Résumé : Le cas le plus simple et peut-être le plus naturel des limites locales des arbres est Uniform Infinite Planar Tree: on commence par la suite des mesures de probabilité uniforme \nu_N dont le support est l’ensemble des arbres planes enracinés de taille $N$ et on étudie la limite faible $\nu$ de cette suite, dont le support est l'ensemble des arbres plans enracinés de taille infinie. Une modification naturelle dans la recherche des limites différentes est de pondérer les arbres: est-ce que la nouvelle suite des mesures $\rho_N$, par rapport à laquelle la valeur d’un arbre de taille N est proportionnelle à son poids, admet une limite faible? Dans cet exposé, on considère des arbres plans enracinés dont la distribution est uniforme pour une hauteur $h$ et une taille $N$ fixées et dont la dépendance à la hauteur est de forme exponentielle, $\exp(-\mu h)$, pour $\mu$ réel. En définissant le poids total de ces arbres de taille $N$ fixe comme $Z^{\mu} _N$, on détermine son comportement asymptotique pour $N$ grand, pour $\mu$ réel quelconque. Finalement, on identifie la limite locale des mesures de probabilité correspondantes et on trouve une transition à $\mu=0$ d'une phase à une seule épine à une phase à plusieurs épines (backbone). En conséquence, il y a une transition dans le taux de croissance du volume des boules autour de la racine en fonction du rayon, passant d'une croissance linéaire pour $\mu < 0$ à la croissance quadratique familière pour $\mu=0$ et à une croissance cubique pour $\mu > 0$.
Dernière modification : Monday 27 May 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |