Résumé : We continue our exploration of the combinatorics of groups.
Function spaces are used in order to dualize the product :
typically the algebraic dual of the group algebra k[G] is
the full function space kG.
In many cases, given a function φ∈ kG, there exists
no nice formula for φ(fg).
But, if we restrict φ to some subspaces, the expression
of φ(fg) can be nicely split. Examples will be taken in :
Faà di Bruno formula, Free group, Noncommutative
Symmetric function. If time permits, we will treat some points
of the theory of deformation and some combinatorial aspects
of quantum groups.
Dernière modification : Thursday 21 November 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |