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1 Introduction

1.1 q-enumeration and Gibbs distributions

Let T be a family of combinatorial objects, let |.| denote the size of objects, and let X : T Ñ N be a
statistic defined on T . The statistic X on objects of T of size n can be encoded by the sum

fnpqq �
¸

TPT :|T |�n

qX pT q. (1)

This sum reduces for q � 1 to the total number fnp1q � fn of objects of size n. In combinatorics, for
any given q P R, it is called the q-enumeration of T of size n with respect to X (see, e.g., [1, 31]). In
the language of statistical mechanics, fnpqq is a partition function with Boltzmann weight q. The
bivariate generating function F pz, qq is then defined as

F pz, qq �
¸

TPT
z|T |qX pT q �

¸
n¥0

fnpqqzn �
¸

n¥0

¸
k¥0

fn,kznqk. (2)
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2 Composition schemes: q-enumerations and phase transitions in Gibbs models

Here fn,k denotes the number of objects of T of size n for which X equals k. It is usual to associate
with the statistic X the random variables Xn, n ¥ 1, defined as

PpXn � kq � fn,k

fn
� rqksfnpqq

fnp1q � rznqksF pz, qq
rznsF pz, 1q , (3)

such that each object from T of size n is equally likely. The associated probability generating function
is given by EpqXnq � rznsF pz,qq

rznsF pz,1q . In Equation (3), the reader is probably used to consider q as a
formal variable, but in this work, like in statistical mechanics, we shall consider q as an adjustable
parameter (weight P R�) of the underlying combinatorial and physical structures. This is also the
spirit of the Boltzmann sampling method [18], where q is tuned to minimize the number of rejection
steps in the sampling algorithm.

More precisely, in this article, we put a Gibbs measure on the statistic X ; that is, one has the
following probabilistic model.

� Definition 1 (Gibbs distribution). Let a family T of combinatorial objects and a statistic
X : T Ñ N be given. For real q ¡ 0, the Gibbs distribution of this statistic is the law of the random
variable Xnpqq with probability mass function

PpXnpqq � kq � fn,kqk

fnpqq , k ¥ 0.

In terms of the probability generating function ppvq � EpvXnp1qq, we have EpvXnpqqq � ppvqq
ppqq .

A well-known example in probability theory is the Mallows distribution [35] on permutations with
respect to the inversion statistic.

In many applications, one is interested in the limit distribution of Xnpqq, which depends on the
value of q ¡ 0; see, e.g., [9, 11, 12, 14, 33, 34, 36, 39]. Let us pinpoint the result of Krattenthaler [33],
who uncovered a phase transition in the normalized mean number of wall contacts at q � 2 in
watermelons. Using methods from analytic combinatorics, we will show that similar phase transitions
naturally occur in a great many instances, not only with respect to the expectation but also for the
limit laws. We will use the framework of composition schemes, which often provide a direct and
unifying way to explain why phase transitions occur [5, 6, 25]. In Section 2, we establish in which
way the phase transitions in the Gibbs model depend on the value of q. Particular instances of similar
phenomena have been observed in [13, 41]. We give further examples in Sections 3 and 4.

1.2 Composition schemes and Gibbs distributions

Functional composition schemes such as F pzq � G
�
Hpzq� are of great importance in combinator-

ics [5, 6, 25] and probability theory [38]. The main focus is to analyse probabilistic properties of
compositions like

F pz, uq � G
�
uHpzq� (4)

as a multitude of parameters X can be modelled in this way. Here u marks the so-called size of the
core, i.e., the involved G-component; see [5, 6, 25]. The distribution of the corresponding random
variable Xn is then readily defined by

PpXn � kq � rznuksF pz, uq
rznsF pz, 1q .

Structurally, such schemes are at the heart of many fascinating phase transition phenomena (analytic-
ally corresponding, e.g., to coalescing saddle points or to confluence of singularities), related to the
Gibbs measure in statistical physics and probability theory [38].

First, we relate composition schemes to q-enumeration.
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� Lemma 2 (Composition schemes and Gibbs distributions). Let a combinatorial statistic X
with bivariate generating function F pz, uq be given. Then, for real q ¡ 0 the Gibbs distribution of X
has a probability mass function given in terms of F by

PpXnpqq � kq � rznuksF pz, quq
rznsF pz, qq .

