Lattice Path Conference
21-25 June 2021
Presentation times for this poster:
Monday 1:30-2:30 pm
Tuesday 1:30-2:30 pm

Lattice Pathology and symmetric functions
Cyriel Bandierer, Marie-Louise Lackner, Michael Wallner
Laboratoire d'Informatique de Paris Nord, Université Sorbonne Paris Nord, France
Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling, TU Wien, Austria
Institute of Discrete Mathematics and Geometry, TU Wien, Austria

Lattice paths
- **Step set**: \(S = \{ s_1, s_2, \ldots, s_n \} \subset \mathbb{Z} \)
- largest left and right steps: \(c := \min S \) and \(d := \max S \)
- **n-step lattice path**: sequence of steps \((v_1, \ldots, v_n) \in S^n \)
 \(\sim \) can be seen as a directed lattice path in \(\mathbb{N} \times \mathbb{Z} \)

New tool for lattice path surgery: prime walks
- Set \(A_k \) of arches = walks starting at 0, ending at altitude \(k \), and staying always strictly above altitude \(k \) except for its first and final position.
- The set \(P \) of prime walks is defined as the following sets of arches
 \[P = \bigcup_{k=0}^{d} A_k. \]

Theorem (Universal context-free grammar)
Meanders and excursions are generated by the following grammar:

- \(M \rightarrow \varepsilon + PM \) (meanders),
- \(E \rightarrow \varepsilon + AE \) (excursions),

i.e., "meanders are sequences of prime walks": \(M = \text{Seq} \left(\sum_{k=0}^{d} A_k \right) \)
and "excursions are sequences of arches": \(E = \text{Seq}(A_0) \),
where the arches \(A_k \) from 0 to \(k \) are generated by

\[A_k \rightarrow k + \sum_{j=k+1}^{d} A_j E A_{k-j} \] (arcs for \(k \geq 0 \)),

\[A_k \rightarrow k + \sum_{j=k+1}^{d} A_{k-j} E A_j \] (arcs for \(k < 0 \)),

with the convention that the part \(A_k \rightarrow k \) is omitted whenever \(k \notin S \).

Prime walk decomposition

Theorem (Bivariate Spitzer/Sparre Andersen's identities)
The GF \(W^+(z, u) = \sum w^+_n(u) z^n \) of walks ending at a positive altitude and the GF \(M(z, u) = \sum m_n(u) z^n \) of meanders (where \(u \) encodes the final altitude and \(z \) encodes the length) are related by the formula

\[M(z, u) = \exp \left(\int_0^z W^+(t, u) - 1 \right) dt = \exp \left(\sum_{k=1}^{\infty} w^+_k(u) z^k \right). \]

Proof (Spitzer/Sparre Andersen-like decomposition)

A non-empty walk \(W^+(z, u) \) consisting of a maximal meander \(M(z, u) \) starting at the minimum and a pointed prime walk \(\phi_2^{-1}\phi_1^{-1} \),

\[W^+(z, u) - 1 = M(z, u) z \frac{\partial \phi_1}{\partial z} \left(1 - \frac{1}{M(z, u)} \right). \]

Theorem (Bivariate version of Wiener–Hopf formula)
The GFs \(W_i(z, u) \) and \(W_s(z, u) \) of walks (\(u \) marks the positive and negative height; not the altitude!) are related to the GFs \(M^+(z, u) \) of positive and \(M^-(z, u) \) of negative meanders (\(u \) marks the final altitude):

\[W_i(z, u) = M^+(z) E(z) M^-(z, u) = \frac{1}{n^d} \prod_{j=1}^{d} \left(1 - u_j(z) \right) \prod_{i=1}^{\infty} \left(1 - u_i(z) \right) \]

\[W_s(z, u) = M^+(z, u) E(z) M^-(z) = \frac{1}{n^d} \prod_{j=1}^{d} \left(1 - u_j(z) \right) \prod_{i=1}^{\infty} \left(1 - u_i(z) \right) \]

Symmetric polynomials of degree \(k \) in \(d \) variables
- Complete hom. sym. pol.
 \(h_k(x_1, \ldots, x_d) = \sum_{1 \leq i_1 < \cdots < i_k \leq d} x_{i_1} \cdots x_{i_k} \)
- Elementary sym. pol.
 \(e_k(x_1, \ldots, x_d) = \sum_{1 \leq i_1 \leq \cdots \leq i_k \leq d} x_{i_1} \cdots x_{i_k} \)
- Power sum sym. pol.
 \(p_k(x_1, \ld. \ld, x_d) = \sum_{i=1}^{d} i^k \)

Symmetric polynomials and new types of lattice paths
- From \(k = 0 \) to \(k \)
- \(M^+(z) \)
- \(h_k \)
- \(e_k \)

Theorem (Asymptotics: explicit multiplicative constants)
The radius of convergence is \(r := 1/S(\tau) \), s.t. \(\tau > 0 \) given by \(S(\tau) = 0 \).

\[[z^n] M_{\alpha}(z) = \frac{\alpha S(\tau)^n}{2\sqrt{\pi}} \left(1 + \frac{1}{n^2} \right), \quad \alpha = \frac{\partial h_k}{\partial x_k}(\tau, u_1, \ldots, u_d). \]

References