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Welcome to Permutation Patterns 2019 in Zurich!

It is a great pleasure for us to host the 2019 edition of the conference Permutation
Patterns in Zurich. We hope that you can enjoy the conference, the city of Zurich, and
possibly the surroundings. The section Activities lists a few highlights of Zurich, and
suggests some excursions around Zurich that you can do in a day or a half-day.

In case you need assistance during your stay, please get in touch with one of the local
members of the organizing committee: Jacopo Borga, Mathilde Bouvel, Valentin Féray,
Raúl Penaguião, Grit Schütze or Benedikt Stufler.

Organizing a conference, even the relatively small size of PP, is always some challenge.
Many people have participated in putting the conference together, and their help has
been precious along the past year. In particular, I am grateful to Jacopo Borga, Valentin
Féray, Lucas Gerin, Raúl Penaguião, Lara Pudwell, Grit Schütze, Erik Slivken, Benedikt
Stufler and Katya Vassilieva for helping with many organizational tasks. And my
apologies to those who did help but I forgot to list here.

Working with Kassie Archer, Robert Brignall and Luca Ferrari in the program commit-
tee has been incredibly easy, and I want to thank them for their availabilty and efficiency.
Assuming (and hoping!) that both the organizing and the program committees did
their job well, the conference can only be a success thanks to all speakers, whose
abstracts promise a selection of exciting talks on various fields related to permutations
and their patterns.

And of course, talks (as interesting as they may be) in front of an empty class room
cannot be considered a success. So, thank you for coming to Zurich and attending
Permutation Patterns 2019!

Sincerely yours,
Mathilde Bouvel,
for the organizing committee.

Sponsors

Permutation Patterns 2019 is supported by fundings of the University of Zurich (Ein-
richtungskredit no. P-71117), the Swiss National Science Foundation (projects no.
200020_172515 and 200021_172536), the NSF (grant no. DMS-1901853), the Diparti-
mento di Matematica e Informatica of the University of Florence, and a GRC grant of
the University of Zurich for the pre-conference workshop (grant no. 2018_Q3_G_016).
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Special Issue of DMTCS for Permutation Patterns 2019: Call

for papers

We are pleased to announce that DMTCS will be publishing a special issue devoted
to permutation patterns. Full papers in any topic of permutation patterns, broadly
interpreted, are welcome to be submitted for consideration. While the special issue
is linked to the conference Permutation Patterns 2019, please note that submission is
not restricted to results presented at the conference or to researchers who attended the
conference.

Submissions will be accepted starting on June 17, 2019, the first day of Permutation
Patterns 2019 at the University of Zurich.

Submissions will close on December 31, 2019.

DMTCS is a member of the Free Journal Network, which is open only to journals that
are controlled by the scholarly community and have no financial barriers to readers or
authors. DMTCS articles are fully indexed in both MathSciNet (MR) and ZentralBlatt
(zbMath).

To submit an article:

1. First upload your article to the ArXiv, HAL, or CWI, and wait for the ID to be
generated (for ArXiv, this takes until the next business day).

2. Once you have the paper ID, go to http://dmtcs.episciences.org/, login, select
"submit new article", choose "Permutation Patterns 2019" as the volume, and
then choose "No Section" for the section.

3. Follow the instructions on that page.

All submissions will be refereed in accordance with the usual refereeing standards
of DMTCS. Further information on this peer review process can be found at https:
//dmtcs.episciences.org/page/policies

The guest editors for this special issue are:
Miklos Bona (University of Florida)
Mathilde Bouvel (University of Zurich)
Lara Pudwell (Valparaiso University)
Vince Vatter (University of Florida)
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Local Information

In case of emergency. . . and hoping that this section won’t be useful. The emergency
number in Switerzland is 112. It should be used for medical emergencies, in case of
fire, threat to your security, or in all emergency situations.

University Mensas The city center campus of the University of Zurich has several
cafeterias/dining facilities (called "mensas") where you can have lunch (and dinner
for one of them). All mensas offer vegetarian options, and one of them (located at
Rämistrasse 59) is entirely vegan. The list of mensas (with locations and menus) can
be found on-line at https://www.mensa.uzh.ch/en/standorte.html.

Participants of the conference has received three mensa coupons, which are meant to
be used on Monday, Tuesday and Thursday. They include a main dish and a drink.
Extras can of course be purchased. Please note that you need to pay cash (in Swiss
francs) or only contactless with your credit/debit card in the university mensas.

ATM The ATM closest to the conference venue (a Postomat) is located in the ETH
building, below the polyterrasse.

Wifi Eduroam is available in all facilities of the University (and the ETH). For partici-
pants who cannot use Eduroam, we have 60 guest accounts for the public network of
the university. You can obtain the login information with your registration package, or
asking one of the organizers during the week.

Restaurants in Zurich

Going down from the conference place and walking in the narrow streets of Zurich’s
city center, you will find an important choice of restaurants. A non-exhaustive list
of recommendations from the organizers: Zeughauskeller (nice a bit touristy Swiss
Restaurant near Paradeplatz), Tibits/Hiltl (vegeterian buffet – you help yourself and
pay up to weight –, perfect for a quick but tasty meal), Globus am Bellevue (fine pizzas,
salad bar and asian dishes), Le Cèdre (Lebanese Mezze), many Italian restaurants incl.
Santa Lucia (at Kunsthaus or in Markgasse) and Vapiano (Bellevue), an outside grill on
the lake side near the opera house (Bellevue/Opernhaus tram stop), and many more...

In general restaurants in Zurich are good but expensive (at least 20,- CHF to 25,- CHF
for a main dish). If you’re looking for a cheap option, note that one of the university
cafeterias is open in the evening (Mercato, aka untere Mensa, dinner until 7.30pm, a
main dish costs 10.50CHF for externals).
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Things to Do

Zoological museum: you might have noticed that the ground floor of our conference
building is dedicated to the zoological museum. For the reasonable price of nothing,
you’ll get to see a variety of "not moving animals" (as Oscar would say, opposed to the
"museum of moving animals", i.e. the zoo). Interesting and a must-do with kids on
rainy days.

Polyterasse: did you like the picture on the web site? You can take it yourself! The
Polyterasse is 2 minutes walk from the conference venue and offers nice views on the
city. Please boycott the nice bar, called Bequem, down the stairs: it is affiliated with
ETH and there is a friendly rivalry with the university ©

Walking in the center: both sides of the river, the Limmat, have many little streets,
which are worth to explore. In addition to the Polyterasse, you can enjoy nice views of
the city (and play chess) from Lindenhof. The lake side starting at Bellevue provides
a very nice place to walk and/or have some grilled sausages and beer (possibility to
come back by boat; from the Casino, the trip can be done with a standard day ticket,
without extra).

Aha Shop: this is an amazing little shop of mathematical objects, if you are looking
for a gift to yourself or a mathematician friend. Location: Spiegelgasse 14. Open
Wednesday-Friday 1.00 pm to 6.30 pm. Saturday 11.00 am to 4.00 pm.

Marc Chagall’s Church Windows: Marc Chagall created five magnificent windows
for the Fraumünster church in Zurich. Location: Fraumünster Stadthausquai 19. Open
every day 10.00 am - 6.00 pm.

Museums: If June is as cold as May was, visiting a museum might be the best option.
The Kunsthaus (modern art museum) is within walking distance (less than 10 minutes)
from the conference venue and the permanent collection is free on Wednesday. Other
nice options are the Swiss National Museum (near the main train station) and the
Rietberg Museum (presenting art from all over the world, and located in a nice park).

Taking a boat tour: if you missed the opportunity to come all the way from the US
by ship, you have a second chance to get on a boat. Short trips on Zurich river, the
Limmat, are included in a tram day card. Longer trips on the lake are a nice way
to see the mountains in the background. The longest roumdtrip go all the way to
Rapperswil (almost 2 hours each way), where you can stop: this city has a nice old
center culminating with a castle and a nice lake side with many Italian restaurants
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(going and/or coming back by regional train - S Bahn - is also an option). There is also
the possibility to dine on the boat (which I would recommend on a nice summer day).

Swimming in the river/lake: the water may be a bit cold at that time of the year, but
swimming in the river or the lake is a must do in Zurich. In the lake it is authorized
to swim anywhere (e.g. near the Chinese garden, on Bellevue side); there are places
with some extra installation (changing rooms, slides, diving, standup paddle to rent,
...; 8CHF per person). In the river please use the free installations at Unteren Letten or
Oberen Letten.

Ütliberg: this is the highest hill surrounding Zurich. Beautiful views of the lake and
(on nice days) of the mountains in the background await you on the top (as well as
grilled sausages and beer). There are trains every 20 minutes from the main station to
Ütliberg (S10; circa 20 minutes train and 10 minutes walk to go to the viewpoint), but
people missing the PP traditional hike will prefer to walk all the way up from the final
station of tram line 13, Albisguetli (though this is not advised with a buggy if the path
is snowy, believe me; well, you should be safe in June).

Rhine Falls: this is a standard day or half-a-day excursion from Zurich. You need
circa 1 hour by train to go there, and then the site can be explored by walking around
or taking a boat. Possibility to have some grilled sausages and beer (as everywhere in
Switzerland, basically).

Rigi: if you want to have a hike in the mountain, I would recommend the Rigi area,
closed to the Lake of Lucerne. You need 1h30 from Zurich by train, to go to the
Rigi-Kulm station where you can start walking. Please visit the following page for
details (the duration of the train ride to the Rigi is underestimated there) and alternate
suggestions: https://www.zuerich.com/en/visit/hiking
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Conference Events

Poster Session

Monday, 5:00pm–7:00pm, Building KOL-D-49
The poster session on Monday late afternoon will be held in the Lichthof (atrium) of
the main building of the university (KOL-D-49). It will be accompanied by fingerfood
and refreshments. The following posters will be presented:

Bell numbers, Stirling numbers and set partitions,
Walaa Asakly

Enumeration of isolated vertices in permutation graphs,
Charles Burnette

The number of separators, a new parameter for the symmetric group,
Estrella Eisenberg and Moria Sigron

A Generalization of Dyck Paths and Catalan numbers,
Young-Yoon Lee

k-partial permutations and the center of the wreath product Sk o Sn algebra,
Omar Tout

Conference banquet

Tuesday, 6:45pm
Our conference dinner will be held on Tuesday, June 18, starting at 6:45pm, in the
restaurant Sento. The restaurant is located Plattenstrasse 26, 8032 Zürich (entrance on
the Zurichbergstrasse), about 10 minutes walk from the conference venue. The symbol
on your nametag indicates the main dish that you have chosen at your registration.

Wednesday afternoon

There are plenty of options to spend a pleasant afternoon in Zurich. There is no official
excursion planned, but many suggestions of things to do can be found in this booklet.
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Monday, June 17

All talks take place in room F-152 of building KO2

9:00–9:30 Registration / Welcome

9:30–9:55 Pattern-Avoiding Fillings of Skew Shapes, Vít Jelínek

10:00–10:25 Widdershins permutations and well-quasi-order,
Michael Engen

10:30–11:00 Coffee break

11:00–11:25 Countable universal and existentially closed permu-
tations in geometric grid classes , Samuel Braunfeld

11:30–11:55 Enumeration of Permutation Classes by Inflation of
Independent Sets of Graphs, Émile Nadeau

12:00–2:00 Lunch break

2:00–2:25 Cyclic Schur-positive permutation sets, Yuval Roich-
man

2:30–2:55 Hopping from Chebyshev polynomials to permuta-
tion statistics, Jordan Tirrell

3:00–3:30 Coffee Break

3:30–3:55 Catalan words avoiding pairs of length three patterns,
Carine Khalil

4:00–4:25 Exhaustive generation of pattern-avoiding permuta-
tions, Hung P. Hoang

5:00–7:00 Poster Session, with fingerfood and refreshments (Lichthof
of Building KOL-D-49), see page 6
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Tuesday, June 18

All talks take place in room F-152 of building KO2

9:00–9:25 The growth of the Möbius function on the permuta-
tion poset, David Marchant

9:30–9:55 Scaling limits of permutation classes with a finite
specification: a dichotomy, Adeline Pierrot

10:00–10:25 Pattern Hopf algebras on marked permutations and
enriched set species, Raúl Penaguião

10:30–11:00 Coffee Break

11:00–11:55 (Invited talk) Endless Pattern-Avoiding Permutations,
Neal Madras

12:00–2:00 Lunch break

2:00–2:25 Classes of Sum-Decomposable Affine Permutations,
Justin M. Troyka

2:30–2:55 On the poset of king-non-attacking permutations, Es-
terella Eisenberg and Moriah Sigron

3:00–3:30 Coffee Break

3:30–3:55 On extremal cases of pop-stack sorting, Andrei Asi-
nowski

4:00–4:25 Sorting Permutations with Pattern-Avoiding Stacks,
Giulio Cerbai

4:30–5:00 Problem Session

6:45– Banquet (see page 6 for details)
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Wednesday, June 19

All talks take place in room F-152 of building KO2

9:00–9:25 Avoiding Baxter-like patterns, Simone Rinaldi

9:30–10:25 On pattern-avoiding Fishburn permutations, Juan B.
Gil

10:00–10:25 Automatic Discovery of Polynomial Time Enumera-
tions, Unnar Freyr Erlendsson

10:30–11:00 Coffee Break

11:00–11:25 On the equidistribution of MAJ and BAST, Shishuo Fu

11:30–11:55 Pattern avoidance in permutations and their squares,
Rebecca Smith

12:00– Free Afternoon
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Thursday, June 20

All talks take place in room F-152 of building KO2

9:00–9:25 How many chord diagrams have no short chords?, Jay
Pantone

9:30–9:55 Consecutive permutation patterns in trees and map-
pings, Alois Panholzer

10:00–10:25 Permutation patterns: gamma-positivity and (−1)-
phenomenon, Bin Han

10:30–11:00 Refreshments

11:00–11:55 (Invited talk) Patterns by accident, Bridget Tenner

12:00–2:00 Lunch break

2:00–2:25 Square permutations and convex permutominoes, En-
rica Duchi

2:30–2:55 Square permutations are typically rectangular, Jacopo
Borga

3:00–3:30 Coffee break

3:30–3:55 On a New Parameter of Permutations Arising in a
Context of Testing for Forbidden Patterns, Gil Laufer

4:00–4:25 Packing patterns in restricted permutations, Lara Pud-
well

4:30–4:55 Applications of a q-analog for Riordan arrays to vari-
ous combinatorial objects, Gi-Sang Cheon

5:00–5:25 Announcements: next Permutation Patterns
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Friday, July 13

All talks take place in room F-152 of building KO2

9:00–9:25 The odd behaviour of the permutation displacement
ratio, David Bevan

9:30–9:55 Enumerative combinatorics of intervals in the Dyck
pattern poset, Matteo Cervetti

10:00–10:25 Substitution decomposition for permutation classes
with infinitely many simple permutations, Arnar
Bjarni Arnarson

10:30–11:00 Coffee break

11:00–11:25 Solving hard problems effectively on permutations of
small grid-width, Michal Opler

11:30–11:55 Two families of Wilf-equivalences, Michael Albert
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Permutation patterns: basic definitions and notation

David Bevan The Open University

(This text is a brief presentation of basic definitions and notation used in permutation patterns
research. Is was initially produced by D.Bevan for Permutation Patters 2015.)

Permutations, containment and avoidance

A permutation is considered to be simply an arrangement of the numbers 1, 2, . . . , n
for some positive n. The length of permutation σ is denoted |σ|, and Sn or Sn is used
for the set of all permutations of length n.

It is common to consider permutations graphically. Given a permutation σ =
σ(1) . . . σ(n), its plot consists of the the points (i, σ(i)) in the Euclidean plane, for
i = 1, . . . , n.

Figure 1: The plot of permutation 314592687 with a 1423 subpermutation marked

A permutation, or pattern, π is said to be contained in, or to be a subpermutation of,
another permutation σ, written π 6 σ or π 4 σ, if σ has a (not necessarily contiguous)
subsequence whose terms are order isomorphic to (i.e. have the same relative ordering
as) π. From the graphical perspective, σ contains π if the plot of π results from erasing
zero or more points from the plot of σ and then rescaling the axes appropriately. For
example, 314592687 contains 1423 because the subsequence 4968 (among others) is
ordered in the same way as 1423 (see Figure 1).

If σ does not contain π, we say that σ avoids π. For example, 314592687 avoids 3241
since it has no subsequence ordered in the same way as 3241.

If λ is a list of distinct integers, the reduction or reduced form of λ, denoted red(λ), is the
permutation obtained from λ by replacing its i-th smallest entry with i. For example,
we have red(4968) = 1423. Thus, π 6 σ if there is a subsequence λ of σ such that
red(λ) = π.
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Permutation structure

Given two permutations σ and τ with lengths k and ` respectively, their direct sum
σ⊕ τ is the permutation of length k + ` consisting of σ followed by a shifted copy of τ:

(σ⊕ τ)(i) =

{
σ(i) if i 6 k,

k + τ(i− k) if k + 1 6 i 6 k + `.

The skew sum σ	 τ is defined analogously. See Figure 2 for an illustration.

Figure 2: The direct sum 2413⊕ 4231, the skew sum 2413	 4231, and the layered
permutation 21⊕ 1⊕ 321⊕ 21

A permutation is called sum indecomposable if it cannot be expressed as the direct sum
of two shorter permutations. A permutation is skew indecomposable if it cannot be ex-
pressed as the skew sum of two shorter permutations. Every permutation has a unique
representation as the direct sum of a sequence of sum indecomposable permutations,
and also as the skew sum of a sequence of skew indecomposable permutations. If a
permutation is the direct sum of a sequence of decreasing permutations, then we say
that the permutation is layered. See Figure 2 for an example.

An interval of a permutation σ corresponds to a contiguous sequence of indices a, a +
1, . . . , b such that the set of values {σ(i) : a 6 i 6 b} is also contiguous. Graphically, an
interval in a permutation is a square “box” that is not cut horizontally or vertically by
any point not in it. Every permutation of length n has intervals of lengths 0, 1 and n.
If a permutation σ has no other intervals, then σ is said to be simple.

Figure 3: The inflation 3142[123, 1, 21, 312] = 567198423

Given a permutation σ ∈ Sm and nonempty permutations τ1, . . . , τm, the inflation of
σ by τ1, . . . , τm, denoted σ[τ1, . . . , τm], is the permutation obtained by replacing each
entry σ(i) of σ with an interval that is order isomorphic to τi. See Figure 3 for an
illustration.

A simple permutation is thus a permutation that cannot be expressed as the inflation of
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a shorter permutation of length greater than 1. Conversely, every permutation except 1
is the inflation of a unique simple permutation of length at least 2.

Figure 4: The three left-to-right maxima and four right-to-left minima, and the two
left-to-right minima and five right-to-left maxima, of a permutation

Sometimes we want to refer to the extremal points in a permutation. A value in a
permutation is called a left-to-right maximum if it is larger than all the values to its left.
Left-to-right minima, right-to-left maxima and right-to-left minima are defined analogously.
See Figure 4 for an illustration.

Permutation statistics

An ascent in a permutation σ is a position i such that σ(i) < σ(i + 1). Similarly, a
descent is a position i such that σ(i) > σ(i + 1). A pair of terms in a permutation σ

such that i < j and σ(i) > σ(j) is called an inversion.

A permutation statistic is simply a map from the set of permutations to the non-negative
integers. Classical statistics include the following:

• the number of descents
des(σ) = |{i : σ(i) > σ(i + 1)}|

• the number of inversions
inv(σ) = |{(i, j) : i < j and σ(i) > σ(j)}|

• the number of excedances
exc(σ) = |{i : σ(i) > i}|

• the major index1, the sum of the positions of the descents
maj(σ) = ∑σ(i)>σ(i+1) i

The statistics des and exc are equidistributed. That is, for all n and k, the number of
permutations of length n with k descents is the same as the number of permutations of
length n with k excedances. Furthermore, inv and maj also have the same distribution.
Any permutation statistic that is distributed like des is said to be Eulerian, and a statistic
that is distributed like inv is said to be Mahonian2.

1Named after Major Percy Alexander MacMahon.
2See footnote 1.
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Classical permutation classes

The subpermutation relation is a partial order on the set of all permutations. A
classical permutation class, sometimes called a pattern class, is a set of permutations
closed downwards (a down-set) under this partial order. Thus, if σ is a member of
a permutation class C and τ is contained in σ, then it must be the case that τ is also
a member of C. From a graphical perspective, this means that erasing points from
the plot of a permutation in C always results in the plot of another permutation in
C when the axes are rescaled appropriately. It is common in the study of classical
permutation classes to reserve the word “class” for sets of permutations closed under
taking subpermutations.

It is natural to define a classical permutation class “negatively” by stating the minimal
set of permutations that it avoids. This minimal forbidden set of patterns is known
as the basis of the class. The class with basis B is denoted Av(B), and Avn(B) or
Sn(B) is used for the set of permutations of length n in Av(B). As a trivial example,
Av(21) is the class of increasing permutations (i.e. the identity permutation of each
length). As another simple example, the class of 123-avoiders, Av(123), consists of
those permutations that can be partitioned into two decreasing subsequences.

The basis of a permutation class is an antichain (a set of pairwise incomparable
elements) under the containment order, and may be infinite. Classes for which the
basis is finite are called finitely based, and those whose basis consists of a single
permutation are called principal classes.

Non-classical patterns

Permutation patterns have been generalised in a variety of ways.

A barred pattern is specified by a permutation with some entries barred (53̄21̄4, for
example). If π̂ is a barred pattern, let π be the permutation obtained by removing
all the bars in π̂ (53214 in the example), and let π′ be the permutation that is order
isomorphic to the non-barred entries in π̂ (312 in the example). An occurrence of
barred pattern π̂ in a permutation σ is then an occurrence of π′ in σ that is not part of
an occurrence of π in σ. Conversely, for σ to avoid π̂, every occurrence in σ of π′ must
feature as part of an occurrence of π.

A vincular or generalised pattern specifies adjacency conditions. Two different notations
are used. Traditionally, a vincular pattern is written as a permutation with dashes
inserted between terms that need not be adjacent and no dashes between terms that
must be adjacent. Alternatively, and perhaps preferably, terms that must be adjacent
are underlined. For example, 314265 contains two occurrences of 2314 (or 2–31–4) and
a single occurrence of 2314 (2–314), but avoids 2314 (23–14).

A vincular pattern in which all the terms must occur contiguously is known as a
consecutive pattern.
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In a bivincular pattern, conditions are also placed on which terms must take adjacent
values.

Classical, vincular and bivincular patterns are all example of the more general family
of mesh patterns. Formally, a mesh pattern of length k is a pair (π, R) with π ∈ Sk and
R ⊆ [0, k]× [0, k] a set of pairs of integers. The elements of R identify the lower left
corners of unit squares in the plot of π, which specify forbidden regions. Mesh pattern
(π, R) is depicted by a figure consisting of the plot of π with the forbidden regions
shaded. See Figure 5 for an example.

Figure 5: Mesh pattern (3241, {(0, 2), (1, 3), (1, 4), (4, 2), (4, 3)})

An occurrence of mesh pattern (π, R) in a permutation σ consists of an occurrence
of the classical pattern π in σ such that no elements of σ occur in the shaded regions
of the figure. A vincular pattern is thus a mesh pattern in which complete columns
shaded.

Sets of permutations defined by avoiding barred, vincular, bivincular or mesh pat-
terns that are not closed under taking subpermutations are known as non-classical
permutation classes.

Growth rates

Given a permutation class C, we use Cn to denote the permutations of length n in C. It
is natural to ask how quickly the sequence (|Cn|)∞

n=1 grows.

In proving the Stanley–Wilf Conjecture, Marcos and Tardos established that the growth
of every classical permutation class except the class of all permutations is at most
exponential. Hence, the upper growth rate and lower growth rate of a class C are defined
to be

gr(C) = lim sup
n→∞

|Cn|1/n and gr(C) = lim inf
n→∞

|Cn|1/n.

The theorem of Marcos and Tardos states that gr(C) and gr(C) are both finite.

When gr(C) = gr(C), this quantity is called the proper growth rate (or just the growth
rate) of C and denoted gr(C). Principal classes, those of the form Av(π), are known
to have proper growth rates. The growth rate of Av(π) is sometimes known as the
Stanley–Wilf limit of π and denoted L(π). It is widely believed, though not yet proven,
that every classical permutation class has a proper growth rate.
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Wilf equivalence

Given two classes, C and D, one natural question is to determine whether they
are equinumerous, i.e. |Cn| = |Dn| for every n. Two permutation classes that are
equinumerous are said to be Wilf equivalent and the equivalence classes are called Wilf
classes. If principal classes Av(σ) and Av(τ) are Wilf equivalent, we simply say that σ

and τ are Wilf equivalent.

From the graphical perspective, it is clear that classes related by symmetries of the
square are Wilf equivalent. Thus, for example, Av(132), Av(231), Av(213) and Av(312)
are equinumerous. However, not all Wilf equivalences are a result of these symmetries.
Indeed, as is well known, both Av(123) and Av(132) are counted by the Catalan
numbers, so all permutations of length three are in the same Wilf class.

Generating functions

The ordinary generating function of a permutation class C is defined to be the formal
power series

C(z) = ∑
n>0
|Cn|zn = ∑

σ∈C
z|σ|.

Thus, each permutation σ ∈ C makes a contribution of z|σ|, the result being that, for
each n, the coefficient of zn is the number of permutations of length n. Clearly, two
classes are Wilf-equivalent if their generating functions are identical.

A generating function is rational if it is the ratio of two polynomials. A generating
function F(z) is algebraic if it can be defined as the root of a polynomial equation. That
is, there exists a bivariate polynomial P(z, y) such that P(z, F(z)) = 0.
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Endless Pattern-Avoiding Permutations

Neal Madras York University

This talk is based on joint work with Justin Troyka

The plots of large randomly generated pattern-avoiding permutations offer visual
representations of the structure of these permutations. A particularly tantalizing case
is that of 4231-avoidance, where a canoe-like shape appears (see Figure 1). Visually, the
middle part of the canoe looks roughly like two parallel lines that are joined by distinct
perpendicular segments (as a canoe’s gunwales are joined by thwarts). The parallelism
of the “gunwales” are distorted near the canoe’s ends, since the plot must fit into a
square. Following a suggestion of Nathan Clisby that uses intuition borrowed from
statistical physics, perhaps the ends of our 4231-avoiding permutation are a “boundary
effect” that we can try to separate from the main part of the permutation, far from the
ends. Is there a way to make rigorous sense of this idea, particularly at the level of
asymptotics when N tends to infinity?
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Figure 1: A random 4231-avoiding permutation of length N = 500.

One traditional way to eliminate boundary effects of a system in a large square region
is to put the system on a torus, i.e. to extend it periodically. To do this for permutations,
we are led to the study of affine permutations, which we augment with a boundedness
condition, defined as follows.

Definition 1. (a) An affine permutation of period N is a bijection ω : Z→ Z such that

ω(i + N) = ω(i) + N for every i ∈ Z

and
N

∑
i=1

ω(i) =
N

∑
i=1

i (a “centering” condition).

(b) An affine permutation ω of period N is said to be bounded if

|ω(i) − i| < N for every i ∈ Z.
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We write BAN for the set of bounded affine permutations of period N.

Observe that for any (ordinary) permutation σ ∈ SN , the periodic extension of σ to a
doubly infinite direct sum

· · · ⊕ σ⊕ σ⊕ σ⊕ · · · (1)

is in BAN .

The number of bounded affine permutations is given asymptotically by the following
theorem.

Theorem 2.

|BAN | ∼ N! × 2N N−1/2

√
3

2πe
as N → ∞.

For a given pattern τ ∈ Sm, we let AvBAN(τ) be the set of all bounded affine per-
mutations of period N that avoid the pattern τ. This will be our model of “endless”
pattern-avoiding permutations. We shall assume that τ(1) > τ(m), so that if σ is
an ordinary τ-avoiding permutation then the infinite direct sum of Equation (1) is
necessarily in AvBAN(τ).

One important initial question is whether the growth rate of our endless pattern-
avoiding permutations is the same as for as the corresponding ordinary pattern-
avoiding permutations; that is, does

lim
N→∞

|AvBAN(τ)|1/N

exist and equal the Stanley-Wilf limit of τ? We don’t know the general answer, but we
do know that the answer is yes for decreasing permutations and various other patterns.
In particular, we have the following asymptotic result for the pattern 321.

Theorem 3.

|AvBAN(321)| ∼ 4N N1/2

2
√

π
as N → ∞.

For comparison, since we know that the cardinality of AvN(321) is the Nth Catalan
number, we see that

|AvBAN(321)| ∼ N2

2
|AvN(321)| as N → ∞.

In this talk I shall present the above results, including some interesting ingredients
of the proof of Theorem 3. Along the way, I shall describe a few insights that can be
obtained by thinking probabilistically. Also, at a more informal level, I shall indicate
some (occasionally subjective) connections between pattern-avoiding permutations and
models in lattice statistical mechanics, particularly self-avoiding walks.
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Patterns by accident

Bridget Tenner DePaul University

This talk is based on joint work with Kyle Peterson and Kári Ragnarsson

The goal was to untangle the structure of the Bruhat order on the symmetric group.
Of course, this was rather ambitious, but an attractive detour appeared – a detour that
led to permutation patterns!

We will discuss how avoidance of two particular patterns dictates an enormous amount
of algebraic structure in the symmetric group. This includes features of the Bruhat
order, equality of complexity when represented by different sets of generators, and
aspects of the cycle structure of a permutation. Avoidance of these two patterns also
leads to a cell complex with beautiful topology. The permutations that avoid these
two patterns can be enumerated by a familiar sequence, recovering (and uniting) older
results; moreover, this enumeration can be refined by length.

We can push this analysis further – and more finely than the usual "avoid" versus
"contain" – to see the impact of the total number of occurrences of these two patterns,
whatever that number may be. We can also extend it to signed analogues (involving
signed patterns) in the Coxeter groups of types B and D.
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Two families of Wilf-equivalences

Michael Albert University of Otago

This talk is based on joint work with Vít Jelínek, Michal Opler

Two permutations π and σ belonging to a permutation class C are Wilf-equivalent relative
to C if the two classes: C ∩Av(π) and C ∩Av(σ) are Wilf-equivalent, i.e., have the same
number of permutations of each size. Let cn be the number of permutations in C if
size n, and wn be the number of equivalence classes of this relation on permutations
of size n. The class C exhibits a Wilf-collapse if wn = o(cn). If in fact wn = o(rncn) for
some r < 1 then we say that C exhibits an exponential Wilf-collapes.

Recent work [2, 3, 4] has highlighted the prevalence of this phenomenon particularly
in classes where there is a greedy algorithm for detecting patterns and/or a convenient
representation of the permutations in the class as words over an ordered alphabet –
the two seem to go hand in hand. In many such contexts, as well as demonstrating a
Wilf-collapse the proofs provide bijections between the corresponding classes (though
often somewhat implicitly or recursively).

We present two further examples that support this thesis.

Subpermutations of the increasing oscillation

The infinite increasing oscillation can be represented as:

2, 4, 1, 6, 3, 8, 5, 10, 7, . . .

The finite permutations that can be found inside it form a sum-closed class, SIO. The
class SIO also plays a central role in the study of growth rates of permutation classes
providing a fundamental building block for the construction of intervals in the set of
achievable growth rates and other threshold phenomena [5, 6, 7].

Wilf-collapse in sum-closed classes is one of the main themes of [4] but some conditions
that are required in that work are not found in SIO. Nevertheless we can prove:

Theorem 1. The class SIO exhibits an exponential Wilf-collapse.

The class X

The class X can be defined as the closure of the single permutation 1 under the
operations π 7→ 1⊕ π, π 7→ 1	 π, π 7→ π ⊕ 1, and π 7→ π 	 1. An equivalent
recursive formulation is that all permutations in X begin or end with their maximum
or minimum element (and because X is a class this is true when that element is
removed etc.) In terms of a basis X = Av(2143, 2413, 3142, 3412). In the literature X
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arose in [1] as an ingredient in the characterisation of which subclasses of the separable
permutations have rational generating functions.

Because of the recursive representation, permutations in X having at least two elements
can be described uniquely by a single integer of absolute value greater than 1 followed
by a sequence of pairs of non-negative integers (at least one of which is positive). The
initial term represents the monotone core of the permutation (increasing if positive,
decreasing if negative) and the remaining pairs represent the whiskers that must be
added to the core to form the permutation as shown below (for a positively sloping,
i.e., increasing, core):

For instance the permutation corresponding to the sequence: -3, (1,2), (2,4), (0,1) is:

0⊕ (2	 (1⊕ (−2)⊕ 2)	 3)⊕ 1 = (10) 9 4 6 5 7 8 3 2 1 (11)

where numbers stand for monotone intervals of the corresponding length (and appro-
priate direction).

Of course X is far from being a sum-closed class but the obvious greedy algorithm for
checking whether one permutation is involved in another in X is correct. This yields:

Theorem 2. If two permutations in X have the same sized core and the same multiset of
whiskers considered as unordered pairs then they are Wilf-equivalent.

For instance the permutation shown above is Wilf-equivalent in X to:

2	 (2⊕ (1	 (2)	 0)⊕ 1)	 3 = (11) (10) 4 5 8 6 7 9 3 2 1.

That the sign of the core is not relevant should not be surprising as this can be changed
by one of the symmetries that leaves X invariant – but the fact that the Wilf-class of a
permutation is insensitive to the order of its whiskers or to the order of the sides of
each whisker independently is not immediately evident, but follows relatively easily
from the correctness of the greedy algorithm mentioned above.

The fact that reordering is allowed means that the total number of Wilf-classes behaves
“like” (in a very rough sense) the number of partitions of n and in particular grows
sub-exponentially, whereas the growth rate of the X class itself is 2 +

√
2.
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Substitution decomposition for permutation classes with

infinitely many simple permutations

Arnar Bjarni Arnarson Reykjavik University

This talk is based on joint work with Christian Bean, Jay Pantone, Henning Ulfarsson

We present an automatic method, using the substitution decomposition [1, 4] and
the CombSpecSearcher [5] algorithm, to enumerate classes containing infinitely many
simple permutations. To accomplish this we use tilings, but allow ourselves to make
assumptions about certain cells. The method for enumerating the sum and skew
decomposable permutations in the class remains the same as in previous work. We
introduce new strategies to find a combinatorial specification for the (possibly infinite)
set of simple permutations in a permutation class. Our approach simultaneously
performs the inflations. This method has been able to enumerate many permutation
classes with infinitely many simple permutations, for example Av(1324, 2431) and
Av(1324, 2413).

We use the CombSpecSearcher to build the structure of the simple permutations,
by placing the bottom-most maximal interval into rows, representing a point in the
underlying simple permutation. We can then factor out intervals that are no longer
required to preserve simplicity. These two strategies, alongside others, enable the
CombSpecSearcher to find combinatorial specifications for permutation classes. Instead
of only placing bottom-most maximal intervals, we also allow left, right, and top-most,
allowing us to find specifications for different structures.

Inflations of simple permutations in Av(1324, 2413, 2431)

In order to illustrate our strategies, we will use the substitution decomposition to find
a combinatorial specification for Av(1324, 2413, 2431). This class contains one simple
permutation for each length n ≥ 4. The first step is to separate the permutations into
three cases: sum-decomposable permutations, skew-decomposable permutations and
those that are the inflation of a simple permutation of length at least 4.

If a permutation is sum-decomposable then it can be written as the sum of two permu-
tations. To preserve uniqueness we assume the left operand is sum-indecomposable.
After some case analysis, we can recursively find a specification for the subclasses,
where some are sum-indecomposable. The skew-decomposable case is similar.

In order to handle the inflation of simple permutations, we must define some cells in
the tiling as maximal intervals, meaning that there is no larger proper interval that
contains it. If all cells are maximal intervals, the tiling represents inflations of a specific
simple permutation in the class.

In Figure 1, we see the structure of the inflations of the simple permutations in
Av(1324, 2413, 2431), which we will describe in more detail.
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Figure 1: The inflations of the simple permutations in Av(1324, 2413, 2431).
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We first place the bottom-most interval, marked by a blue cloud, and in order for this
to be an inflation of a simple permutation of length at least 4, the other two cells must
each contain a point, otherwise the permutations will be sum or skew decomposable.
We again place the bottom-most maximal interval which must be on the right since
we avoid 2413. The cell above and to the right of the new interval must also contain a
point. The next interval can go in either of the two cells in the top row. We will explain
the steps taken in the left branch, the right is similar.

The middle cell in the top row must be empty because it cannot contain a maximal
interval without breaking the simplicity condition. There are two possibilities for the
top left cell, either it is empty or it contains a point. If it is empty then every cell is a
maximal interval and we have a tiling representing inflations of the simple permutation
3142. Otherwise, we can place the bottom-most maximal interval in the top row, which
must be in the right cell because we avoid 2413. We can factor out the maximal interval
in the third row since it is no longer required to preserve simplicity. We then see a
tiling which appears in the right branch which can be described with similar methods.
From this specification we automatically derive the enumeration.

Future work

When a permutation class has a regular insertion encoding there is an algorithm which
finds the rational generating function for the class [6]. We conjecture that a similar
argument can be made for permutation classes whose simple permutations have a
regular insertion encoding. In the literature, there is work on inflating the simple
permutations that can be geometrically gridded. These all have a rational generating
function and their inflations are algebraic [2, 3]. We conjecture that our algorithm will
be able to enumerate all such permutation classes.
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Bell numbers, Stirling numbers and set partitions

Walaa Asakly University of Haifa

In this talk, I will present an explicit formula for the total number of sum weighted
records over set partitions of [n] according to the statistic sum of weighted records in
terms of Stirling numbers and terms of Bell numbers.

Short introduction

Let us start with short introduction about set partitions:

Definition 1. A partition Π of set [n] of size k is a collection {B1, B2, . . . , Bk} of non
empty disjoint subsets of [n], called blocks, whose union is equal to [n]; we can also
say that Π is a partition of [n] with exactly k blocks. We assume that blocks are listed in
increasing order of their minimal elements, that is, minB1 < minB2 < · · · < minBk.

Definition 2. We denote the set of all partitions of [n] with exactly k blocks to be Pn,k
and we denote the set of all partitions of [n] to be Pn.

Example 3. The partitions of [3] with 2 blocks are: {{1}, {2, 3}}, {{1, 2}, {3}},
{{1, 3}, {2}}.

Definition 4. The number of set partitions of [n] with k blocks is denoted by Sn,k and
called the Stirling number.

Remark 5. Note that by definition,

| Pn |=
n

∑
k=1

Sn,k = Bn

which are known as Bell numbers.

Definition 6. Any partition Π can be written as π1π2 · · ·πn, where i ∈ Bπi for all i,
and this form is called the canonical sequential form.

Example 7. The canonical sequential form of {{1}, {2, 3}} is 122.

For more details about set partitions we suggest [TM]. Researchers studied several
statistics on set partitions. Let us consider the following one.

Definition 8. Let π = a1a2 · · · am be any permutation of length m. An element ai in π

is a record if ai > aj for all j = 1, 2, · · · , i− 1. Moreover, the index i of the record ai is
called the position of this record.

Example 9. The permutation π = 1324 has 3 records; first one is 1 of position 1, second
one is 3 of position 2 and the last one is 4 of position 4.
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For more details about records see the following articles: [AT], [ATS]. In this talk I will
further define the following statistic on set partitions:

Definition 10. We denote the statistic swrec, where swrec(π) is the sum over all the
records in Pn of the position of a record in π multiplied by the value of the record.

Example 11. Let {{1}, {2, 3}} be a partition of [3] with the canonical form 122. We
have two records: in position 1 with value 1 and in position 2 with value 2, so,
swrec(122) = 1 · 1 + 2 · 2 = 3.

The ordinary generating function

Let Pk(x, q) be the ordinary generating function for the number of partitions of [n]
with exactly k blocks according to the statistic swrec, that is

Pk(x, q) = ∑
n≥k

∑
π∈Pn,k

xnqswrec(π).

Now, we can state our first result:

Theorem 12. The ordinary generating function for the number of partitions of [n] with exactly
k blocks according to the statistic swrec is given by

Pk(x, q) =
k

∏
i=1

xqiq(k+1−i)(k−i)

1− ix ∏k
j=i+1 qj

. (1)

Unfortunately, we do not have enough space for a complete proof.

The total number of swrec taken over all set partitions of Pn,k

Now we can present an important result

Theorem 13. The total number of swrec taken over all set partitions of Pn,k, is given by

Sn,k

((
k + 1

2

)
+ 2
(

k + 1
3

))
+

n−k

∑
j=1

Sn−j,k

k

∑
i=1

ij(k + i + 1)(k− i)
2

.

Proof. The main idea of the proof is to differentiate (1) with respect to variable q, then
substituting q = 1 in the partial derivative, and the last step is to find the coefficients
[xn] in the partial derivative.

The total number of swrec taken over all set partitions of Pn

Finally, we can show the main result
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Theorem 14. The total number of swrec taken over all set partitions of [n], is given by

3
4
(Bn+3 − Bn+2)− (n +

7
4
)Bn+1 −

1
2
(n + 1)Bn.

Proof. The main idea of the proof is to pass from the ordinary generating function for
the number of partitions of [n] with exactly k blocks according to the statistic swrec, to
the exponential generating function for the number of partitions of [n] with exactly k
blocks according to the statistic swrec. And finally to find the coefficients [xn] in the
partial derivative.
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On extremal cases of pop-stack sorting

Andrei Asinowski University of Klagenfurt

This talk is based on joint work with Cyril Banderier (University of Paris North) and Benjamin
Hackl (University of Klagenfurt) 3.

Pop-stack sorting is a natural sorting procedure and a fascinating process to analyse.
It finds its roots in the seminal work of Knuth on sorting algorithms and permutation
patterns [3]. We present several results on permutations that need few (resp. many)
iterations of this procedure to be sorted. In particular, we represent the “2-pop-stack
sortable permutations” by lattice paths to prove conjectures raised by Pudwell and
Smith, and we characterize some families of permutations related to the image of the
pop-stack sorting and to its “worst case”.

Introduction and definitions

Each permutation can be split uniquely into runs – the maximal ascending strings, and
into falls – the maximal descending strings. For example, the permutation 413625 is
split into runs as 4|136|25, and into falls as 41|3|62|5.

One iteration of pop-stack sorting is defined as the transformation T that reverses all
the falls. For example, T(41|3|62|5) = 143265. If, given a permutation π of size n,
one applies T successively sufficiently many times (thus obtaining T(π), T2(π), etc.),
one eventually reaches the identity permutation Id. Ungar proved [6] that each each
permutation of size n needs at most n− 1 iterations of T to be sorted by pop-stack 4.
Equivalently: for each permutation of size n we have Tn−1(π) = Id). This bound is
tight: there are permutations that need n, but not fewer, iterations of T to be sorted.
Thus, we refer to this situation as the “worst case”.

A permutation is k-pop-stack-sortable (kPS) Avis and Newborn showed that if Tk(π) = Id.
1PS-permutations are precisely the layered permutations [2]. Pudwell and Smith [4]
found a structural characterization of 2PS-permutations and showed that their generat-
ing function is rational. Claesson and Guðmundsson [5] generalized the latter result
showing that for each fixed k, the generating function for kPS-permutations is rational.
The pop-stack sorting process offers many fascinating open questions (the main one
being the average cost analysis of the corresponding algorithm). In this article, we
offer new links with other combinatorial objects to derive further results.

3Research of Andrei Asinowski and Benjamin Hackl was supported by the project Analytic Combina-
torics: Digits, Automata and Trees (P 28466) funded by the Austrian Science Fund (FWF).

4Ungar proved this result as a lemma for solving a geometric problem concerning the number of
directions determined by a planar set of points.
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Results concerning 2-pop-stack sortable permutations

First, let us concentrate on permutations which need few iterations of T to be sorted.
Specifically, we prove two conjectures on 2PS-permutations by Pudwell and Smith, and
reprove one of their theorems in a more combinatorial way which allows us to keep
track of additional parameters.

Theorem 1 ([4] Thm. 2). The generating function of 2-pop-stack-sortable permutations is
A(x, y) = ∑ an,kxnyk = x(1 + x2y)/(1− x− xy− x2y− 2x3y2), where an,k is the number
of 2PS permutations of size n with exactly k ascents.

Proof (sketch). We count 2PS-permutations taking descents rather than ascents as the
second parameter: let Cn,k be the set of 2PS-permutations of size n with k descents,
cn,k = |Cn,k|, C(x, y) = ∑ cn,kxnyk. We have an,k = cn,n−1−k and A(x, y) = 1

y C(xy, 1/y).

For fixed k, let Fk be the generating function for 2PS-permutations with k descents:

Fk(x) = ∑n≥0 cn,kxn. We show F0(x) = x
1−x and, for k ≥ 1, Fk(x) = xk+1(1+x)2(1+x+2x2)k−1

(1−x)k+1 .
The cases of F0(x) and F1(x) are easily seen directly. We show that, for k ≥ 2, we
have Fk(x)/(xFk−1(x)) = (1 + x + 2x2)/(1− x) = 1 + 2x + 4x2 + 4x3 + 4x4 + . . . We
introduce a third parameter: let Cn,k,d be the set of those permutations in Cn,k, in which
the distance between the two rightmost descents is d. We construct a mapping which
is a union of a 1:1 bijection between Cn,k,1 and Cn−1,k−1; a 2:1 bijection between Cn,k,2
and Cn−2,k−1; and a 4:1 bijection between Cn,k,d≥3 and Cn−d,k−1. This proves the result
for Fk(x). Now, C(x, y) is obtained as the sum of geometric series ∑k≥0 ykFk(x).

Theorem 2 ([4] Conj. 2). The generating function for (a2n+1,n)n≥0 is
√
(1 + x)/(1− 7x),

and the numbers are a2n+1,n = ∑n−1
i=0 (−1)i2n−i(2(n−i)

n−i )(n−1
i ).

Proof 5(sketch). As shown in [4], a 2PS-permutation is determined by positions of
ascents / descents and indicating, for each ascent, whether the maximum of the run to
its left is smaller (by 1) or larger (by 1) than the minimum of the run to its right. The
second option is only possible when at least one of the adjacent runs has length > 1.
Therefore, 2PS-permutations of size n are in bijection with Dyck walks (U = 1 for
ascents, D = −1 for descents) of size n− 1 where U’s that have a D neighbor can be
colored black or red, and U’s that have no D neighbor can be colored only black.

The paths that correspond to the diagonal values a2n+1,n are precisely the bridges –
the walks that terminate at altitude 0. We first consider excursions – bridges that
never go below the x-axis, and forget the colors for the time being, and get the

5It is possible to obtain the generating function by residue calculus, but we give a structural proof.
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generating function E = E(x, y) for such excursions, where x is the variable for the
semi-length, and y for the number of U’s that have at least one adjacent D. We com-
pose bridges from excursions and their reflections, and get their generating function
B(x, y) = E/(1− (E − 1)) =

√
(1− x + xy)/(1− x− 3xy). Since each non-colored

bridge with k regular U’s generates 2k colored bridges, their generating function is
B(x, 2) =

√
(1 + x)/(1− 7x) = 1/

√
1− 8x/(1 + x) = (1/

√
1− 4t)|t=2x/(1+x), and

the coefficients of 1/
√

1− 4t are well known to be central binomial coefficients.

Additionally, we adjust the structure (Dyck walks with fixed final altitude) to get
generating functions for any array of coefficients of A(x, y) parallel to the diagonal, at
distance m. Their shapes are

√
(1 + x)/(1− 7x)((1− x−

√
(1 + x)(1− 7x))/(2x))m

or
√
(1 + x)/(1− 7x)((1 − x −

√
(1 + x)(1− 7x))/((2x)(1 + 2x)))m (depending on

the side). Another explicit formula for a2n+1,n is ∑k≥0 (
n
2k)(

2k
k )2

2k+13n−2k−1(2− k
n

)
.

Theorem 3 ([4] Conj. 3). Let Bn,k be the set of permutations in An,k (2PS, size n, k ascents)
whose last fall has size 1, and let bn,k = |Bn,k|. Then we have a2n+1,n = 2b2n+1,n.

Proof (sketch). The last fall has size 1 if and only if
we have an ascent at 2n. Thus we need to prove that
precisely one half of A2n+1,n ends with an ascent. As
above, we represent the permutations from A2n+1,n
by colored Dyck bridges. For such a bridge, split
it into maximal excursions and anti-excursions and
rotate each such string by 180◦. Then the bridges
with last step U are mapped bijectively to the bridges with last step D. This yields an
autobijection in A2n+1,n such that “ascent at 2n ↔ descent at 2n”.

Results concerning the image of T

The image of the pop-stack sorting transformation has the following characterization.

Theorem 4. A permutation belongs to Im(T) if and only if its adjacent runs overlap.

Enumerative aspects concerning the image of T can be found in our paper [1]. In the
present work we study the structural and the enumerative aspects of Im(Tm).

Theorem 5. If τ = a1a2 . . . an ∈ Im(Tm) (where 0 ≤ m ≤ n− 1), then for each i (1 ≤ i ≤ n),
we have |ai − i| ≤ n−m− 1.

Proof (sketch). Our proof generalizes Un-
gar’s argument [6]. It uses a poset structure
associated to a “projection” of the succes-
sive images of the permutation π, and it is
conveniently visualized by “forbidden cor-
ners” in the diagrams of these images. π T (π) T 2(π) T 3(π)

The “forbidden corners” for n = 4:
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The case m = n− 1 of Theorem 5 gives Ungar’s result: each permutation of size n is
sorted by at most n− 1 iterations of T. Our main result is the characterization and
enumeration of Im(Tn−2), the pre-image of Id in the longest chains π → T(π) →
T2(π)→ · · · → Tn−1(π) = Id.

Theorem 6. A permutation τ = a1a2 . . . an belongs to Im(Tn−2) if and only if it is thin6

and has no inner runs of odd size. This implies |Im(Tn−2)| = 2n/2−1 + 2n/2 − 1 for even n,
2(n+1)/2 − 1 for odd n (OEIS A052955).

Proof (sketch). Consider a thin permutation τ 6= Id without odd inner runs. The runs
of τ (listed left to right) are of lengths (r1, r2, . . . , rs), where s ≥ 2 and r2, . . . , rs−1 are
even. Now, let π be the skew layered permutation7 with runs of lengths (rs, rs−1, . . . , r1).
It can then be checked that Tn−2(π) = τ. Let us now prove the reciprocal. If one
considers π and τ such that Tn−2(π) = τ, then τ must be thin by Theorem 5. If we
assume that τ has an odd inner run, then analysing the successive images Tm(π),
1 ≤ m ≤ n− 2, leads to a contradiction. Namely, it can be shown that in this case all
the letters in τ before (or after) this odd run are already sorted. This contradicts the
fact that an inner run starts and ends with a descent.
For the enumeration, as the run lengths determine a thin permutation uniquely, we
just need to choose the even/odd positions for the borders between runs.

In particular, this proof shows that each skew-layered permutation of size n without
odd inner runs needs exactly n− 1 iterations of T to be sorted. We conclude with the
following conjectured (and supported by computer experiments) complete classification
of skew-layered permutations with respect to the number of iterations of T needed to
sort them. Denote by σ(π) the smallest number m such that Tm(π) = Id.

Conjecture 7. Let π be a skew-layered permutation of size n such that π is neither the identity
nor the anti-identity permutation. If n is even, then σ(π) = n− 1. For odd n, σ(π) depends
on the structure of π around the central letter (that is, (n + 1)/2) as follows: if this letter
is the middle of a run/fall of size ≥ 3, then σ(π) = n− 2; otherwise, σ(π) = n− 1. From
the enumerative point of view: apart for the identity and the anti-identity, for even n we have
2n−1 − 2 skew-layered permutations with σ(π) = n− 1; for odd n we have (2n−2 − 2)/3
(OEIS A020988) skew-layered permutations with σ(π) = n− 2, and (5 · 2n−2 − 4)/3 (OEIS
A080675) skew-layered permutations with σ(π) = n− 1.
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The odd behaviour of the permutation displacement ratio

David Bevan University of Strathclyde, Glasgow

This talk is based on joint work with Pete Winkler

The total displacement [2] of a permutation σ = σ1 . . . σn is td(σ) = ∑i |σi − i|.

td(314592687) = 2 + 1 + 1 + 1 + 4 + 4 + 1 + 0 + 2 = 16

inv(314592687) = 0 + 1 + 0 + 0 + 0 + 4 + 1 + 1 + 2 = 9

Both td(σ) and inv(σ) are natural measures of how close σ is to the identity, and take a
similar range of values:

0 6 td(σ), inv(σ) 6 n2/2

If inv(σ) > 0, the displacement ratio of σ is the ratio of the total displacement to the
number of inversions, R(σ) = td(σ)/inv(σ). It is known [1] that R(σ) lies in the
half-open interval (1, 2].

Let πn,m denote a permutation chosen uniformly at random from the set of all permu-
tations of length n with exactly m inversions. In this talk, we consider the behaviour of
the expected asymptotic displacement ratio R[m(n)] = lim

n→∞
E
[
R(πn,m(n))

]
.

How does R[m(n)] behave as m(n) increases from 1 to (n
2)? We can consider the

evolution of the random permutation to pass through four epochs:

very sparse sublinear m(n) = n1/2, for example

sparse linear m(n) = αn
semi-sparse superlinear but subquadratic m(n) = n3/2, for example

dense quadratic m(n) = ρ(n
2)

If σ is close to being maximally sparse, then R(σ) = 2.

If inv(σ) = 1, then td(σ) = 2, so R[1] = 2.

If inv(σ) = 2, then td(σ) = 4, so R[2] = 2.

And at the maximally dense end, we have lim
n→∞

R(n . . . 21) = 1:

inv(n . . . 21) = (n
2) and td(n . . . 21) =

⌊
n2/2

⌋
.
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These observations suggest that R[m] might decrease as m increases, an idea which is
supported by the data.

E
[
td(π10,m)/m

]

0 5 10 15 20 25 30 35 40 45
m

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Conjecture 1. E
[
td(πn,m)/m

]
decreases strictly as m increases from 2 to (n

2).

We have not been able to establish this, but assuming it is true, how does R[m] decrease?
How does it behave in the various epochs for m(n)?

The answers we do have are somewhat surprising:

very sparse m� n R[m] = 2

sparse m = αn 2 > R[m] > 2 log 2 ≈ 1.3863

semi-sparse n� m� n2 R[m] = 2 log 2

dense m = ρ(n
2) 2 log 2 > R[m] > 1

We describe how these results were determined using permutons and inversion se-
quences. We also suggest how this odd behaviour might be explained in terms of the
different effects that local and global constraints have on πn,m.
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Square permutations are typically rectangular

Jacopo Borga University of Zurich

This talk is based on joint work with Erik Slivken [4]

We establish permuton convergence and local convergence for large uniform random
square permutations. First we describe the global behavior by showing that these
permutations have a permuton limit which can be characterized as a random rectangle.
We also explore fluctuations about this random rectangle, which we can describe
through coupled Brownian motions. Second, we consider the limiting behavior of the
neighborhood of a point in the permutation through local limits. As a byproduct, we
also determine the random limiting distribution of the proportion of occurrences and
consecutive occurrences of any given pattern in a uniform random square permutation.

Figure 1: The diagram of two typical square permutations of size 1 000 and 1 000 000.

Square permutations

Square permutations are permutations where every point is a record, i.e., a maximum
or minimum, either from the left or from the right. Square permutations can be also
described as a pattern-avoiding class, where the avoided patterns are all 16 patterns of
length five with a point that is not a record. Mansour and Severini [7] determine the
enumeration of the class proving that there are 2(n + 2)4n−3 − 4(2n− 5)(2n−6

n−3 ) square
permutations of size n. This permutation class was later discussed in [5, 6, 1] (in this
last paper the authors refer to square permutations as convex permutations). In this talk
we focus on the shape of square permutations.

Sampling asymptotically uniform square permutations

The starting point for all our results is the sampling procedure described in this section.
We define a projection from the set of square permutations to the set of anchored pairs
of sequences of labels, i.e., triples (X, Y, z0) ∈ {U, D}n × {L, R}n × [n]. For every square
permutation σ, the labels of (X, Y) are determined by the record types (the sequence
X records if a point is a maximum (U) or a minimum (D) and the sequence Y records
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if a point is a left-to-right record (L) or a right-to-left record (R)) and the anchor z0 is
determined by the value σ−1(1) (see Fig. 2 for an example).

U DU U U U U U U UD D D D D D D

L
R

L
L

L

L
L
L
L

L

L

R

R

R

R
R

R

R

D
L

L

D

X

Y

D
z0 = 14

Figure 2: A square permutation σ with the associated anchored pair of sequences
(X, Y, z0). The sequence X is reported under the diagram of the permutation and the
sequence Y on the left.

This projection map is not surjective, but we can identify subsets of anchored pairs of
sequences (called regular) and of square permutations where the projection map is a
bijection. We then construct a simple algorithm to produce a square permutation from
regular anchored pairs of sequences. We show that asymptotically almost all square
permutations can be constructed from regular anchored pairs of sequences, thus a
permutation sampled uniformly from the set of regular anchored pairs of sequences
will produce, asymptotically, a uniform square permutation.

Permuton limits, fluctuations and local limits

The first result we proved is the existence of the permuton limit for uniform square
permutations. A permuton is a probability measure on the square [0, 1]2 with uniform
marginals. Every permutation can be associated with the permuton induced by the
sum of Dirac measures on points of the diagram of the permutation scaled to fit
within [0, 1]2. We show that for a large square permutation σ that projects to a regular
anchored pair of sequences, the permuton associated with σ is close to a permuton
given by a rectangle (see for instance Fig. 1) embedded in [0, 1]2 with sides of slope ±1
and bottom corner at (σ−1(1)/n, 0). This allows us to show that the permuton limit of
uniform square permutations is a rectangle embedded in [0, 1]2 with sides of slope ±1
and bottom corner at (z, 0), where z is a uniform point in the interval [0, 1] (we denote
random quantities using bold characters).

The second result deals with fluctuations about the lines of the rectangle of the
permuton limit. We show that they can be described by certain coupled Brownian
motions. The latter arises naturally from the projection map described above, namely,
the fluctuations around the bottom left edge of the rectangle (see Fig. 2) are determined
by the distribution of the D’s in the left part of the sequence X and of the L’s in the
lower part of the sequence Y. The coupling between Brownian motions comes from the
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fact that the total number of labels of each type on a given interval (either horizontal
or vertical) sums up to the size of the interval.

The third result is a local limit theorem for square permutations. Our result is stated
in terms of the local topology introduced by the speaker in [2]. We look at the
neighborhood of a random element of a uniform square permutation and we study, for
all h ∈N, the consecutive pattern induced by the h elements on the right and on the
left of the chosen element, showing that, when the size of the whole permutation tends
to infinity, this consecutive pattern converges in distribution to a random limiting
pattern. Square permutations are the first natural but non-trivial model were the
local limiting object is random (we recall that this is not the case for uniform random
permutations avoiding a pattern of length three [2] or for uniform permutations in
substitution-closed classes [3], where the local limiting objects are deterministic).

Our first and third results, i.e., the permuton and local limits, can be interpreted in terms
of the convergence of the proportion of occurrences and consecutive occurrences of
any given pattern in a uniform random square permutation. We denote with õcc(π, σ)
(resp. (c̃-occ(π, σ)) the proportion of occurrences (resp. consecutive occurrences) of
a pattern π in σ, and with S the set of permutations. We can deduce that if σn is a
uniform random square permutation of size n, then the following convergences (w.r.t.
the product topology) hold:

(õcc(π, σn))π∈S
d→ (Λπ)π∈S and

(
c̃-occ(π, σn)

)
π∈S

d→ (∆π)π∈S ,

where (Λπ)π∈S and (∆π)π∈S are random vectors that can be described in terms of the
permuton and local limits of square permutations.
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Countable universal and existentially closed permutations

in geometric grid classes

Samuel Braunfeld University of Maryland, College Park

Inspired by the study of the corresponding question for graph classes [2], we investi-
gate when a permutation class admits a countable universal permutation, i.e. a countable
permutation avoiding the specified patterns into which all other such countable permu-
tations embed. This may be seen as a strengthening of atomicity, which is equivalent
to the existence of a countable permutation avoiding the specified patterns into which
all other such finite permutations embed.

For graph classes, we may consider forbidding either induced or non-induced sub-
graphs. In the case of induced subgraphs, the existence of a countable universal graph
is undecidable. In the case of non-induced subgraphs, decidability is open, but the
question seems tractable by instead considering existentially closed graphs. Existential
closedness is a largeness condition, and when a class admits a unique countable exis-
tentially closed graph, it serves as a canonical countable universal graph. (A structure
M avoiding certain forbidden substructures is existentially closed if given finite A ⊂ M
and a finite configuration of points B with the isomorphism type of A ∪ B specified, if
the configuration can be added to M without creating any forbidden substructures,
then the configuration is already realized in M.)

In permutation classes, we are in the case of forbidding induced substructures, and so
might expect chaos. However, the proof for the induced subgraph case seems difficult
to adapt, and the case of forbidding permutations of length 3 suggests similarities to
the non-induced subgraph case [3].

We show that geometric grid classes of permutations [1] admit countable universal
permutations and have natural candidates for unique countable existentially closed
permutations.

In the course of pursuing these questions, we arrive at more traditional-seeming
questions concerning geometric grid classes. These include which grids represent the
same permutation class and when a permutation class specified by forbidden patterns
is a geometric grid class (possibly using an infinite grid).
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Enumeration of isolated vertices in permutation graphs

Charles Burnette Saint Louis University

In this talk, we will describe both exact and limiting distributions for the number of
isolated vertices in a uniform random permutation graph.

Introduction

Let us recall what a permutation graph is.

Definition 1. For a given permutation π ∈ Sn, the permutation graph Gπ associated
with π is the labelled graph with vertex set [n] formed by drawing an edge between
two vertices i and j precisely when (i− j)(π(i)− π(j)) < 0.

Let isoln(π) be the number of isolated vertices in Gπ. Isolated vertices of Gπ are also
called strong fixed points of π. More specifically, node k is an isolated vertex of Gπ if

π(k) = max{π(1), π(2), . . . , π(k)} = min{π(k), π(k + 1), . . . , π(n)}.
Note in particular, then, that π(k) = k.

Certain enumerative aspects of strong fixed points of permutations have been studied
fairly extensively. (See, for instance, sequence A052186 on [4], [1], and chapter 1,
problem 128(b) in [5].) They are also relevant to the analysis of the quicksort algo-
rithm. (Read section 2.2 of [6] where Wilf affectionately calls them “splitters.”) Here,
however, we will examine strong fixed points of permutations purely in the context of
permutation graphs. Our main contribution is the following:

Theorem 2. The scaled statistic n · isoln weakly converges to a gamma-distributed random
variable with shape parameter 2 and scale parameter 1.

The Exact Distribution of isoln

The exact distribution of isoln can be described by way of an interesting recurrence
relation for the number an of permutation graphs on [n] having no isolated vertices
at all. (Note that a0 = 1 since the empty graph is vacuously free of isolated vertices.)
Below are some pertinent facts about an.

Theorem 3. For all nonnegative integers n,

an+1 = nan +
n

∑
k=1

k(n− k)!ak−1. (1)

Theorem 4. For all nonnegative integers n,

an +
n

∑
k=1

(n− k)!ak−1 = n!. (2)

44



Proofs of Theorems 3 and 4 are omitted for the sake of space. We can say, however,
that the reasoning behind these recurrences is largely inspired by the combinatorics of
connected permutation graphs presented in [2].

Throughout the rest of this abstract, we let Pn and En denote the uniform probability
measure on Sn and its associated expectation operator, respectively. Also let λ ` n
denote that λ is an integer partition of n, and let λk be the number of parts of size k
that λ has, and let |λ| = ∑ λk be the total number of parts that λ has. We are now
ready to state the probability mass function of isoln.

Theorem 5. For all nonnegative integers m and n with m ≤ n,

Pn(isoln(π) = m) =
(m + 1)!

n! ∑
λ`(n+1),

λ has m+1 parts

n+1

∏
j=1

a
λj
j−1

(λj)!

 . (3)

One can also use the principle of inclusion-exclusion to count the number of permuta-
tion graphs on [n] having no isolated vertices.

Theorem 6. For all nonnegative integers n,

an = ∑
λ`(n+1)

(−1)|λ|−1|λ|!
(

n+1

∏
j=1

((j− 1)!)λj

(λj)!

)
(4)

The major advantage of (2), however, is that it makes it more apparent that asymptoti-
cally almost all permutation graphs on [n] have no isolated vertices. Indeed,

Pn(isoln(π) 6= 0) =
n!− an

n!

=
1
n!

n

∑
k=1

(n− k)!ak−1

<
1
n!

n

∑
k=1

(n− k)!(k− 1)!

=
1
n

n−1

∑
k=0

1
(n−1

k−1)
=

2
n
(1 + o(1))

as n→ ∞. This will become even more apparent in the next section though.

The Limiting Distribution of isoln

For each π ∈ Sn and each integer k ∈ [n], define set Ik(π) = 1 if node k is an isolated
vertex of Gπ and set Ik(π) = 0 otherwise. Notice that then

isoln(π) =
n

∑
k=1

Ik(π). (5)
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As a result, for each integer s ∈ [n].

isoln(π)(isoln(π)− 1)(isoln(π)− 2) · · · (isoln(π)− s + 1) = ∑ Ik1(π)Ik2(π) · · · Iks(π)

where the sum is over all s-permutations of integers taken from [n]. This provides a
very convenient way to calculate the factorial moments of isoln.

Theorem 7. For all nonnegative integers n and s with s ≤ n,

En((isoln)s) =
(s + 1)!

n! ∑
λ`(n+1),

λ has s+1 parts

|λ|!
(

n+1

∏
j=1

((j− 1)!)λj

(λj)!

)
=

(s + 1)!
ns (1 + o(1)) (6)

as n→ ∞.

Combining the method of factorial moments with a generalization of Lemma 2 from
[3] yields our main result.

Theorem 8. For all real x

lim
n→∞

Pn(n · isoln(π) ≤ x) =

 1− x + 1
ex if x > 0

0 otherwise
.
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Sorting Permutations with Pattern-Avoiding Stacks

Giulio Cerbai University of Firenze

This talk is based on joint work with Anders Claesson, Luca Ferrari and Einar Steingrimsson

The problem of sorting a permutation using a stack was proposed by Knuth in the 1960s.
As it is well known, sortable permutations can be characterized in terms of pattern
avoidance and their enumeration is given by the Catalan numbers. Unfortunately,
adding just another stack in series makes the problem extremely hard. Hoping to gain
a better understanding of the general 2-stacksort problem, we start the analysis of a
new sorting device, where some restrictions on the stacks are given in terms of pattern
avoidance. We will use a right-greedy procedure, in analogy with [W]. Here we provide
the first general results in this new framework and propose some open problems.

Counting Classes and Non-Classes

Let γ be a permutation. We consider a sorting device consisting in two stack in series
S1 and S2, with the following right-greedy algorithm:

1. push an element from the input into S1, unless it creates an occurrence of γ in
S1, reading from top to bottom;

2. otherwise, push the top of S1 into S2, unless it is bigger than the top of S2.

3. otherwise, push the top of S2 into the output.

If the output is the identity, the input permutation is said to be γ-sortable. Denote with
S(γ) the set of the γ-sortable permutations and let Sn(γ) = S(γ)

⋂
Sn.

Theorem 1. Let γ = γ1γ2γ3 · · · γk a permutation and let γ̂ = γ2γ1γ3 · · · γk. Then S(γ) is
a permutation class if and only if γ̂ ≥ 231. In this case, we have S(γ) = Av(132, γR), where
γR = γk · · · γ1 is the reverse of γ.

Corollary 2. The number of permutations γ ∈ Sn such that S(γ) is not a permutation class
is the n-th Catalan numbers cn. (sequence A000108 in [S])

Theorem 1 guarantees that if S(γ) is a class, then its basis is either {132} or
{

132, γR}.
We are able to count the patterns γ such that the basis of S(γ) has cardinality 2.

Theorem 3. Let fn be the number of permutations γ such that S(γ) is a permutation class
and γR avoids 132. Then fn = cn − 2cn−1. (sequence A002057 in [S])
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123-Sortable Permutations

In the following we focus on specific patterns γ. The hidden combinatorial structure in
most of the cases seems to be surprisingly deep, making the analysis quite challenging
already for patterns of length 3. We start with the pattern 123; notice that, as a
consequence of Theorem 1, S(123) is not a permutation class.

Theorem 4. S(12) = Av(213).

Theorem 5. Given π ∈ S(123) and k ≥ 1, let π′ be obtained from π by k-inflating 8 the first
element of π. Then π is sortable if and only if π′ is sortable.

Theorem 6. Let π = π1 · · ·πn a permutation with π1 = n. Then π is 123-sortable if and
only if π avoids 213.

Theorem 7. For n, k ≥ 1, denote with Sdes
n (123) [k] the set of 123-sortable permutations of

length n that start with a descent and have k left-to-right maxima. Then there exists a bijection
between Sdes

n (123) [k] and Sdes
n+1(123) [k + 1].

What we have proved so far completely determine the structure of 123-sortable permu-
tations. Indeed, any π ∈ Sn(123) (except for the identity) can be uniquely constructed
by choosing α = α1α2 · · · αk ∈ Avk(213), with α1 = k, then adding h new maxima,
according to the bijection of Theorem 7, and finally adding n − k − h consecutive
ascents at the beginning, by inflating the first element.

Exploiting this structural description of S(123), we are able to find a bijection between
123-sortable permutations of length n and UHD-avoding Schröder paths of semilength
n− 1, enumerated in [CF]. Thus, we have the following result.

Corollary 8. For all n ≥ 1, |Sn(123)| = 1 +
n−1

∑
h=1

(n− h)ch. (sequence A294790 in [S])

132-Sortable Permutations

Although S(132) is not a permutation class, due to Theorem 1, we show a useful
characterization of the 132-sortable permutations in terms of barred patterns.

Theorem 9. S(132) = Av(2314, 3̄142, 142̄3, 241̄3).

The previous result offers a very precise and geometrical description of S(132), which
enables to find a connection with restricted growth functions of certain set partitions,
whose enumeration can be found in [JM].

Definition 10. Given the set partition B = B1|B2| . . . |Bk of [n], where min(B1) <
min(B2) < · · · < min(Bk), the Restricted Growth Function (briefly RGF)of B is the word
RGF(B) = r1 · · · rn, where ri = j if i ∈ Bj.

8i.e., replacing the element with an increasing sequence of consecutive elements and suitably rescaling
the other entries.
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Theorem 11. For each n ≥ 1, there is a bijection between Sn(132) and the set partitions of
[n] whose RGF avoids 2231. Moreover, the bijection maps the number of left-to-right minima
of a sortable permutation into the number of blocks of the partition.

Corollary 12. |Sn(132)| =
n−1

∑
k=0

(
n− 1

k

)
ck. (sequence A007317 in [S])

Being the above formula so neat, it is quite natural to ask if it can be read off directly
from sortable permutations. We report also another conjecture, verified computation-
ally for small values of n, that seems to suggest a deeper link with some Catalan-type
combinatorial objects.

Question 13. Prove that the number of 132-sortable permutations of length n + 1 with k + 1

left-to-right minima is
n

∑
i=k

(
n
i

)
ni,k, where ni,k is the (i, k)-th Narayana number.

Open Problems for Future Work

By Theorem 1, we have S(321) = Av(123, 132), meaning that there are 3 more patterns
of length 3 whose enumeration remains to be solved.

Question 14. Characterize and enumerate γ-sortable permutations for the remaining patterns
γ of length 3, namely 213, 231, 312.

Concerning longer patterns, it would be interesting to classify our sorting machines
in terms of the number of permutations they sort. This gives rise to a notion of
Wilf-equivalence on sorting machines, which seems to be particularly interesting when
the set of sortable permutations constitute a class. For instance, a thorough case by case
analysis shows that there are two Wilf-classes for patterns of length 4 (Catalan numbers
and odd-indexed Fibonacci numbers, sequence A001519 in [S]), five Wilf-classes for
patterns of length 5 and 10 for patterns of length 6.

Question 15. Enumerate the Wilf-classes for devices whose corresponding set of sortable
permutations is a class.
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Enumerative combinatorics of intervals in the Dyck pattern

poset

Matteo Cervetti University of Trento

This talk is based on joint work with Antonio Bernini and Luca Ferrari

The Dyck pattern poset has been first introduced in [BFPW] and further studied in
[BBFGPW]. A Dyck path is a lattice path starting from the origin of a fixed Cartesian
coordinate system, ending on the x-axis, never falling below the x-axis and using only
two types of steps, namely up steps U = (1, 1) and down steps D = (1,−1). The
sequence of up and down steps of a Dyck path is a word on the alphabet {U, D} such
that each prefix has at least as many U’s as D’s and the total number of U’s and D’s is
the same. Such words are commonly called Dyck words. Given two Dyck paths P and
Q, we say that P is a pattern of Q and we write P ≤ Q, when P is a subword of Q (i.e.
there exists a subset of the letters of Q which, read from left to right, are equal to P).
Any subword of Q which is equal to P is called an occurrence of P in Q. So, for instance,
UUDD ≤ UDUDUD, whereas UUDDUD and UUDUUUDDDD are incomparable.
The Dyck pattern poset has a minimum, which is the path UD, and has no maximum;
moreover, it is graded, the rank of an element being its semilength.

Figure 1: The Dyck path UUDUUDDDUUDUDD.

For a graded poset P and nonnegative integers ` and k, denote by s`(P) the number
of saturated chains of length ` in P and denote by s(k)` (P) the number of saturated
chains in P having length ` and top element of rank k. In particular, s0(P) is just the
number of elements of P , s(k)0 (P) is the number of elements of P with rank k and
s1(P) is the number of edges of the Hasse diagram of P . In the above mentioned
papers some enumerative properties of the Dyck pattern poset have been investigated,
mainly focusing on pattern avoidance questions. In this work, we start to deal with
the enumerative combinatorics of intervals in the Dyck pattern poset by computing
s(k)` ([UD, P]), for some choices of the integers `, k and of the paths P.

The interval [UD, (UD)n]

Our first result is an explicit formula for the number of elements in the interval
[UD, (UD)n], for n ∈ N. For this purpose, we characterize the Dyck paths in the
interval [UD, (UD)n] in terms of the number of their ascents. Given a Dyck path P, an
ascent of P is a maximal consecutive substring of P of the form Um, for some m > 0,
and the number of ascents of P will be denoted by asc(P). The Dyck paths in the
interval [UD, (UD)n] can now be characterized as follows.
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Figure 2: The Dyck path (UD)5 =UDUDUDUDUD.

Lemma 1. Let n > 0, k ∈ {1, ..., n} and P be a Dyck path of semilength k. Then P ≤ (UD)n

if and only if asc(P) ≥ 2k− n.

It is well known that, given n, k ∈ N, Dyck paths of semilength n having k ascents
are counted by the Narayana number Nn,k, where N0,0 = 1, Nn,k =

1
n (

n
k)(

n
k−1) for n, k ≥ 1

and Nn,k = 0 in the remaining cases (sequence A001263 in [S]). As an immediate
consequence, we deduce the following explicit formulas.

Proposition 2. Let n > 0 and k ∈ {1, ..., n}, then

(i) s(k)0 ([UD, (UD)n]) = ∑k
m=max{1,2k−n} Nk,m

(ii) s0([UD, (UD)n]) = ∑n
k=1 ∑k

m=max{1,2k−n} Nk,m.

The sequence (s0([UD, (UD)n]))n≥0 of the sizes of the interval [UD, (UD)n] starts
1,2,4,8,16,33,70,152,337 and is not recorded is [S]; however, it is the sequence of the
partial sums of A004148 of [S], called “generalized Catalan numbers" and counting,
among other things, peak-less Motzkin paths with respect to the length. The sequence
(s(k)0 ([UD, (UD)n]))n≥k≥0 appears as A137940 in [S].

The interval [UD, Ua+hDaUbDb+h]

Let a, b, h be positive integers (and assume, w.l.o.g., that b ≥ a ≥ 1) and Q(h)
a,b =

Ua+hDaUbDb+h, that is a generic Dyck path with two peaks. We provide an explicit
formula for the number of elements in [UD, Q(h)

a,b ], depending on a, b and h.

Proposition 3. Denote by ϕh(a, b) the number of Dyck paths having two peaks in the interval
[UD, Q(h)

a,b ]. Then:

(i) ϕ0(a, b) = a(a+1)(3b−a+1)
6 ;

(ii) ϕh(a, b) = ϕ0(a, b) + hab;

(iii) s0([UD, Q(0)
a,b ]) = ϕh(a, b) + b + h.

The numbers (ϕ0(a, b))a,b≥0 match the entries of the triangular matrix recorded as
sequence A082652 in OEIS, which counts the number of squares that can be found in
a rectangular a× b grid. A bijection between such squares and Dyck paths with two
peaks contained in Q(0)

a,b can be succinctly described as follows: each path of the form
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Uk+iDiU jDj+k with two peaks contained in Q(0)
a,b corresponds to the square whose side

has length h + 1 and whose topmost and leftmost vertex is the topmost and leftmost
vertex of the unit square in the i-th row (from top to bottom) and j-th column (from
left to right) of the grid.

As a further result, we also provide the following explicit formulas for the number of
elements in the interval [UD, Q(0)

a,b ] with rank k.

Proposition 4. Let 1 ≤ k ≤ a + b, then

s(k)0 ([UD, Q(0)
a,b ]) =


(k

2) + 1 1 ≤ k ≤ a
(a+1

2 ) + 1 a < b, a + 1 ≤ k ≤ b
(a+b−k+2

2 ) b + 1 ≤ k ≤ a + b .

Finally, we provide an explicit formula for the number of edges in the Hasse diagram of
the interval [UD, Q(0)

a,b ]. To this aim, we will compute s1([UD, Q(0)
a,b ]) using the following

lemma.

Lemma 5. Let i, j, k be non negative integers and ∆Q(k)
i,j be the number of Dyck paths covered

by Q(k)
i,j , then

∆Q(k)
i,j =



0 (i, j, k) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}
1 (i, j, k) ∈ {(1, 1, 0), (i, 0, k), (0, j, k) : i + k, j + k ≥ 2}
2 (i, j, k) ∈ {(i, 1, 0), (1, j, 0), (1, 1, k) : i, j ≥ 2, k ≥ 1}
3 (i, j, k) ∈ {(i, j, 0), (i, 1, k), (1, j, k) : i, j ≥ 2, k ≥ 1}
4 (i, j, k) ∈ {(i, j, k) : i, j ≥ 2, k ≥ 1}

Now, after having observed that

s1([UD, Q(0)
a,b ]) = ∑

n≥0
n · ∆n([UD, Q(0)

a,b ]),

we get:

s1([UD, Q(h)
a,b ]) = −

1
3
(2a3 − 6a2b + a− 3b + 3). (1)

The above number triangle does not appear in [S].

References
[BBFGPW] A. Bacher, A. Bernini, L. Ferrari, B. Gunby, R. Pinzani, J. West, The Dyck

pattern poset, Discrete Math., 321 (2014) 12–23.

[BFPW] A. Bernini, L. Ferrari, R. Pinzani, J. West, Pattern avoiding Dyck paths, Dis-
crete Math. Theoret. Comput. Sci. Proc., AS (2013) 683–694.

[S] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, at oeis.org.

52



Applications of a q-analog for Riordan arrays to various

combinatorial objects

Gi-Sang Cheon Sungkyunkwan University

This talk is based on joint work with Ji-Hwan Jung, AORC in Sungkyunkwan University

One of the fundamental concepts in combinatorics is that of enumeration, and one of
the basic techniques for dealing with problems of enumeration is that of generating
functions. Heuristically, a generating function f is a representation of a counting
function N : N→N as an element f (N) of some algebra. There are several types of
generating functions which have actually arisen in specific enumeration problems.

In this talk, we are interested to a q-analog of exponential generating function ∑n≥0 an
zn

n!
for a sequence (an)n≥0. It is called the Eulerian generating function defined by

∑
n≥0

an
zn

[n]q!

where [n]q! = ∏n
k=1[k]q, [0]q! = 1, and [k]q = qk−1

q−1 . This q-analog arises in several
combinatorial applications such as finite vector spaces, partitions and counting per-
mutations by inversions. For example, while n! counts the number of permutations of
length n, [n]q! counts permutations while keeping track of the number of inversions.

For n ∈N0, let Eq(n) be the set of the Eulerian generating functions of the form

an
zn

[n]q!
+ an+1

zn+1

[n + 1]q!
+ · · · , an = 1.

With a pair of functions g ∈ Eq(0) and f ∈ Eq(1), a q-Riordan array [4] written
(g, f )q = (`n,k)n,k∈N0 is defined by

∑
n≥k

`n,k
zn

[n]q!
= g(z)

f [k](z)
[k]q!

,

where f [k](z) is the kth symbolic power of f (z). Since `n,k = 0 for n < k and `n,n = 1
for n ∈ N0, every q-Riordan array is an infinite lower triangular matrix with unit
diagonal elements. If q = 0 and q = 1, then (g, f )q reduces to the usual Riordan array
(g, f ) and the exponential Riordan array 〈g, f 〉, respectively. Thus the q-Riordan array
is a q-analog for a Riordan array.

Interestingly, various combinatorial objects arising in enumeration problem can be
expressed as q-Riordan arrays, see [1, 2, 3, 4]. Consider a k-partition π = {B1, . . . , Bk}
of the n-set [n], and we denote the set of such partitions by Πn,k. The following theorem
asserts that if G and F are the Eulerian generating functions whose coefficients are
associated to the counting functions N0 → C[[q]], then the q-Riordan array (G, F)q can
be applied to the enumeration problem of set partitions by block inversions.
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Theorem 1. [4] Let g, f : N0 → C[[q]] be counting functions with g(0) = 1, f (0) = 0 and
f (1) = 1. If hk : N0 → C[[q]] for fixed k is defined by

hk(n) = ∑
π={B1,...,Bk+1}∈Πn+1,k+1

g(|B1| − 1) f (|B2|) · · · f (|Bk+1|)qinv(π),

then the array (an,k)n,k∈N0 where an,k = hk(n), may be expressed as the q-Riordan array given
by (G, F)q.

In this talk, we will see how this notion can be applied to q-analogs of combinatorial
objects from the set partitions. As an example, it will be introduced by the q-analog
of Laguerre polynomials that include a nice combinatorial description. Indeed, the
coefficients of the q-Laguerre polynomial can be expressed in terms of the q-rook
numbers rk(B, q) for a Ferrers board B which were introduced by Garsia and Remmel
[6]:

rk(B, q) = ∑
C∈Ck(B)

qinv(C)

where Ck(B) is the collection of all placements of k non-attacking rooks on B and inv(C)
is defined as follows: first cross out all squares which either contain a rook, or are below
or to the left of any rook. Then we count the remaining squares. Furthermore, the
q-Laguerre polynomials are orthogonal and satisfy the three-term recurrence relation.
As a matter of fact, Gessel [8, p.174] suggested finding a rook polynomial interpretation
for the orthogonality, in the usual sense, of q-Laguerre polynomials. We hope that our
q-version of Laguerre polynomials shall provide clues to this problem.
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Square permutations and convex permutominoes

Enrica Duchi IRIF, Université Paris Diderot, Paris

In this talk we consider square permutations, a natural subclass of permutations
defined in terms of geometric conditions, that can also be described in terms of pattern
avoiding permutations, and convex permutoninoes, a related subclass of polyominoes.

We propose a common approach to the enumeration of these two classes of objets that
allows us to explain the known common form of their generating functions, and to
derive new refined formulas and linear time random generation algorithms for these
objects.

Introduction and results

Square permutations and convex permutominoes are natural subclasses of permuta-
tions and polyominoes that were introduced independently in the last ten years and
have been shown to enjoy remarkably simple and similar enumerative formulas: their
respective generating functions Sq(t) and Cp(t) are

Sq(t) =
t2

1− 4t

(
2 +

2t
1− 4t

)
− 4t3

(1− 4t)3/2 (1)

Cp(t) =
t2

1− 4t

(
2 +

2t
1− 4t

)
− t2

(1− 4t)3/2 (2)

Equivalently, the number Sqn of square permutations with n points and the number
Cpn of convex permutominoes with size n are respectively

(n + 2) 22n−5 − 4(2n− 5)
(

2n− 6
n− 3

)
(n + 2) 22n−5 − (2n− 3)

(
2n− 4
n− 2

)

These results were first obtained by Mansour et al [8], Duchi et al [7] and Albert et al
[1] for Sq(t), and by Boldi et al [3] and Disanto et al [6] for Cp(t). Known proofs of
these formulas rely on writing recursive decompositions resulting into linear equations
with one catalytic variable that can be easily solved via the kernel method. Link with
pattern avoiding permutations are described in [9]. An explicit connection between
the two classes of objects was obtained by Bernini et al [2], resulting in a composition
relation of the form Cp(t) = ISq(t, 2) where ISq(t, u) is the generating function of
certain indecomposable square permutations counted by their size and number of free
fixed points.

While relatively simple, none of these known proofs explain, as far as we know, the
common shape of the formulas, nor its particular form as a difference between an
asymptotically dominant rational term and a simple subdominant algebraic term.
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We give here a common proof of the two formulas that explains their form and allows
to generalize them to take into account natural parameters extending the Naranaya
refinement for Catalan numbers. In order to state our result let us consider the
following rational sets of words: Let W = A∗ denote the set of (bi)words on the
alphabet A = {U, D} × {L, R}, and let M denote the set of marked words (w, m)
consisting of

• a word w = (u1, v1) · · · (un, vn) ∈ {(X, Y)} · W · {(X, Y)}
• and a mark m with 1 ≤ m ≤ n and vm ∈ {L, Y}.

Let moreover M(t; x, y) and W(t; x, y) be respectively the generating functions ofM
andW with respect to the length (var. t), number of U and X (var. x) and number of
L and Y (var. y). Then

W(t; x, y) =
1

(1− (1 + x)(1 + y)t)

and, upon dealing separately with the case m ∈ {1, n} where the mark is on a letter Y
from the case 1 < m < n where the mark is on a letter L, we have that

M(t; x, y) = 2 · txy ·W(t; x, y) · txy + (txy) ·W(t; x, y) · t(1 + x)y ·W(t; x, y) · txy.

In particular M(t, 1, 1) gives an a priori unrelated combinatorial interpretation of the
dominant rational term in Formula (1) and (2) since

W(t; 1, 1) =
1

1− 4t
and M(t; 1, 1) =

t2

1− 4t

(
2 +

2t
1− 4t

)
.

By defining the horizontal/vertical encoding of square permutations and of convex
permutominoes by words ofM we prove the following theorem:

Theorem 1. The horizontal/vertical encoding defines bijections

Sq ≡M − T ↙ · {(D, L), (D, R)} · W · {(X, Y)} − T ↖ · {(U, R), (D, L)} · W · {(X, Y)}

Cp ≡M − D↙ · {(D, L)} · W · {(X, Y)} − D↖+ · W · {(X, Y)}

where T ↙ and T ↖ are languages encoding particular classes of triangular permutations, while
D↙ and D↖+ are languages encoding particular classes of directed convex permutominoes.

From Theorem 1 it already appears that the two sets of non-coding words for Sq and
for Cp have a similar structure. In fact the analogy between the two results goes
further since the languages T ↙ and T ↖, D↙, D↖+ have essentially the same univariate
generating functions:

T↙(t) = T↖(t) = (2D↙(t) + 1)t = 2D↖+(t)− t =
t√

1− 4t
(3)
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and these results together with Theorem 1 immediately imply Formulas (1) and (2).

The evaluations (3) can be obtained from algebraic decompositions of the respective
classes of objects, but we choose also to obtained them by re-using the same hori-
zontal/vertical encoding. Moreover, from this analysis we obtain the refinements of
Formulas (1) and (2) according the number of upper points and the number of left
points, which involve refinements of Narayana numbers.

Finally, from the vertical/horizontal encoding for square permutations we obtain the
following:

Corollary 2. There is a random sampling algorithm to generate uniform random square
permutations with n points or uniform random convex permutominoes of size n in expected
time linear in n.
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Widdershins permutations and well-quasi-order

Michael Engen University of Florida

This talk is based on joint work with Robert Brignall and Vincent Vatter [1]

In this talk, we will discuss widdershins permutations and some properties of their
corresponding permutation and graph classes.

The widdershins classW

•
••

• •

••

• •

••

• •

••

•

Figure 1: A representative widdershins permutation.

In his thesis [3], Murphy defined widdershins permutations, which we have drawn
an example of in Figure 1 (widdershins being a Lower Scots word meaning “to go
anti-clockwise”). The downward closure W of the widdershins permutations turns
out to be a relatively well-behaved permutation class. We show thatW has the rational
generating function

1− 4x + 3x2

1− 5x + 6x2 − 2x3 − x4 − 3x5 .

and has the finite basis which is the rotational closure of

{2143, 2413, 314562, 412563, 415632}.

Of particular interest to us is thatW is well-quasi-ordered.

Well-quasi-ordered graph classes

The motivation for studying this permutation class lies in graph theory. Under the
induced subgraph order, the collection of all graphs contains infinite antichains (e.g.
the set of all cycles {C3, C4, C5, . . . }. A vibrant area of research in graph theory is
to characterize the graph classes which do not contain infinite antichains, which are
called well-quasi-ordered, and determine the consequences of a class being well-quasi-
ordered. In [2], Korpelainen, Lozin, and Razgon conjectured that any finitely-based
well-quasi-ordered graph class is also labeled-well-quasi-ordered.
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We provide a counterexample to the conjecture by proving that the class of graphs
of widdershins permutations meet the hypotheses of the conjecture while not being
labeled-well-quasi-ordered.
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On the poset of king-non-attacking permutations

Esterella Eisenberg and Moriah Sigron Jerusalem College of Technology, Jerusalem

This talk is based on joint work with Eli Bagno and Shulamit Reches

In this article we deal with the poset of king non-attacking permutations under the
relation of containment. We present some structural results and bring information of
its Möbious function.

Introduction

The Hertzsprung’s problem is to find the number of ways to arrange n non-attacking
kings on an n× n chess board such that each row and each column contains exactly
one king. Let Sn be the symmetric group on n elements. By identifying a permutation
σ = [σ1, . . . , σn] ∈ Sn with its plot, i.e. the set of all lattice points of the form (i, σi)
where 1 ≤ i ≤ n, this problem reduces to finding the number of permutations σ ∈ Sn
such that for each 1 < i ≤ n, |σi − σi−1| > 1. This set is counted in OEIS A002464. In
the squeal, we switch between some notations for permutations. Occasionally, we omit
the commas in the writing of σ = [σ1, . . . , σn] ∈ Sn as in [3142] ∈ S4.

Let Kn be the set of all such permutations in Sn. In this paper we call them simply king
permutations or just kings. For example: K1 = S1, K2 = K3 = ∅, K4 = {[3142], [2413]}.
Observe that Kn is closed to the reverse and inverse actions.

The set of all permutations ∪n∈NSn is a poset under the partial order given by contain-
ment.

We are interested in the sub-poset ∪n∈NKn containing only the king permutations.

In order to analyse properties of the posets we are dealing with, one can use the
Manhattan or taxicab metric dσ(i, j). The breadth of an element σ ∈ Sn is defined in [2]
to be:

br(σ) = mini,j∈[n],i 6=jdσ(i, j)

It is easy to observe that for n > 1 we have σ ∈ Kn if and only if br(σ) ≥ 3.

In a paper by Bevan, Homborger and Tenner, [2], the authors define the notion of a
k-prolific permutation. A permutation σ ∈ Sn is called k-prolific if each subset of the
letters of σ = [σ1, . . . , σn] of order n− k forms a unique pattern.

It is shown there that σ is k-prolific if and only if br(σ) ≥ k + 2. Hence, σ ∈ Kn if and
only if it is 1- prolific.
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Main results

The first main result in this paper claims that the permutations [2413] and [3142] serve
as building blocks of the poset of king permutations.

Theorem 1. For every σ ∈ Kn (n ≥ 4), either [2413] � σ or [3142] � σ.

The following corollary adds some more information about the structure of the posets
of king permutations.

Theorem 2. Let n > 4. For each σ ∈ Kn there exist π ∈ K5 s.t. π � σ.

The following result is a basic ingredient in a series of theorems which explore the
structure of the poset Kn.

Theorem 3. Let σ ∈ Kn with n ≥ 4 and let π ∈ Kn−2 be such that π ≺ σ. Then there exists
τ ∈ Kn−1 such that π ≺ τ ≺ σ.

Theorem 4. For each two king permutations σ ≺ π there exists a chain of king permutations
σ = σ0 ≺ σ1 · · · ≺ σk = π such that |σi| − |σi−1| ∈ {1, 3}.

We observe that the chains in the poset Kn might contain holes. In order to characterize
the permutations of which this phenomenon occurs we define σ ∈ Kn−1 to be a regent
of π ∈ Kn if σ ≺ π. We give a complete description of all the permutations which have
no regents in the following:

Theorem 5. The following conditions are equivalent for each π ∈ Kn with n ≥ 4.

1. There are α1, . . . , αk ∈ {[3142], [2413]} and σ ∈ Sk such that π = σ[α1, . . . , αk], where
σ[α1, . . . , αk] is the inflation of permutation σ by the permutations α1, . . . , αk

2. For each i ∈ {1, . . . , n}, by removing i from π, we get a block of length 3.

3. π has no regents.

Corollary 6. The number of permutations in Kn which have no regents is:

{
2kk! n = 4k
0 O.W.

We present now some results regarding the Möbious function of Kn. We start with an
example depicting the poset of the downward set of the king permutation [5246173].
The circled numbers next to each permutation π is the value of µ(π).
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[2413]
-1©

[3142]
-1©

[24153]
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[42513]
1©

[41352]
0©

[52413]
0©

[425163]
-1©

[524163]
0©

[524613]
0©

[5246173]
0©

Our main result on the vanishing of the Möbious function on
⋃

n∈N Kn is:

Theorem 7. Let π ∈ Kn, with n > 4. If [2413] ⊀ π or [3142] ⊀ π then µ(π) = 0.

Definition 8. Another vanishing result is the following:

Let
G = {[24153], [35142], [42513], [31524]}.

It is easy to see that G consists of all the elements of K5 which contain both [2413] and
[3142].

Note that in K5, µ(π) = 1 if and only if π ∈ G (otherwise µ(π) = 0).

Theorem 9. Let π ∈ Kn with n > 5 such that there is only one σ ≺ π such that σ ∈ G and
for each σ′ ≺ π such that σ ⊀ σ′ we have either σ′ avoids [3142], or σ′ avoids [2413]. Then in
the poset of king permutations µ(π) = 0.
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The number of separators, a new parameter for the symmetric

group

Esterella Eisenberg and Moriah Sigron Jerusalem College of Technology, Israel

This talk is based on joint work with Eli Bagno and Shulamit Reches

Introduction

Let Sn be the Symmetric group of n elements. A 2−block or a bond in a permutation
π = [π1, . . . , πn] ∈ Sn is a consecutive sub-sequence of π of the form πi, πi+1 such that
|πi − πi+1| = 1. For example, the permutation π = [34521] has three bonds: 34 ,45 and
21.

Permutations of Sn which have no bonds are connected to the problem of placing n
non-attacking kings in an n× n chess board. These permutations were counted in
[3], and the structure of their containment poset is discussed in a recent paper by the
authors of this note [1]. The set of such permutations will be denoted by Kn.

A digit of a permutation, a removal of which produces a new bond, will be called a
separator. (see the formal definition below).

Example 1. In π = [567139482] we can omit π7 = 4 and after standardizing we get the
permutation [45613872] which has the new 2-block 87, so 4 is a separator. the digit 2 is
also a separator, since the removal of it creates the permutation [45612837] containing
the bond 12. Note that if we remove π2 = 6, we get the permutation [56138472] which
contains the bond 56 that already exists in π, so 6 is not a separator in π.

In this work we introduce a new parameter: the number of separators, we provide
some general information on this parameter, as well as a generating function exhibiting
its distribution.

We start with the formal definition:

Definition 2. For σ = [σ1, . . . , σn] ∈ Sn, we say that σi separates σj1 from σj2 in σ if by
omitting σi from σ we get a new 2−block. This happens if and only if one of the
following cases holds:

1. Vertical separator:j1, i, j2 are subsequent numbers and |σj1 − σj2 | = 1, i.e.,

σ = [. . . , a, b, a± 1, . . . .]

2. Horizontal separator: σj1 , σi, σj2 are subsequent numbers and |j1 − j2| = 1, i.e.,

σ = [. . . , a, . . . , a± 1, a∓ 1, . . . ]

or
σ = [. . . , a± 1, a∓ 1, . . . , a, . . . ].

64



Definition 3. Let SepI(π) and SepI I(π) be the sets of vertical and horizontal separators
π respectively. Let Sep(π) = SepI(π) ∪ SepI I(π) and sep(π) = |Sep(π)|

Example 4. Let σ = [132465879]. Then SepI(σ) = {3, 2, 6, 7}, and SepI I(σ) = {3, 2, 5, 8}.
Thus Sep(π) = {3, 2, 5, 6, 7, 8} and sep(σ) = 6. Note that 7 is a vertical separator, even
though 7 is a part of a 2−block: 87, since by omitting 7 from σ we get a new 2−block:
78.

Remark 5. Several comments are now in order for a permutation σ ∈ Sn:

1. Notice the significance of the word ’new’ in Definition 2. For example, the
identity permutation has plenty of 2 blocks even though it has no separators.

2. The numbers 1 and n can only be vertical separators, while σ1 and σn can only
be horizontal separators.

3. If σi is a vertical separator in σ then i is a horizontal separator in σ−1. Hence
SepI(σ) = SepI I(σ

−1)

4. We have: SepI(σ) = SepI(σ
r) and SepI I(σ) = SepI I(σ

r) where σr is the reverse
of σ.

Main results

Our first results are related to permutations in Kn.

Theorem 6. Let σ ∈ Kn. Assume that σi separates σj from some digit and that σj separates σi
from some digit. Then σi and σj are separators of the same type.

Theorem 7. Let π ∈ Kn. Then the number of n− 1 patterns of π which are elements of Kn−1
is n− sep(π) where sep(π) is the number of separators in π.

The number of permutations in Sn that have no separators of any type, is the se-
quence A137774 from OEIS which counts the number of ways to place n non-attacking
empresses on an n× n chess board.

Our next result is about the opposite case, i.e., the number of permutations, all the
digits of which are separators.

Theorem 8. The number of permutations in Sn which have n different separators,(i.e. every
digit is a separator) is:

{
2kk! n = 4k
0 O.W.
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A generating function for the number of vertical separators

For each n, k ∈ N let sn,k be the number of permutations π ∈ Sn with exactly k ver-

tical separators. We want to calculate the generating function: h(z, u) = ∑
n≥3

n−2
∑

k=0
sn,kznuk.

For a permutation π ∈ Sn we denote by πodd and πeven the sequences of the digits
located in the odd indices and the even indices respectively. Note that (t, s) is a bond
of πodd if and only if the element of πeven which lies between t and s in π is a vertical
separator. Similarly, define separators for bonds in πeven.

In order to calculate h(z, u) we used the generating function which counts the number
of permutations having a specific number of bonds, which appears in [2], using the
inclusion-exclusion principle.