In many (combinatorial) applications of composition schemes, the following assumptions hold [6]:
all involved generating functions Gpzq, Hpzq, and F pzq have nonnegative coefficients and aperiodic
support, are analytic in a ∆-domain with a finite radius of convergence ρF and possess singular
expansions of the form

F pzq � P

�
1� z

ρF



� cF �

�
1� z

ρF


λF

p1� op1qq , (5)

where λF P Rzt0, 1, 2, . . . u is called the singular exponent (at z � ρF ), and where P pxq P Crxs is a
polynomial (of degree ¥ 1 for λF ¡ 1, of degree 0 for 0   λF   1, and P � 0 for λF   0). Then,
singularity analysis [25] can often be used to compute the asymptotics of the coefficients.

For the reader’s convenience, we recall the classical terminology for composition schemes in the
following definition.

� Definition 3 (Classification of composition schemes). Let τH � HpρHq. A composition
scheme F pzq � G

�
Hpzq� is called subcritical if it satisfies τH   ρG, critical if it satisfies τH � ρG,

and supercritical if it satisfies τH ¡ ρG.

We note that each individual class of critical schemes leads to very diverse combinatorial and
probabilistic phenomena [3, 5, 6, 25, 38].

One typical example of a combinatorial construction of shape F pz, uq � G
�
uHpzq� is given by

the sequence construction.

� Example 4 (Sequence of objects). Given a combinatorial structure H, let F � SEQpHq. Using
the variable u to encode the core size (i.e., the number the H components), one has F pz, uq �
1{p1� uHpzqq. This is a composition scheme with Gpzq � 1{p1� zq, with ρG � 1 and λG � �1.

We observe that the parameter q can thus directly influence the nature of the underlying singular
structure when the total mass (obtained by u � 1) changes from rznsF pz, 1q to rznsF pz, qq. Let us
make this more precise for the following class of functions that includes the sequence construction.

� Lemma 5 (Nature and asymptotics of q-enumerated composition schemes). Let a composi-
tion scheme F pz, uq � G

�
uHpzq� with singular exponents λG   0 and 0   λH   1 be given. Let

qc :� ρG

τH
� ρG

HpρHq ¡ 0. The nature of the scheme then splits into three different regimes:
for 0   q   qc, the scheme is subcritical;
for q � qc, the scheme is critical;
for q ¡ qc, the scheme is supercritical.

Accordingly, if one imposes a Gibbs measure on the number of H-components, this impacts the
asymptotics of their q-enumeration fnpqq as follows:

fnpqq �

$''''&
''''%

cH qG1pqτHq
Γp�λHq ρ�n

H n�λH�1, for 0   q   qc,

cG

�
� cH

τH

	λG 1
Γp�λH λGqρ

�n
H n�λH λG�1, for q � qc,

cG

�
qρH1pρq

ρG

	λG 1
Γp�λGqρ

�nn�λG�1, for q ¡ qc.
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Proof of Lemma 5. First, we turn to the nature of the scheme Fqpzq � GpqHpzqq. Since Fqpzq
has nonnegative coefficients, Pringsheim’s Theorem [25] implies that there is a singularity on the
real axis. Further, Hpzq is monotonically increasing on the real axis from 0 to ρH , where it attains
the value τH � HpρHq   8. Thus, the nature of Fqpzq depends on the relation between the
singularity ρG of Gpzq and qτH as claimed. Next, we look at the singular expansions. We start with
those of Gpzq and Hpzq. By the assumptions on λG and λH we have

Gpzq � cG

�
1� z

ρG


λG

and Hpzq � τH � cH

�
1� z

ρH


λH

. (6)

In the subcritical regime 0   q   ρG

τH
, the outer function Gpzq is analytic at qτH and we combine

its expansion with the singular expansion of Hpzq around z � ρH to obtain

Fqpzq � GpqτHq �G1pqτHq
�
qHpzq � qτH

�p1� op1qq
� GpqτHq � cHqG1pqτHq

�
1� z

ρH

�λH
.

Basic singularity analysis [25] provides the stated expansion.
For the critical regime q � ρG

τH
we obtain

Fqpzq � cG

�
1� q

τH

ρG
� q

cH

ρG

�
1� z

ρH


λH
�λG

� cG

�
�cH

τH


λG
�

1� z

ρH


λH λG

,

which leads to the desired result.
Finally, in the supercritical regime q ¡ ρG

τH
, there exists a unique 0   ρ   ρH such that

qHpρq � ρG. As ρ   ρG, we may expand Hpzq around ρ. This leads to

qHpzq � qHpρq � qH 1pρqpz � ρq �O
�pz � ρq2� .

Note that by the positivity of the coefficients of H one has H 1pρq � 0. Thus, we have

Fqpzq � cG

�
qρH 1pρq

ρG


λG
�

1� z

ρ


λG

,

and the asymptotic formula for fnpqq follows by singularity analysis. �

2 Main theorem: Gibbs models and phase transitions with respect
to q

The following result is our main theorem. It describes the dependency of the limit law on the
parameter q. In this extended abstract, we present only the case of sequence-like schemes.

� Theorem 6 (Gibbs distribution and phase transitions of sequence-like schemes). Let a
composition scheme F pz, uq � G

�
uHpzq�, with singular exponents λG   0 and 0   λH   1, be

given. Then, the Gibbs distribution of Xn � Xnpqq associated with F pz, qvq has the following limit
laws and phase transition diagram that depend on qc � ρG

τH
:

In the subcritical regime 0   q   qc, the random variable Xn � 1 converges to a discrete distri-
bution, a Boltzmann distribution BG1pqτhq with explicit probability generating function given by:

PpXn � 1 � kq Ñ rvksG
1pvqτHq

G1pqτHq .

In particular, if Gpzq � 1
p1�zqm , the limit law of Xn � 1 is a negative binomial distribution

NegBinpm�1, 1�qτHq, where X � NegBinpr, pq is defined by PpX � kq � �k�r�1
k

�
prp1�pqk

for k ¥ 0.
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Parameter q 0   q   qc q � qc q ¡ qc

Regime subcritical critical supercritical
Singularity ρH ρH ρ   ρH

Singular exponent ZλH ZλGλH ZλG

Limit law discrete continuous continuous
(Boltzmann) (Mittag-Leffler) (Gaussian)

In the critical regime q � qc, the random variable Xn{nλH converges in distribution:

�cHXn

τH nλH

LÝÑ X,

where the random variable X follows the two-parameter Mittag-Leffler distribution MLpα, βq
(with α :� λH and β :� �λGλH ) of density fXpxq � Γpβ�1q

αΓp β
α�1q

°8
n�1

p�1qn

n!Γp�nαqx
n�β{α�1 that

is determined by its moments EpXrq � ΓpβqΓpr�β{αq
Γpβ{αqΓpαr�βq .

In particular, for λG � �1 and λH � 1
2 , X follows the Rayleigh distribution Rp?2q, where

X � Rpσq is defined by the density x
σ2 e�x2{p2σ2q for x ¥ 0.

In the supercritical regime q ¡ qc, the centred and normalized random variable pXn � µnq{σn

converges in distribution to a standard normal distribution N p0, 1q, where mean µn and vari-
ance σ2

n are both of order n: we have, with ρ � ρpqq given by qHpρq � ρG,

µn � ρG

qρH 1pρq � n, σ2
n �

� ρ2
G

q2ρ2H 1pρq2 �
ρG

qρH 1pρq �
ρ2

GH2pρq
q2ρH 1pρq3

	
� n.

In particular, the expected value of Xn is for n Ñ8 asymptotically equivalent to

EpXnq �

$''&
''%

1� qτH G2pqτHq
G1pqτHq , for 0   q   qc,

λGτH Γp�λGλHq
cH Γpp1�λGqλHq � nλH , for q � qc,

ρG

qρH1pρq � n, for q ¡ qc.

Proof of Theorem 6 (Sketch). For q   qc we are in the subcritical regime and follow the proof
of Lemma 5. We build on the results of [6, 25]. We expand F pz, qvq for 0   v   1 to obtain

F pz, qvq � GpqvτHq � cHqvG1pqvτHq
�

1� z

ρH


λH

.

This implies that the probability generating function satisfies

lim
nÑ8EpvXnpqqq � lim

nÑ8
rznsF pz, qvq

fnpqq � vG1pqvτHq
G1pqτHq ,

leading to a Boltzmann distribution BG1pqτHq. In particular, for Gpzq � 1{p1 � zq we have
G1pzq � 1{p1� zq2, leading to a negative binomial distribution.

For q � qc we are at the critical value and we thus apply [6, Theorem 4.1] with λG   0 and
0   λH   1. This yields the stated limit law, as discussed in [6, Remark 4.2].

In the supercritical regime for q ¡ qc, our claim results from the approach of Bender [25,
Propositions IX.6 and IX.7]. The singularity ρ � ρpquq becomes an analytic function of u while
the nature of the singularity remains unchanged for u in a sufficiently small neighbourhood of 1. In
particular, the expected value, the variance, and the normal limit law follow by an application of
Hwang’s quasi-power theorem [25, 32]. �

� Remark 7. The constant in the asymptotics of σ2
n in the supercritical case is always strictly positive,

thus degenerate limit laws are not possible. We refer to the full version for a proof.
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3 Applications

We start our list of applications with the case of fixed-point-biased permutations avoiding a pattern of
length three, whose asymptotic behaviour was recently considered in [13]. Then we consider several
instructive examples from the theory of lattice paths, namely the returns to zero in Dyck bridges and
Dyck excursions, as well as in Motzkin bridges and Motzkin excursions. Thereby, we add to the
existing classical results (that is, for the uniform distribution) the phase transitions stemming from
q-enumeration (that is, for the Gibbs distribution on the parameter). We also consider the number
of boundary interactions in some quarter-plane walk models, and the number of contacts between 2
paths in some watermelon models.

3.1 Fixed point biased permutations avoiding a pattern of length three

Let Snppq be the set of permutations of 1, 2, . . . , n that avoid any given pattern p of length 3.
Elizalde [19] obtained the generating function counting the statistic fppσq (number of fixed points) of
such permutations:

F pz, uq � 1�
8̧

n�1

¸
σPSnppq

ufppσqzn � 2
1� 2p1� uqz �?

1� 4z
.

Later, Chelikavada and Panzo [13] used it to establish a phase transition which we rederive now.

� Theorem 8 (Phase transition for fixed-point-biased permutations). The limit Gibbs distribu-
tion of the fixed-point statistic in permutations avoiding any given pattern of length 3 has a phase
transition with critical value qc � 3:

Parameter q 0   q   3 q � 3 q ¡ 3

Limit law of Xnpqq Negative binomial Rayleigh Gaussian
NegBinp2, 1� q{3q Rp?2q N p0, 1q

Proof. In order to deduce the phase transitions from Theorem 6, we write F pz, uq as a sequence of
components Hpzq marked with u

F pz, uq � Hpzq
z

� 1
1� uHpzq �

1
uz

� 1
1� uHpzq �

1
uz

, where Hpzq � 2z

1� 2z �?
1� 4z

.

Thus, one has ρG � 1, ρH � 1
4 and τH � HpρHq � 1

3 . Theorem 6 then implies the phase transition
at qc � ρG{τH � 3 with NegBin, Rayleigh (since λH � 1

2 ), and Gaussian distributions. �

Figure 1 An example of a 312-avoiding permutation of length 12 with 3 fixed points marked by red dots.
(A permutation π � pπ1, . . . , πnq avoids the pattern p � 312 if there is no triplet 1 ¤ i   j   k ¤ n such that
πk   πi   πj .)
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3.2 Returns to zero in Dyck and Motzkin paths

We consider two classical directed models: Dyck and Motzkin paths. Dyck paths consist of the steps
up p1, 1q and down p1,�1q, while Motzkin paths allow additionally some horizontal steps p1, 0q.
They are called bridges if they start at p0, 0q and end at p2n, 0q, and excursions if it is additionally
required that they never cross the x-axis.

The random variable Xn, counting the number of returns to the x-axis in a random excursion and
bridge of size 2n, is a very well studied object [4, 25], leading for excursions to a negative binomial
limit law for Xn and leading for bridges to a Rayleigh limit law for Xn{

?
n. Note that the root degree

in plane trees behaves the same due to a classical bijection between plane trees and Dyck excursions.

� Theorem 9 (q-enumerations: limit laws for returns to zero). The Gibbs distribution of the
number Xn � Xnpqq of returns to zero in Dyck excursions and bridges of length 2n as well as
Motzkin excursions and bridges of length n, has a phase transition at qc and follows, after suitable
rescaling for n Ñ �8, either a negative binomial, Rayleigh, or Gaussian distribution.

Parameter q Limit law

0   q   qc Xn � 1 LÝÑ NegBinp2, 1� qτHq
q � qc

�cH

τH

Xn?
n

LÝÑ Rayleighp?2q
q ¡ qc

Xn�µ�n
σ�?n

LÝÑ N p0, 1q

qc �

$''''&
''''%

2 for Dyck excursions,

1 for Dyck bridges,
3
2 for Motzkin excursions,

1 for Motzkin bridges.

Here, τH is 1
2 , 1, 2

3 , 1, and cH is � 1
2 ,�1,� 1?

3 ,� 2?
3 for Dyck excursions, Dyck bridges, Motzkin

excursions and Motzkin bridges, respectively.

Proof. Cutting each time the path returns to the x-axis [25, p. 636], one directly sees that the gener-
ating functions Dpzq and BDpzq of Dyck excursions and bridges, respectively, satisfy the relations
Dpzq � 1

1�z2Dpzq and BDpzq � 1
1�2z2Dpzq . The generating functions Dpz, uq and BDpz, uq of

Dyck excursions and bridges marking the number of returns are

Dpz, uq � 1
1� z2uDpzq and BDpz, uq � 1

1� 2z2uDpzq . (7)

We can readily apply Theorem 6 to the q-enumerated returns to zero.
Motzkin excursions have the generating function

Mpzq � 1�z�
?
p1�zqp1�3zq
2z2 ,

with dominant singularity ρ � 1
3 [25]. With the same ideas as for Dyck paths, we directly get the

bivariate generating functions Mpz, uq and BM pz, uq of excursions and bridges, respectively, as

Mpz, uq � 1
1� zu

�
1� zMpzq� and BM pz, uq � 1

1� zu
�
1� 2zMpzq� . (8)

This leads again to similar phase transitions. �

�Remark 10 (Weighted paths). Let p�1, p0, p1 ¥ 0 be the weights of the steps p1,�1q, p1, 0q, p1, 1q,
respectively. The weight of a path is the product of its weights. Weighted Dyck excursions and bridges
behave exactly as unweighted ones, as each path of length 2n has a weight pp�1p1qn. However,
weighted Motzkin excursions and bridges behave differently. With the same techniques it is easy to
show that for weighted Motzkin excursions, the phase transition occurs at

qc �
p0 � 2?p�1p1

p0 �?
p�1p1

� 1� 1
1� p0?

p�1p1

P p1, 2s.

Finally, for weighted Motzkin bridges the phase transition again always occurs at qc � 1, because
τH � 1 is independent of the weights.
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3.3 Boundary contacts for quarter-plane walks

A direct byproduct of our results are phase transitions for Hadamard models of quarter-plane walks.
Beaton, Owczarek, and Rechnitzer [7] initiated the study of quarter-plane walks with wall interactions.
We are interested in walks restricted to the quarter plane, starting and ending at the origin, and their
interaction with the walls (that is, their number of contacts with x- or y-axis). It turns out that in
many models the generating functions are rather complicated [7], but for three families of walks
called Hadamard models, the analysis of contacts can be done in a fairly simple way. Such models
are enumerated by a Hadamard product of generating functions

Apzq dBpzq :�
¸

n¥0
anbnzn, where Apzq �

¸
n¥0

anzn and Bpzq �
¸

n¥0
bnzn.

They correspond to the diagonal, diabolo, and king walk models with stepsets , , ,
respectively (for the last two models, one has in fact a slight variant of the usual diabolo or

king models: here we allow additionally the step p0, 0q, as indicated by the centre dot in the stepset
representation). Walks of length 2n in the quarter plane that start and end at p0, 0q decompose into
two independent directed excursions of length n. Therefore, these models are in bijection with pairs
of Dyck and Motzkin excursions. This is summarized in the following table, where Dpz, uq and
Mpz, uq are the generating functions from (7) and (8), respectively.

Model Steps Generating function Qpz, u1, u2q Sequence Q2n OEIS

Diagonal Dpz, u1q dDpz, u2q Cn � Cn A001246

Diabolo Dpz, u1q dMpz, u2q Cn �Mn A151362

King Mpz, u1q dMpz, u2q Mn �Mn A133053

The limit laws for the number of wall interactions with the x-axis or y-axis depend on the
particular values of the q-enumerations;

compare with the results in Theorem 9. More precisely, we get the following proposition.
By symmetry it also translates to y-axis contacts in the missing cases.

� Theorem 11 (Boundary interactions for some quarter-plane walks). The number of x-axis
contacts of diagonal walks and the number of y-axis contacts of diabolo walks follows the law of the
q-enumeration of Dyck returns to 0. The number of x-axis contacts of diagonal, diabolo, and king
walks follows the law of the q-enumeration of Motzkin returns to 0. Accordingly, the phase transitions
are the same as in Theorem 9.

Proof (sketch). In the diagonal model, the generating function of the x-axis contacts is equal to
Dpz, quq dDpzq. Therefore, by Lemma 2 we have

PpXnpqq � kq � rznuksDpz, quq dDpzq
rznsDpz, quq dDpzq � rznuksDpz, quq

rznsDpz, qq .

Thus, the result follows directly from Theorem 9. The other models follow in the same fashion. �

� Remark 12 (x-axis plus y-axis contacts). The law of the number of x-axis plus y-axis contacts
is more involved, as it requires the study of the analytic behaviour of Hadamard products of the
shape p1� zqa d p1� zqb. These products were studied by Fill, Flajolet, and Kapur, who gave the
corresponding Puiseux expansions; see [23, Proposition 8]. Note that, as pinpointed in [23], the case
a� b integer requires the use of additional hypergeometric identities.

http://oeis.org/A001246
http://oeis.org/A151362
http://oeis.org/A133053
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3.4 Friendly two-watermelons without wall: contacts and returns

We consider a pair of directed walkers with Dyck steps p1,�1q and p1, 1q. The walkers start and end
at the same point, may meet and share edges but not cross. Such walker configurations W are also
called friendly two-watermelons (see the related work of Roitner [37] and Krattenthaler, Guttmann,
and Viennot [34]). We are interested in walks of length n and the number of contacts C of the two
walkers. A contact in a two-watermelon is a point (not counting the starting point) where both paths
occupy the same lattice point. (See Figure 2.)

� Theorem 13 (Phase transition for contacts in friendly two-watermelons). With the renormaliz-
ations of Theorem 6, the limit Gibbs distribution of the number of contacts in friendly two-watermelons
has a phase transition with critical value qc � 4{3:

Parameter q 0   q   4
3 q � 4

3 q ¡ 4
3

Limit law of Xnpqq Negative binomial Rayleigh Gaussian
NegBinp2, 1� 3

4 qq Rp?2q N p0, 1q

Proof. Let F pz, uq denote the bivariate generating function of friendly two-watermelons with respect
to the number of contacts:

F pz, uq �
¸

wPW
z|w|uCpwq.

This generating function was determined by Roitner [37], using a reduction to weighted Motzkin
paths. It is given by

F pz, uq � 1
1� u

�
z2W pzq � 2z

� , W pzq � 1� 2z �?
1� 4z

2z2 . (9)

Under the uniform distribution model, Roitner also obtained a discrete limit law for the parameter
(number of contacts). We note in passing that closely related problems in families of osculating
walkers have been considered before by Bousquet-Mélou [10]. Under the Gibbs distribution model, we
recognize a composition scheme with Gpzq � 1{p1� zq, ρG � 1, and Hpzq � zpzW pzq� 2q so that
τH � 3

4 . Therefore, Theorem 6 applies: we get the 3 phases, with the critical value qc � ρG

τH
� 4

3 . �

Figure 2 An example of a friendly two-watermelon without wall of length 24 with 8 contacts marked by
red dots. Under the Gibbs model where such an object is given the weight q8, the distribution of the number of
contacts then depends on the value of q, according to the phase transition given in Theorem 13.
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4 Extensions to other constructions

It is appealing to extend Theorem 6 to even more general composition schemes such as

F pz, uq � Mpzq �G�uHpzq�, (10)

where an additional factor Mpzq appears. This extended scheme is of interest as it captures many
classical combinatorial structures: some families of trees or lattice paths (meanders), Pólya urns,
and other probabilistic processes like the Chinese restaurant model. In its critical phase, this scheme
was recently analysed in [6] under the uniform distribution model for the associated combinatorial
structures. This extends the work of pioneers like Bender, Flajolet, Soria, Drmota, Hwang, Gourdon [8,
16, 17, 26, 28, 32], later synthesized in [25].

In the long version of this article, we analyse this extended scheme under the Gibbs measure
model, and we show that the phase transition for Gibbs distributions leads, in some cases, to the
3-parameter Mittag-Leffler distribution introduced in [6]. Further examples of combinatorial problems
involving an extended scheme are the root degree in two-connected outerplanar graphs (see Drmota,
Giménez, and Noy [15, Theorem 3.2]), the returns to zero in coloured walks, and the number of wall
interactions in watermelons. We now analyse the phase transitions for these last two models.

4.1 Number of wall contacts in watermelons

An m-watermelon of length 2n consists of m walkers moving from p0, 2i � 2q to p2n, 2i � 2q,
1 ¤ i ¤ m, where every walker may either take an up step p1, 1q or a down step p1,�1q, but
walkers are not allowed to occupy the same position (they are thus called vicious). One says that the
watermelon has a wall if the x-axis serves as a barrier which the lowest walker may touch but not
cross. (See Figure 3.) Watermelons were introduced by Fisher [24] for modelling wetting and melting.
We refer the reader to the work of Krattenthaler, Guttmann, and Viennot [33, 34] or Feierl [20–22] for
more results on watermelons and related problems.

Figure 3 An example of a 3-watermelon (with a wall) of length 24 with 7 x-axis contacts marked by red
dots. Under the Gibbs model where such an object is given the weight q7, the distribution of the number of
contacts then depends on the value of q, according to the phase transition given in Theorem 14.

We are interested in the number of contacts of the lowest walker with the x-axis. For m � 1 this
reduces to Dyck excursions, discussed in Theorem 9. For m ¥ 1, we get the following theorem.

� Theorem 14 (Phase transition for wall contacts). The limit Gibbs distribution of the number of
x-axis contacts in m-watermelons with a wall has a phase transition with critical value qc � 2:

Parameter q 0   q   2 q � 2 q ¡ 2

Limit law of Xnpqq Negative binomial Chi distribution Gaussian

NegBinp2m, 1� q
2 q Xn?

n

LÝÑ χp2mq N p0, 1q
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Proof (sketch). The q-enumeration of the number of contacts in m-watermelons of length 2n

(n ¡ 0) with a wall was given by Krattenthaler [33, Theorem 4]:

fnpqq � pn� 1q!±m�1
i�0 p2i� 1q!±m�2

i�0 p2n� 2iq!±2m�2
i�0 pn� iq!

n�1̧

ℓ�2

�
2n� ℓ

n� 1


�
ℓ� 2m� 3

ℓ� 2



qℓ. (11)

In the following, we denote by Xn the random variable counting the number of wall contacts, where
we drop the dependence on m. Its probability generating function EpqXnq satisfies

EpqXnq � fnpqq
fnp1q . (12)

Let F pz, qq denote the generating function of the numerator of the reduced fraction (12), i.e.

F pz, qq �
¸

n¡0
zn

n�1̧

ℓ�2

�
2n� ℓ

n� 1


�
ℓ� 2m� 3

ℓ� 2



qℓ. (13)

We change the order of summation and shift the index to get

F pz,qq �
¸
ℓ¥2

�
ℓ� 2m� 3

ℓ� 2



qℓ
¸

n¥ℓ�1

�
2n� ℓ

n� 1



zn � q2z

¸
ℓ¥0

�
ℓ� 2m� 1

ℓ



qℓzℓ

¸
n¥0

�
2n� ℓ

n



zn.

Introducing the Catalan generating function Cpzq � 1�?1�4z
2z , one has

°
n¥0

�2n�ℓ
n

�
zn � Cpzqℓ

?
1�4z

.

While such a formula can be proven by convolution identities [29, Eq. (5.72)], it is pleasant to give a
bijective proof; we invite the reader to pause here and find it before reading the next line. The bijection
consists in taking a walk of length 2n� ℓ ending at altitude ℓ, cutting it at the initial longest bridge,
and after this, at the last passage at each altitude. This gives

°
n¥0

�2n�ℓ
n

�
z2n�ℓ � 1?

1�4z
pzCpz2qqℓ.

Going back to the quest for simplifying F pz, qq, we thus obtain

F pz, qq � q2z?
1� 4z

� 1�
1� qzCpzq�2m , (14)

where in the last step we used the generating function identity Gpzq � 1
p1�zq2m � °ℓ¥0

�
ℓ�2m�1

ℓ

�
zℓ.

Note that Eq. (14) suggests that there may be a bijective proof of Formula (11) using links with
bridges and arches (instead of Krattenthaler’s tour de force relying on determinants and jeu de taquin).

Now, in order to get the limit laws, our key observation is that Eq. (14) is a composition scheme
of shape F pz, qq � MpzqG�qHpzq�, where Hpzq � zCpzq, and the probability generating function
(under the Gibbs measure) of the number of contacts is given by

EpvXnpqqq � rzn�1vksF pz, qvq
rzn�1sF pz, qq .

