Lattice Path Conference
21-25 June 2021
Presentation times for this poster:

Tuesday	$6-7 \mathrm{pm}$
Thursday	$1: 30-2: 30 \mathrm{pm}$

qRSt: A probabilistic Robinson-Schensted correspondence for Macdonald polynomials

Florian Aigner Gabriel Frieden
LaCIM, Université du Québec à Montréal, Canada

Semistandard Young tableaux
A semistandard Young tableau of shape λ is a filling of λ with positive
integers, such that
- rows are weakly increasing,
- columns are strictly increasing.
4 5 Denote by $\mathbf{x}^{T}=\prod_{i} x_{i}^{\#} i^{\prime \prime}$ in T

A standard Young tableau is an SSYT whose entries are exactly 1 ,...

Macdonald polynomials

The Macdonald polynomials P_{λ}, Q_{λ} are defined as

$$
\begin{aligned}
& P_{\lambda}(q, t ; \mathbf{x})=\sum_{T \in \operatorname{SSYT}(\lambda)} \psi_{T}(q, t) \mathbf{x}^{T}, \\
& Q_{\lambda}(q, t ; \mathbf{x})=\sum_{T \in \operatorname{SSYT}(\lambda)} \varphi_{T}(q, t) \mathbf{x}^{T},
\end{aligned}
$$

where $\psi_{T}(q, t), \varphi_{T}(q, t)$ are certain rational functions in q, t

Theorem (Cauchy identity)

Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots\right)$ be two sets of variables. Then

$$
\sum_{\lambda} P_{\lambda}(q, t ; \mathbf{x}) Q_{\lambda}(q, t ; \mathbf{y})=\sum_{A=\left(a_{i, j}\right)} \prod_{i, j \geq 1}\left(x_{i} y_{j}\right)^{a_{i, j}} \prod_{k=0}^{a_{i, j}-1} \frac{1-t q^{k}}{1-q^{k+1}} .
$$

The qRSt correspondence
We restrict ourselves to the coefficient of $x_{1} \ldots x_{n} y_{1} \ldots y_{n}$ in the Cauchy identity, i.e., SYTs and permutation matrices

Use Fomin growth diagrams to construct pairs of SYTs of the same shape. The probabilistic local growth rules are

where $\lambda \neq \rho$ and $\nu \gtrdot \lambda \gtrdot \mu$.

row insertion

column insertion

The probabilities (via Quebecois notation)

- Let $\lambda^{(\pm i)}$ denote λ with the i-th possible box supplemented or removed - Interpret a point (a, b) as $q^{a} t^{b}$

$$
\begin{aligned}
& \mathcal{P}_{\lambda}\left(\lambda \rightarrow \lambda^{(+j)}\right)=\prod_{k \neq j} \frac{1}{s_{j}-O_{k}} \prod_{k}\left(s_{j}-I_{k}\right), \\
& \mathcal{P}_{\lambda}\left(\lambda^{(-i)} \rightarrow \lambda^{(+j)}\right)=\prod_{k \neq j} \frac{r_{i}-O_{k}}{s_{j}-O_{k}} \prod_{k \neq i} \frac{s_{j}-I_{k}}{r_{i}-I_{k}} .
\end{aligned}
$$

An Example

qRSt for $n=2$

A			
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	(P, Q)	$\psi_{P}(q, t) \varphi_{Q}(q, t)$	
$\frac{t(1-q)}{1-q t}$	$\frac{1-t}{1-q t}$	12,12	$\frac{(1-t)^{3}\left(1-q^{2}\right)}{(1-q)^{3}(1-q t)}$
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\frac{q(1-t)}{1-q t}$	$\frac{1-q}{1-q t}$	2
	1	2	$\frac{(1-t)\left(1-t^{2}\right)}{(1-q)(1-q t)}$

The weight of A is always $\frac{(1-t)^{2}}{(1-q)^{2}}$.

Probabilistic Bijections

Let X, Y be sets together with weights ω_{X}, ω_{Y}. A probabilistic bijection is a pair of functions $\mathcal{P}(x \rightarrow y), \overline{\mathcal{P}}(x \leftarrow y)$ such that

$$
\begin{array}{lr}
\sum_{y \in Y} \mathcal{P}(x \rightarrow y)=1 & \forall x \in X \\
\sum_{x \in X} \overline{\mathcal{P}}(x \leftarrow y)=1 & \forall y \in Y \\
\omega_{X}(x) \mathcal{P}(x \rightarrow y)=\omega_{Y}(y) \overline{\mathcal{P}}(x \leftarrow y) & \forall x \in X, y \in Y
\end{array}
$$

A probabilistic bijection implies between $\left(X, \omega_{X}\right)$ and $\left(Y, \omega_{Y}\right)$ implies

$$
\sum_{x \in X} \omega_{X}(x)=\sum_{y \in Y} \omega_{Y}(y) .
$$

Theorem (Aigner-Frieden)

The qRSt correspondence yields a probabilistic bijective proof of the square-free part of the Cauchy identity. Restricting to $q=t=0$ ($q=t=\infty$ resp.) results in row (column resp.) insertion of RS

An interesting identity

Let $\lambda \gtrdot \mu$, and $f_{\lambda}=\#($ SYTs of shape $\lambda)$
For $q=t=1$ our Theorem implies

$$
\sum_{\nu \gtrdot \lambda} \frac{f_{\mu} f_{\nu}}{\left(h_{\lambda}\left(c_{\mu, \nu}\right)\right)^{2}}=\frac{|\lambda|+1}{|\lambda|}\left(f_{\lambda}\right)^{2}
$$

