Résumé : Désiré André (dans son article de 1879) a montré que le développement en série de tan(x) et sec(x) est lié à une jolie suite combinatoire, les nombres Eulériens, qui comptent le nombre de permutations alternées. J'introduis un nouvel algorithme, basé sur des idées de théorie des probabilités, qui permet d'engendrer une telle permutation de longueur n en temps n log n. Je montrerai que l'idée peut aussi s'étendre à d'autres classes de permutations contraintes.
Dernière modification : Thursday 21 November 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |