Ph.D student in Probabilities, Combinatorics, and Discrete Geometry
LAGA (Team Probabilités et Statistiques) and LIPN (Team Combinatoire, Algorithmique et Interaction)
We asymptotically estimate the number of zonotopes in given hypercube in any dimension, and give statistics on the length of their graph.
In dimension 2, for large random convex lattice polygons contained in a square, we prove that the boundary fluctuations tend to a 2-D Brownian bridge and a drift term that is a random cubic curve.
We prove a lower bound on the number of combinatorial types of equiprojective polytopes, setting the bound from a linear one to an exponential one.
Khôlles de Mathématiques MP Lycée Sainte Marie d'Antony
Algèbre 1, Analyse 2 (Licence 1 Mathématiques),
Analyse 4 (Licence 2 Mathématiques).
Algèbre 1 (Licence 1 Mathématiques),
Proba-Stat-ADD (Licences 3 Informatiques).