Résumé : Les invariants unitaires, ou contractions de tenseurs covariants et contravariants, sont en bijection avec les graphes bi-partites colorés. Ces objets trouvent leur intérêt dans l'étude des cartes combinatoires en dimension supérieure à deux. Je présenterai une autre connexion que peut avoir le comptage de ces invariants avec la théorie de la représentation des groupes symétriques. En particulier, je démontre que le nombre d'invariants de tenseurs de rang 3 est une somme de carrés de coefficients de Kronecker. Ceci établit probablement un lien avec la théorie de la complexité. D'autre part, en passant par l'algèbre du groupe symétrique, ces invariants peuvent être munis d'une structure algébrique. Nous discutons les conséquences de l'existence d'une telle algèbre.
Dernière modification : Thursday 21 November 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |