Lattice Path Conference
21-25 June 2021
Presentation times for this poster:

Monday	$1: 30-2: 30 \mathrm{pm}$
Tuesday	$1: 30-2: 30 \mathrm{pm}$
Thursday	$6-7 \mathrm{pm}$

Lattice Paths And Negatively Indexed Weight-Dependent Binomial Coefficients

Josef Küstner ${ }^{\text {a }}$ Michael Schlosser ${ }^{\text {a }}$ Meesue Yoo ${ }^{\text {b }}$

aFakultät für Mathematik, Universität Wien, Vienna, Austria
(a) auncsuk
${ }^{\text {b }}$ Department of Mathematics, Chungbuk National University, Cheongju, South Korea

Weight-dependent binomial coefficients

For $n, k \in \mathbb{Z}$, we define the weight-dependent binomial coefficient as

$$
\left[\begin{array}{l}
n \\
0
\end{array}\right]={ }_{w}\left[\begin{array}{l}
n \\
n
\end{array}\right]=1 \quad \text { for } n \in \mathbb{Z}
$$

and for $n, k \in \mathbb{Z}$, provided that $(n+1, k) \neq(0,0)$,

$$
w_{w}\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]={ }_{w}\left[\begin{array}{l}
n \\
k
\end{array}\right]+{ }_{w}\left[\begin{array}{c}
n \\
k-1
\end{array}\right] W(k, n+1-k),
$$

The lattice path model

For $m, n \in \mathbb{Z}$, a hybrid lattice path is a path from $(0,0)$ to (m, n). Depending on m and n, the possible steps of a path are

1. $n, m \geq 0: \uparrow$ and \rightarrow
2. $m<0 \leq n: \leftarrow$ and \nwarrow
3. $n<0 \leq m: \downarrow$ and \searrow
4. $n, m<0$: no allowed steps

Additionally, if $m<0$, the first step has to be \leftarrow and if $n<0$, the first step has to be \downarrow.
$\underset{(s, t)}{\text { Each step is assigned a weight depending on its position }}$

The weight of a path $w(P)$ is the product over the weights of its steps.

Examples

The weight of the first path is for example

$$
\begin{aligned}
w(P) & =W(0,0)^{-1}\left(-W(-1,1)^{-1}\right)\left(-W(-2,2)^{-1}\right) W(-3,2)^{-1} \\
& =(w(-1,1) w(-2,1) w(-2,2) w(-3,1) w(-3,2))^{-1}
\end{aligned}
$$

Weighted counting

The weight-dependent binomial coefficients count weighted hybrid lattice paths. For all $n, k \in \mathbb{Z}$,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\sum_{P} w(P),
$$

where the sum runs over all paths from $(0,0)$ to $(k, n-k)$

Reflection formulae

We define the weight-reflections $\breve{w}(s, t)=w(s, 1-s-t)^{-1}$ and $\widetilde{w}(s, t)=w(1-s-t, t)^{-1}$ to obtain

$$
\begin{aligned}
{ }_{w}\left[\begin{array}{l}
n \\
k
\end{array}\right] & =(-1)^{k} \operatorname{sgn}(k){ }_{\breve{w}}\left[\begin{array}{c}
k-n-1 \\
k
\end{array}\right] \prod_{j=1}^{k} W(j,-j) \\
& =(-1)^{n-k} \operatorname{sgn}(n-k)\left[\begin{array}{c}
-k-1 \\
-n-1
\end{array}\right] \prod_{j=1}^{n-k} W(n+1-j, j)^{-1},
\end{aligned}
$$

where $\operatorname{sgn}(n)$ is 1 for $n \geq 0$ and -1 for $n<0$. These formulas explain the behavior of the weight-dependent binomial coefficient at negative values.

Noncommutative binomial theorem

Let x and y be noncommutative variables satisfying the three relations $y x=w(1,1) x y, x w(s, t)=w(s+1, t) x$ and $y w(s, t)=w(s, t+1) y$, then for all $n \in \mathbb{Z}$:

$$
(x+y)^{n}=\sum_{k \geq 0}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} y^{n-k}=\sum_{k \leq n}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} y^{n-k}
$$

Convolution formula
Let x, y be noncommutative as before, $n, m \in \mathbb{Z}$ and $k \geq 0$, then

$$
{ }_{w}\left[\begin{array}{c}
n+m \\
k
\end{array}\right]=\sum_{j=0}^{k}{ }_{w}\left[\begin{array}{l}
n \\
j
\end{array}\right]\left(x^{j} y^{n-j}{ }_{w}\left[\begin{array}{c}
m \\
k-j
\end{array}\right] y^{j-n} x^{-j}\right) \prod_{i=1}^{k-j} W(i+j, n-j) .
$$

For $m, n>0$ or $m, n<0$, this identity can be interpreted as convolution over weighted paths with respect to a diagonal

Specializations

Binomial coefficient

For $w(s, t)=1$ we obtain the ordinary binomial coefficient $\binom{n}{k}$ studied for arbitrary integer values by Loeb [1].

Gaussian binomial coefficient

For $w(s, t)=q$ we obtain the q-binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ studied for arbitrary integer values by Formichella and Straub [2].

Elliptic binomial coefficient

For

$$
w(s, t)=\frac{\theta\left(a q^{s+2 t}, b q^{2 s+t-2}, a q^{t-s-1} / b ; p\right)}{\theta\left(a q^{s+2 t-2}, b q^{2 s+t}, a q^{t-s+1} / b ; p\right)} q
$$

we obtain the elliptic binomial coefficient [3]

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{a, b ; q, p}=\frac{\left(q^{1+k}, a q^{1+k}, b q^{1+k}, a q^{1-k} / b ; q, p\right)_{n-k}}{\left(q, a q, b q^{1+2 k}, a q / b ; q, p\right)_{n-k}},
$$

where $\theta(x ; p)=\prod_{k=0}^{\infty}\left(\left(1-x p^{k}\right)\left(1-p^{k+1} / x\right)\right)$ is the modified Jacobi theta function and $(a ; q, p)_{k}=\prod_{i=0}^{k-1} \theta\left(a q^{i} ; p\right)$ is the theta shifted factorial.

Symmetric functions

For $w(s, t)=\frac{a_{s+t}}{a_{s+t-1}}$ we obtain

$$
{ }_{w}\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left\{\begin{array}{lr}
e_{k}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \prod_{i=1}^{k} a_{i}^{-1}, & 0 \leq k \leq n \\
h_{k}\left(-a_{0},-a_{-1}, \ldots,-a_{n+1}\right) \prod_{i=1}^{k} a_{i}^{-1}, & n<0 \leq k \\
h_{n-k}\left(-a_{0}^{-1},-a_{-1}^{-1}, \ldots,-a_{n+1}^{-1}\right) \prod_{i=k+1}^{n} a_{i}, & k \leq n<0
\end{array}\right.
$$

where e_{k} is the elementary symmetric function and h_{k} is the complete homogeneous symmetric function of order k.

Conclusion

- Many results from [1] and [2] can be generalized to the weighted case with its specializations
- In [1] and [2] binomial coefficients were interpreted with hybrid sets. Hybrid lattice paths can be translated to the corresponding hybrid sets

References

[1] Loeb, D. E.: A generalization of the binomial coefficients. Discrete Math., 105(1-3):143-156, 1992
[2] Formichella, S.; Straub, A.: Gaussian binomial coefficients with negative arguments. Ann. Comb., 23(3-4):725-748, 2019
[3] Schlosser, M. J.: A noncommutative weight-dependent generalization of the binomial theorem. Sém. Lothar. Combin., 81:Art. B81j, 24, 2020.

