Résumé : Les substitutions (c'est-à-dire les morphismes de monoïde libre) engendrent des mots infinis qui peuvent être vus comme des développements soit de réels, soit de séries formelles de Laurent dans des corps algébriques. Dans le cas de substitutions de longueur constante (suites automatiques), les séries ainsi produites sont algébriques. Dans le cas des réels, on obtient en général des nombres transcendants. Après une première partie de survol autour de ces divers types de comportements algébriques, nous nous intéresserons aux développements dits S-adiques, où il ne s'agit plus d'itérer la même substitution, mais de composer un nombre fini de substitutions.
Dernière modification : Thursday 21 November 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |