Résumé : Les systèmes dynamiques symboliques sont des suites bi-infinies de symboles dont les facteurs finis évitent un ensemble de mots finis donné. Nous présentons les systèmes appelés sofiques-Dyck. Ces systèmes sont une généralisation des systèmes Markov-Dyck introduits par Krieger et Matsumoto. Nous montrons que ces systèmes de séquences sont exactement les systèmes dont le langage des facteurs finis est un langage de mots imbriqués (nested words). Nous calculons la fonction zêta, qui compte les séquences périodiques du système, pour un système sofic-Dyck. (Travaux avec Michel Blockelet et Catalin Dima)
Dernière modification : Thursday 21 November 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |