theory of reactive
systems for obtaining a tractable equivalence; and the use of (equivalences on)
nets for dealing with the specification of Web services and of their composition.

5.1 Nets, Open Places and Labels

Most current-day formalisms for system specification come equipped with a re-
duction semantics: a suitable algebra of states is defined, and system evolution is
represented by a relation between states. However, the lack of observable actions
(either associated to the states, or to the reductions) forbids the development of
observational equivalences, which are often handier and more tractable.

Concerning Petri nets, the need of primitives for expressing the interaction
with an environment was recognized early on, and notions of “net interface”,
intended as a subset of the items of the net, are already reported in [20]. Interfaces
are key ingredients for defining an observation, as well as for expressing net
operators: along this line, a classical approach is the Box Algebra [21]. The main
difference with our proposal is in the use of a set of labels for obtaining a labelled
reduction relation, on top of which to define the semi-saturated semantics.

Indeed, mostly related to our solution are open nets : place/transitions nets
where two distinguished sets of input and output places (where tokens may
be added or removed, respectively) are identified, and then used to compose
nets by place coalescing [22]. A comparison among the derived equivalences
is in order, even if it is left for future work: note however that the authors
stick to P/T nets; and the dichotomy between input and output places, that is
reflected on net composition, is missing in our approach. We refer to [22], and
the references therein, for a survey and comparison with other interface-based
techniques, mostly important the net components proposed by Kindler [23].

The most important source of inspiration for our work is the theory of reactive
systems [9], introducing a technique for the synthesis of labels with suitable
3 The analysis there is restricted to contact-free C/E nets, i.e., such that the second

requirement of the enabling condition in Definition 4 is never verified.
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minimality requirements from a reduction relation: the main advantage of the
tecnique is that it guarantees that the bisimilarity on the derived labelled relation
is a congruence. Indeed, our approach benefits from the general definition of
interface deriving from the theory. Concerning Petri nets, the technique was
first applied by Milner in [10], after implementing nets into a more complex
graphical structure, namely bigraphs. And later by Sassone and Sobociński [11]:
the labelled relation of the latter work largely coincides with ours. The main
difference, besides the use of our flavour of C/E nets, is the introduction of
saturated bisimilarity and the corresponding characterisation by semi-saturated
bisimilarity. Moreover, our equivalence is weak (the number of transitions is not
observed) and interleaving (parallelism is reduced to non-determinism). To the
best of our knowledge, the treatment of such a bisimilarity for nets, and its
decidable characterisation, is original to our paper, and it exploits the results by
the first author, König and Montanari reported in [19].

5.2 Nets for Service Equivalence

The application of Petri nets to the specification and the modelling of distributed
systems has been around since their inception. Concerning Web services, the use
of nets has been strongly advocated in the works by van der Aalst, see e.g. [14]
and the position paper [7]. More specifically, he and his coauthors address the
issue of equivalences for nets in [24]: they propose a trace-based, probabilistic
equivalence for nets which is quite far from our proposal.

Tightly related to us is the work of Martens, which actually inspired some of
our examples in Section 3. More precisely, we refer to [6], where van der Aalst’s
WF Petri nets (with disjoint sets of input, output and internal places) are anal-
ysed for checking structural properties of Web services. The author introduces
there the notions of net module and net composition: these recall the open nets
formalism mentioned above, and roughly coincide with our own solution.

Martens introduces in [6] the notion of net soundness and net usability, ba-
sically related to state reachability with respect to composition with suitable
modules. We sketch here a solution for recasting those notions in terms of satu-
rated bisimilarity. Let us start considering the OCPR net 1 depicted in Fig. 5;
moreover, let νO[−] be the OCPR context that close all the elements in the set
O of open data places of an OCPR net N . According to [6], we say that a net
N is weakly sound if and only if νO[N ] ≈ 1; a context C[−] utilizes a net N if
νO[C[N ]] ≈ 1; and a net N is usable if there exists a context C[−] utilizing it.

Next, the author considers there a few notions of observational equivalence
for his flavour of WF nets, discussing in turn trace, bisimulation and simula-
tion equivalences. He identifies the weakness of trace equivalence with respect to
deadlock, as we echoed in Section 3. He further argues on bisimulation, reaching

Fig. 5. The OCPR net 1
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the conclusion of simulation as the most adequate equivalence. Note that
Martens’ notion of simulation (denoted here by ≡) can be expressed by satu-
rated bisimilarity. Indeed, N ≡ N ′ if and only if νO[C[N ]] ≈ 1 ⇔ νO[C[N ′]] ≈ 1
for all possible contexts C[−]: intuitively, this means that the two nets are us-
able by exactly the same environments. Note that our solution is stricter, since
≈⊆≡, while the converse does not hold. In fact, M3 and M4 of Fig. 4 of [13] are
equivalent according to Martens, even if they are not saturated bisimilar.

6 Concluding Remarks

We introduced Open Consume-Produce-Read (OCPR) nets to naturally model
the behaviour of OWL-S Web services (although our approach could tackle WS-
BPEL services, in the line of [25]). We also defined the notion of saturated bisim-
ilarity for OCPR nets, relying on the concepts of interface and CPR context:
An interface is a set of places which interact with the environment, while a CPR
context represents a possible environment where a service can be embedded in.

To the best of our knowledge, the proposed bisimilarity is the first equivalence
employing Petri nets for Web services that features:

• weakness – It abstracts from internal transition steps by equating struc-
turally different, yet externally indistinguishable services. An obvious
application of such a notion is for checking whether a (complex) service
implements a given specification. Indeed, it is often the case that a ser-
vice provider publishes simple service specifications by hiding unnecessary
and/or confidential details of their implementations, as well as, similarly, a
matchmaking system verifies whether a (composition of) service(s) matches
a client query.

• compositionality – It is the largest bisimulation that is also a congruence.
Thus, two equivalent services can be always used interchangeably. Consider,
for instance, a complex application where a component service S fails (e.g.,
it becomes unavailable). S can be replaced with an equivalent service S′

without changing the behaviour of the whole application.
• decidability – As the set of the states of an OCPR net is finite, the saturated

bisimilarity is decidable. It can hence be employed by automated software
tools in order to check whether two services are behaviourally equivalent.

We leave to future work a throughout analysis of the connection between our
saturated bisimilarity and Martens’ simulation. We just note here that our rely-
ing on a standard notion of observational equivalence allows the reuse of existing
theoretical techniques and practical tools, such as e.g. the characterizations of
minimal equivalent nets and the algorithms for calculating them.
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