Résumé : Les pavages, ou sous-shifts de type fini sont des ensembles de coloriages du plan vérifiant des contraintes locales en nombre fini. Nous nous intéresserons en particulier au problèmes d'isomorphisme entre sous-shifts, connu sous le nom de conjugaison et plus particulièrement aux invariants de conjugaison, qui sont des "objets" permettant de caractériser certains aspects des sous-shifts. Nous donnerons en particulier des caractérisations calculatoires de ces derniers qui permettront de voir les liens intimes qui lient pavages et classes de complexité/calculabilité.
Dernière modification : Thursday 21 November 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |