Résumé : Un matroïde est une structure sur un ensemble fini qui généralise au même temps l'indépendance dans un espace vectoriel et le comportement des arbres couvrant d'un graphe. Parmi les points clés d'un matroïde sont la dualité et l'existence des bases et des circuits. En 1966, Rado a demandé comment la définition des matroïdes se laisse étendre sur des ensembles infinis en gardant ces propriétés clées. Dans l'exposé je donnerai une réponse à la question de Rado. Travail en collaboration avec R. Diestel, M. Kriesell. R. Pendavingh et P. Wollan.
Dernière modification : Thursday 21 November 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |