Processing math: 100%

Journée-séminaire de combinatoire

(équipe CALIN du LIPN, université Paris-Nord, Villetaneuse)

Le 12 janvier 2021 à 14h00 en visioconférence, Irène Marcovici nous parlera de : Corrélations discrètes d'ordre 2 de certaines suites automatiques

Résumé : Une suite k-automatique est une suite qui peut être calculée par un automate fini de la manière suivante : le n-ième terme de la suite est fonction de l'état atteint par l'automate après lecture de la représentation de l'entier n en base k. Ces suites peuvent également être obtenues à partir du point fixe d'une substitution de longueur k. Je montrerai qu'il existe des familles de suites automatiques qui, malgré leur description très simple, ont les mêmes corrélations d'ordre 2 qu'une suite i.i.d. de symboles choisis uniformément au hasard. Plus précisément, pour tout entier r>0, et pour tout couple (i,j) de symboles, la proportion asymptotique d'entiers n pour lesquels (un,un+r)=(i,j) est égale à 1/L2, où L est le nombre de symboles. La preuve repose sur des ingrédients simples et se généralise à des suites multi-dimensionnelles.
Il s'agit d'un travail en collaboration avec Thomas Stoll et Pierre-Adrien Tahay.

 [Slides.pdf] [vidéo]


Dernière modification : Tuesday 11 February 2025 Valid HTML 4.01! Valid CSS! Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr