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Lattice paths

• Step set: S = {s1, s2, . . . , sm} ⊂ Z
• n-step lattice path: sequence of steps (v1, . . . , vn) ∈ Sn

Probabilistic weights

• Π = {ps1
, . . . , psm}, ps ∈ [0, 1] s.t.

∑
s∈S ps = 1

• Jump polynomial P(u) =
∑

s∈S psu
s

The reflection-absorption model

• Lattice: Z2
+

• At altitude k 6= 0
• Weighted step set S
• P(u) =

∑
s∈S psu

s

• At alltitude k = 0
• Weighted step set S0

• P0(u) =
∑

s∈S0 p0,su
s

Figure: Allowed steps depend on altitude

Reflection model: No loss of mass at 0: P0(1) = 1
Absorption model: Loss of mass at 0: P0(1) < 1

Comparing probabilities for different Dyck models

Step polynomial: P(u) = pu + qu−1

bridges, absolute value excursions, excursions,

uniform model of bridges reflection m. absorption m.

P0(u) = pu + qu−1 p0u + q0u
−1 u p0u
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Relevant constants

Let τ be the structural constant given by P ′(τ ) = 0, τ > 0, and let
ρ = 1/P(τ ) be the structural radius.

Let u1(z) be the unique solution of the kernel equation

1− zP(u) = 0,

with limz→0 u1(z) = 0. Then, the equation 1− zP0(u1(z)) = 0 has at
most one solution in z ∈ (0, ρ], which we denote by ρ1.

Additionally, we define the constants

α = (P0(u1(z)))′|z=ρ1
, α2 = (P0(u1(z)))′′|z=ρ1

,

γ =
1

αρ2
1 + 1

, κ = ρ

√
2
P(τ )

P ′′(τ )
P ′0(τ ), λ =

P0(τ )

P(τ )
.

Asymptotic number of excursions

Let en be number of excursions of length n. Then, the generating
function of excursions is of the kind

E (z) :=
∑
n≥0

enz
n =

1

1− zP0(u1(z))
.

The asymptotic number of excursions is given by

en ∼


γρ−n1

(
1 +O

(
1
n

))
, supercritical case: λ > 1,

1
κ
√
π
ρ−n

n1/2

(
1 +O

(
1
n

))
, critical case: λ = 1,

κ
2
√
π(1−ρP0(τ ))2

ρ−n

n3/2

(
1 +O

(
1
n

))
, subcritical case: λ < 1.

Returns to zero

Definition
• Arch: excursion of size > 0 whose

only contacts with the x-axis are at
its end points.
• Return to zero: vertex of a path of

altitude 0 with positive abscissa.
Figure: An excursion with 3 returns
to zero

Corresponding generating function

E (z , u) :=
∑
n,k≥0

en,kz
nuk =

1

1− uzP0(u1(z))

Excursion of length n having k returns to zero

P(Xn = k) := P(size = n, #returns to zero = k) =
en,k
en

Limit laws for returns to zero of excursions

1. In the supercritical case, i.e. λ > 1,

Xn − µn
σ
√
n
, with

µ = γ, σ = γ3(α2ρ
3
1 − 2) + γ2(ρ1 + 2)− γ,

converges in law to a Gaussian variable

N(0, 1).

2. In the critical case, i.e. λ = 1, the normalized
random variable κ√

2n
Xn, converges in law to a

Rayleigh distribution (density: xe−x
2/2):

lim
n→∞

P
(

κ√
2n

Xn ≤ x

)
= 1− e−x

2/2.

3. In the subcritical case, i.e. λ < 1, the limit
distribution of Xn − 1 is the negative
binomial distribution NegBin(2, 1− λ):

P(Xn − 1 = k) ∼ (k + 1)λk(1− λ)2 .

Conclusions

• Similar results hold for the asymptotics of bridges and meanders,
• Limit laws for other parameters like final altitude of meanders, or

returns to zero of bridges exist,
• Extensions to more general lattice path models are possible.
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