Lattice Path Conference 21-25 June 2021

Presentation times for this poster:

Monday Thursday 6-7 pm 1:30-2:30 pm

Lattice paths

- Step set: $S = \{s_1, s_2, \ldots, s_m\} \subset \mathbb{Z}$
- *n*-step lattice path: sequence of steps $(v_1, \ldots, v_n) \in S^n$

Probabilistic weights

- $\Pi = \{p_{s_1}, \dots, p_{s_m}\}, \ p_s \in [0, 1] \text{ s.t. } \sum_{s \in S} p_s = 1$
- Jump polynomial $P(u) = \sum_{s \in S} p_s u^s$

The reflection-absorption model

- Lattice: \mathbb{Z}^2_+
- At altitude $k \neq 0$ • Weighted step set S• $P(u) = \sum_{s \in S} p_s u^s$
- At alltitude k = 0• Weighted step set S_0
- $P_0(u) = \sum_{s \in \mathcal{S}_0} p_{0,s} u^s$

Figure: Allowed steps depend on altitude

Reflection model: No loss of mass at 0: $P_0(1) = 1$ Absorption model: Loss of mass at 0: $P_0(1) < 1$

Comparing probabilities for different Dyck models

Step polynomial: $P(u) = pu + qu^{-1}$

	bridges,	absolute value	excursions,	ex
	uniform model	of bridges	reflection m.	abs
$P_0(u) =$	$pu + qu^{-1}$	$p_0 u + q_0 u^{-1}$	U	
	$\frac{1}{6}$	$rac{1}{1+p_0/p+q_0/q}$	$rac{p}{1+p}$	
	$\frac{1}{6}$	$rac{p_0/p\!+\!q_0/q}{1\!+\!p_0/p\!+\!q_0/q}$	$rac{1}{1+ ho}$	
	$\frac{1}{6}$	0	0	
	$\frac{1}{6}$	0	0	
	$\frac{1}{6}$	0	0	
	$\frac{1}{6}$	0	0	

The reflection-absorption model for directed lattice paths

Cyril Banderier^a Michael Wallner^b

^aLaboratoire d'Informatique de Paris Nord, Université Sorbonne Paris Nord, France ^bInstitute of Discrete Mathematics and Geometry, TU Wien, Austria

Relevant constants

Let τ be the structural constant given by $P'(\tau)$ $\rho = 1/P(\tau)$ be the structural radius.

Let $u_1(z)$ be the unique solution of the kernel equation 1-zP(u)=0,

with $\lim_{z\to 0} u_1(z) = 0$. Then, the equation $1 - zP_0(u_1(z)) = 0$ has at most one solution in $z \in (0, \rho]$, which we denote by ρ_1 . Additionally, we define the constants

$$\alpha = (P_0(u_1(z)))'|_{z=\rho_1}, \qquad \alpha_2 = (P_0(u_1(z)))''|_{z=\rho_1}, \gamma = \frac{1}{\alpha \rho_1^2 + 1}, \qquad \kappa = \rho \sqrt{2 \frac{P(\tau)}{P''(\tau)}} P'_0(\tau), \qquad \lambda = \frac{P_0(\tau)}{P(\tau)},$$

Asymptotic number of excursions

Let e_n be number of excursions of length *n*. Then, the generating function of excursions is of the kind

$$\Xi(z):=\sum_{n\geq 0}e_nz^n=rac{1-z^n}{1-z^n}$$

The asymptotic number of excursions is given by

$$\int \gamma \rho_1^{-n} \left(1 + \mathcal{O} \left(\frac{1}{n} \right) \right), \qquad s$$

$$P_n \sim \left\{ \frac{1}{\kappa \sqrt{\pi}} \frac{p}{n^{1/2}} \left(1 + \mathcal{O}\left(\frac{1}{n}\right) \right), \qquad C \right\}$$

$$\left(\frac{\kappa}{2\sqrt{\pi}(1-\rho P_0(\tau))^2}\frac{\rho^{-n}}{n^{3/2}}\left(1+\mathcal{O}\left(\frac{1}{n}\right)\right),\right.$$

Returns to zero

Definition

- *Arch*: excursion of size > 0 whose only contacts with the x-axis are at its end points.
- *Return to zero*: vertex of a path of altitude 0 with positive abscissa.

Corresponding generating function

$$E(z, u) := \sum_{n,k\geq 0} e_{n,k} z^n u^k = rac{1}{1 - uz P_0(u_1(z))}$$

Excursion of length *n* having *k* returns to zero

 $\mathbb{P}(X_n = k) := \mathbb{P}(\text{size} = n, \text{ } \# \text{returns to zero} = k) = \frac{e_{n,k}}{k}$

xcursions, sorption m.

> $p_0 u$ $\frac{p}{p+p_0}$ $rac{p_0}{p+p_0}$ $\mathbf{0}$

$$au$$
) = 0, au > 0, and let

 $P_0(u_1(z))$

supercritical case: $\lambda > 1$,

critical case: $\lambda = 1,$

subcritical case: $\lambda < 1$.

Figure: An excursion with 3 returns to zero

 e_n

Limit laws for returns to zero of excursions

$$\frac{X_n-\mu n}{\sigma\sqrt{n}},$$

converges in law to a Gaussian variable N(0, 1).

2. In the critical case, i.e. $\lambda = 1$, the normalized random variable $\frac{\kappa}{\sqrt{2n}}X_n$, converges in law to a **Rayleigh distribution** (density: $xe^{-x^2/2}$):

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\kappa}{\sqrt{2n}}X_n\leq x\right)$$

3. In the subcritical case, i.e. $\lambda < 1$, the limit distribution of $X_n - 1$ is the **negative binomial distribution** NegBin $(2, 1 - \lambda)$:

 $\mathbb{P}(X_n-1=k)\sim (k+1)\lambda^k(1-\lambda)^2$.

Conclusions

- returns to zero of bridges exist,
- Extensions to more general lattice path models are possible.

References

- [2] Banderier, C.; Wallner, M.: *Some reflections on directed lattice paths*. Proceedings of the 25th Int. Conf. on Prob., Comb. and Asymptotic Methods for the Analysis of Algorithms (AofA'14), p. 25-36, 2014.
- [3] Flajolet, P.; Sedgewick, R.: *Analytic Combinatorics*. Cambridge University Press, 2009.

• Similar results hold for the asymptotics of bridges and meanders, • Limit laws for other parameters like final altitude of meanders, or

[1] Banderier, C.; Flajolet, P.: *Basic analytic combinatorics of directed lattice paths.* Theoretical Computer Science, 281, p. 37-80, 2002.