Next, we just apply singularity analysis with values λG � �2m, ρG � 1, λH � 1
2 . The scheme is

critical for qc � 2, where one gets the Mittag-Leffler distribution 1?
2 MLp 1

2 , 2m� 1
2 q, which can be

seen (from its moments) to be the same as the chi distribution χp2mq. This gives the theorem. �

4.2 Returns to zero in coloured walks

Let m ¡ 0 be an integer. An m-coloured bridge is an m-tuple pB1, . . . , Bmq of (possibly empty)
bridges Bi. As a visual representation, we think of them appended one after the other, Bi is coloured
in colour i. Note that not all colours need to be present. Let an m-coloured walk be an m-coloured
bridge to which a final walk is appended that never returns to the x-axis. See Andrews [2] and [27,30]
for some combinatorial properties of these walks, and links with multicompositions.

We now prove that their number of returns to zero follows a χpmq distribution. In particular,
this gives the half-normal distribution for m � 1 (which extends Theorem 9 to unconstrained walks,
see [40]), the Rayleigh distribution for m � 2, and the Maxwell distribution for m � 3.
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First bridge Second (empty) bridge
of colour blue of colour purple

Third bridge
of colour green

Figure 4 A 3-coloured walk (only 2 of the available 3 colours are present) with 7 returns to zero (red dots).

� Theorem 15 (Phase transitions for returns to zero). The Gibbs distribution of the number
Xnpqq of returns to zero in m-coloured walks of length n, has a phase transition at qc � 1 and follows,
after suitable rescaling for n Ñ �8, either a negative binomial, chi, or Gaussian distribution.

Parameter q 0   q   1 q � 1 q ¡ 1

Limit law of Xnpqq Negative binomial Chi distribution Gaussian
NegBinpm, 1� qq χpmq N p0, 1q

Proof (Sketch). We start by showing that returns to zero in m-coloured walks satisfy the composi-
tion scheme F pz, qq � MpzqGpqApzqq. First, let Bpzq be the generating function of bridges. Each
bridge can be decomposed into a sequence of minimal bridges (or generalized arches), which have no
return to zero between their extremities (yet jumps might cross the x-axis). Hence, Apzq � 1� 1

Bpzq .
Second, the m-tuple corresponding to an m-coloured bridge has the generating function GpApzqq,
with Gpzq � 1

p1�zqm . Third, the final part of the walk (that never returns to the x-axis) corresponds
to Mpzq � W pzq{Bpzq, since each walk can be factored into an initial bridge and this final part.

Then, as before, the probability generating function (under the Gibbs measure) is given by
EpvXnpqqq � rznvksF pz,qvq

rznsF pz,qq . We get the values λG � �m, ρG � 1, and λM � �1{2. Furthermore,
for any directed walk model [4], Bpzq has a critical exponent λB � �1{2, and therefore λA � 1{2.
This also means that Bpzq diverges at the singularity, and thus Apzq is equal to 1. Hence, the scheme
is universally critical at qc � 1, where we get 1?

2 MLp 1
2 , m�1

2 q, which can be seen (from its moments)
to be the same as the chi distribution χpmq. Other cases follow by singularity analysis. �

5 Conclusion

We unified the recent results of [6] with the classical results of [8, 25] to obtain phase transitions for
Gibbs models under the umbrella of composition schemes. This allows us to obtain a variety of limit
laws, leading to new results, as well as summarizing and generalizing classical results in analytic
combinatorics. It also explains the universality hidden behind some phase transitions up to now
sporadically observed in the literature. In the full version of this article, we give several extensions of
Theorem 6, thus treating many other examples of more general combinatorial constructions.

It is interesting to have an informal physicist look at our results: in statistical mechanics, the
Gibbs measure can be seen as qk � expp�k{T q

Zp1{T q , where T is the temperature of the model. Accordingly,
T Ñ 0 (i.e. q is very small) gives a frozen “solid” phase (typically leading to a discrete distribution),
while T Ñ �8 gives a “gaseous” phase (typically leading to a Gaussian distribution), and, around
(or at) a critical temperature Tc, this gives a “liquid” phase (where the wild things are: one often
observes at this location an unexpected fancy distribution). Our article is one more illustration of this
informal paradigm.

Acknowledgments. The second author warmly thanks Thomas Feierl for many discussions about
watermelons and Paul Schreivogl for discussions on partition functions.
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