In order to compute the generating function h(z, u), we will use the well known
Hadamar product of polynomials which is not more than entry-wise multiplication.

Definition 9. Let R be a ring and let f (x) = ∑
n∈N

anxn, g(x) = ∑
n∈N

bnxn ∈ R[[x]] be two

power series in x. The Hadamar product of f (x) and g(x) is

f (x) ∗ g(x) =
∞

∑
n=0

anbnxn.

Example 10. (2 + 3x− 4x2) ∗ (5 + x + 7x2) = 10 + 3x− 28x2.

Now we claim:

Theorem 11. Denote p(z, u) = z2 + 2z4(u− 1)2 + 2z6(u− 1)2 + 2z8(u− 1)3 + · · · . Then
the generating function of the vertical separators is

h(z, u) =
∞
∑

mo ,me=0
(mo + me)!(p(z, u))mo ∗ (p(z, u))me

+
∞
∑

mo ,me=0
(mo + me)!(p(z, u))mo 1

z ∗ (p(z, u))me z

where ∗ is the Hadamard product in Q[[u]][[z]].
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Automatic Discovery of Polynomial Time Enumerations

Unnar Freyr Erlendsson Reykjavik University

This talk is based on joint work with Christian Bean, Jay Pantone, Henning Ulfarsson

The TileScope [2] algorithm has proven very successful in enumerating permutation
classes with patterns of length 4 and smaller. It relies on finding structure in the
permutation class and using that structure to write down a system of equations that
can be solved to find the generating function. The systems are typically well behaved,
however one can write strategies with more complicated operators such as the fusion
strategy. This operator adds an extra variable to the system of equations and makes it
hard to solve the system.

Using the fusion strategy we demonstrate how to write down recurrence relations
from the structure discovered by TileScope resulting in a polynomial time algorithm.
This means that TileScope can find polynomial time algorithms for all permutation
classes whose basis consists of length 4 patterns, except five principal classes and
Av(1432, 2143).

Although Wilf [3] states that polynomial time algorithms can be viewed as sufficient
answers to enumeration problems, a preferable answer is the generating function. An
experimental method still under development for solving systems of equations is the
guess-and-check [1] method. A requirement for this is to have many initial terms for
every unknown in the system. Our polynomial time algorithms can often compute
upwards of 500 terms.

Structural description to recurrence relation

In Figure 1, we see the structural description obtained by TileScope for Av(123). We
will explain the steps taken to obtain the structural description and then how to
translate the description to a recurrence relation.

We start by placing the topmost point in a0. Either there is no topmost point in
which case it is empty (a1) or it contains a topmost point in which case it is a2. This
corresponds to a disjoint union. From a2 we place the topmost point in the bottom row,
either it is empty (a5), the topmost point is in first column (a3), or the topmost point is
in the third column (a4). We can factor out the point from a3 to obtain a recursion, this
corresponds to a Cartesian product on the set level. We can also factor out a point from
a4 but we do not immediately get a recursion as we have not seen this object before.
For a7 we need to fuse the first two columns together to obtain a recursion. This can be
done because the first two columns correspond to a decreasing sequence of points, but
in order to obtain the enumeration afterwards we need to track the number of points
in the blue region. Since it is recursing we will need to track the region from the object
it is recursing to all throughout the tree.
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Figure 1: Structural description of Av(123) obtained with the TileScope algorithm. Blue
clouds represent regions that need to be tracked because of fusion.

There are three types of recurrence relations in this tree, the first being disjoint union.
This is represented as a sum in our recurrence relation. For a0 we are allowed to have
any number of points in the blue region of a2 so we get

a0(n) = a1(n) +
n

∑
i=0

a2(n, i)

where i tracks the number of points inside that region. The recurrence relation for a2

is simply
a2(n, i) = a3(n, i) + a4(n, i) + a5(n, i).

The second operator is the Cartesian product. For this operator we need to decide the
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number of points to place into each object as well as the number of points being placed
into each region that is being split. The recurrence relation for a3 is therefore

a3(n, i) =
n

∑
m=0

i

∑
j=0

a2(m, j) · a6(n−m, i− j)

and a4 is

a4(n, i) =
n

∑
m=0

i

∑
j=0

a7(m, j) · a5(n−m, i− j).

The final operator used is fusion, which we represent with ⊗. In order to enumerate
a7, we take a (gridded) permutation from a7 which has i points in the blue region.
This corresponds to a permutation in a2 which has at least i points in its blue region.
Therefore, the recurrence relation is

a7(n, i) =
n

∑
j=i

a2(n, j).

Together with the base cases

a1(n) =

{
1 if n = 0

0 otherwise

a5(n, i) =

{
1 if n = 1 and i = 0

0 otherwise

a6(n, i) =

{
1 if n = 1 and i = 1

0 otherwise

this describes a recurrence relation for the number of avoiders of 123, namely the
Catalan numbers.

This entire procedure for converting structural descriptions to recurrence relations
using these operators has been automated. For more advanced strategies like fusion
we might not be able to solve the systems of equations directly but we can at least get
a polynomial time enumeration.

References
[1] Albert, M. H., Bean, C., Claesson, A., Pantone, J., and Ulfarsson, H. Com-

binatorial exploration: An algorithmic framework for enumeration (forth-
coming). https://permutatriangle.github.io/PermutaTriangle/papers/2019-02-
27-combex.html.

[2] Bean, Christian. Finding structure in permutation sets
http://hdl.handle.net/1946/31663

[3] Wilf, Herbert S. "What Is an Answer?" The American Mathematical Monthly 89, no.
5 (1982): 289-92.

69



On the equidistribution of MAJ and BAST

Shishuo Fu Chongqing University, Chongqing 401331, P.R. China.

This talk is based on joint work with Joanna N. Chen

In 2000, Babson and Steingrímsson [1] introduced the notion of “vincular pattern” and
they showed that most of the Mahonian statistics in the literature can be expressed as
the sum of vincular pattern functions. For example,

INV = 21 + 312 + 321 + 231,

MAJ = 21 + 132 + 231 + 321,

STAT = 21 + 132 + 213 + 321,

BAST = STATrc = 21 + 213 + 132 + 321,

where rc stands for the function composition of the reversal r and the complement c.
Given a permutation p = p1 p2 · · · pn ∈ Sn, recall that

r(p1 p2 · · · pn) = pn pn−1 · · · p1,

c(p1 p2 · · · pn) = (n + 1− p1)(n + 1− p2) · · · (n + 1− pn).

Moreover, let

Des(p) = {i : pi > pi+1}, des(p) = ∑
j∈Des(p)

1,

Db(p) = {p1} ∪ {pi+1 : pi > pi+1, 1 ≤ i < n},
Id(p) = Des(p−1), ides(p) = ∑

j∈Id(p)
1.

Actually Babson and Steingrímsson have conjectured STAT to be Euler-Mahonian, when
associated with “des”. Soon later, Foata and Zeilberger [8] confirmed their conjecture.
This result has been refined and generalized several times in the literature, making
STAT one of the most prolific statistics introduced by Babson and Steingrímsson. For
instance, Burstein [3], Chen and Li [6] independently derived joint distribution with
other statistics and showed in particular the symmetric equidistribution (MAJ, STAT) ∼
(STAT, MAJ). Kitaev and Vajnovszki [13] generalized this to words, while Fu, Hua and
Vajnovszki [9] further generalized to any rearrangement class of words, jointly with
set-valued statistics.

In this talk, we continue this theme and present several new equidistributions of MAJ
and BAST (not STAT but closely related) over pattern-avoiding subsets, ordered set
partitions, as well as ordered multiset partitions. In all three levels, the equidistributions
are in fact jointly with other, sometimes set-valued statistics.
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Equidistribution on Sn(132) and set partitions

As observed earlier by Claesson [7, Proposition 3], there is a natural one-to-one
correspondence between permutations in Sn(132) with k− 1 descents and set partitions
of [n] with k blocks. Our first three main results are

Theorem 1. For n ≥ k ≥ 1, we have

∑
σ∈Sk−1

n (132)

qMAJ(σ) = ∑
σ∈Sk−1

n (132)

qBAST(σ) = Sq(n, k),

and
∑

σ∈Sk−1
n (132)

q213(σ) = ∑
σ∈Sk−1

n (132)

q231(σ) = S̃q(n, k),

where Sq(n, k) and S̃q(n, k) are the two classic q-Stirling numbers of the second kind studied
by Carlitz [4, 5] and Gould [10].

Theorem 2. Statistics (Db, Id, MAJ) and (Db, Id, BAST) have the same joint distribution
on Sn(132) for all n ≥ 1. (See Table 1 for the case of n = 4.)

Theorem 3. Statistics (Db, Id, 213) and (Db, Id, 231) have the same joint distribution on
Sn(132) for all n ≥ 1.

Equidistribution on ordered set partitions and ordered multiset partitions

We collect here further equidistribution results on ordered set partitions and ordered
multiset partitions, undefined notions will be explained in the talk.

Theorem 4. For n ≥ k ≥ 1, we have

∑
w∈URG(n,k)

qbmajMIL(w) = ∑
w∈URG(n,k)

qbmajBAST(w) = [k]q! · Sq(n, k).

The interests of considering permutation statistics on ordered multiset partitions stem
from the Delta Conjecture (see for example [11, 14, 12, 2]), the Valley Version of which
asserts the following combinatorial formula for the quasisymmetric function

∆′ek
en = Valn,k(x; q, t) := {zn−k−1}

[
∑

P∈LDn

qdinv(P)tarea(P) ∏
i∈Val(P)

(1 + z/qdi(P)+1)xP

]
.

(1)
In this talk, we will not need the operator ∆′f , the set LDn of labeled Dyck paths, nor
the other undefined notations appearing in (1); for details on them see [11]. We will
extend both bmajMIL and bmajBAST to ordered multiset partitions and establish

Theorem 5. For all n > k ≥ 0, we have

q(
k+1

2 )Valn,k(x; q, 0) = q(
k+1

2 ) ∑
β|=0n

∑
µ∈OP β,k+1

qinv(µ)xβ (2)

= ∑
β|=0n

∑
µ∈OP β,k+1

qbmajMIL(µ)xβ = ∑
β|=0n

∑
µ∈OP β,k+1

qbmajBAST(µ)xβ. (3)
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Finally, one key involution ψ we used to prove the above two theorems was originally
constructed by us to reveal the following finer relation between BAST and STAT.

Theorem 6. Statistics (F, E, des, Id, STAT, BAST) and (F, E, des, Id, BAST, STAT) have the
same joint distribution on Sn for all n ≥ 1.

Most of our proofs are explicit weight-preserving bijections, sometimes they are even
involutions.

Table 1: The joint distribution of four statistics on S4(132)

S4(132) Db Id MAJ BAST
1234 {1} ∅ 0 0
2134 {1,2} {1} 1 2
2314 {1,2} {1} 2 3
2341 {1,2} {1} 3 1
2413 {1,2} {1,3} 2 2
3124 {1,3} {2} 1 2
3412 {1,3} {2} 2 1
3214 {1,2,3} {1,2} 3 5
3241 {1,2,3} {1,2} 4 3
3421 {1,2,3} {1,2} 5 4
4123 {1,4} {3} 1 1
4213 {1,2,4} {1,3} 3 4
4231 {1,2,4} {1,3} 4 3
4312 {1,3,4} {2,3} 3 3
4321 {1,2,3,4} {1,2,3} 6 6
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On pattern-avoiding Fishburn permutations

Juan B. Gil Penn State Altoona

This talk is based on joint work with Michael D. Weiner

Motivated by a recent paper by G. Andrews and J. Sellers [1], we became interested in
the Fishburn numbers ξ(n), defined by the formal power series

∞

∑
n=0

ξ(n)qn = 1 +
∞

∑
n=1

n

∏
j=1

(1− (1− q)j).

They are listed as sequence A022493 in [5] and have several combinatorial interpreta-
tions. For example, ξ(n) gives the:

. number of linearized chord diagrams of degree n,

. number of unlabeled (2 + 2)-free posets on n elements,

. number of ascent sequences of length n,

. number of permutations in Sn that avoid the bivincular pattern (231, {1}, {1}).

For more on these interpretations, see [2] and the references there in.

We are primarily concerned with the aforementioned class of permutations. The fact
that they are enumerated by the Fishburn numbers was proved in [2] by Bousquet-
Mélou, Claesson, Dukes, and Kitaev, where the authors introduced bivincular patterns
and gave a simple bijection to ascent sequences. For instance, the bivincular pattern
(231, {1}, {1}) may be visualized by the plot

where bold lines indicate adjacent entries and gray lines indicate an elastic distance
between the entries.

We let Fn denote the class of permutations in Sn that avoid the pattern , and
since |Fn| = ξ(n) (see [2]), we call the elements of F =

⋃
n Fn Fishburn permutations.

Further, Fn(σ) denotes the class of Fishburn permutations that avoid the pattern σ.

Our goal here is to study |Fn(σ)| for classical patterns of length 3 or 4. First we give a
complete picture for Fishburn permutations that avoid a classical pattern of length 3.
Then we discuss patterns of length 4, focusing on a Wilf equivalence class of Fishburn
permutations that are enumerated by the Catalan numbers Cn. We also prove that
|Fn(1342)| = ∑n

k=1 (
n−1
k−1)Cn−k, and conjecture two other equivalence classes.
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Avoiding patterns of length 3

Clearly, Avn(231) ⊂ Fn. Since every Fishburn permutation that avoids the classical
pattern 231 is contained in the set of regular 231-avoiding permutations, we get

Fn(231) = Avn(231), and so |Fn(231)| = Cn,

where Cn denotes the Catalan number 1
n+1 (

2n
n ). Enumeration of the Fishburn permuta-

tions that avoid the other five classical patterns of length 3 is less obvious.

Theorem 1. For σ ∈ {123, 132, 213, 312}, we have |Fn(σ)| = 2n−1.

Theorem 2. The set Fn(321) is in bijection with the set of Dyck paths of semilength n that
avoid the subpath UUDU. Therefore, by [4, Prop. 5] we have

|Fn(321)| =
b(n−1)/2c

∑
j=0

(−1)j

n− j

(
n− j

j

)(
2n− 3j

n− j + 1

)
.

This is sequence [5, A105633].

This is a consequence of Krattenthaler’s bijection between permutations in Avn(321)
and Dyck paths of semilength n, via the left-to-right maxima.

Summary:

Pattern σ |Fn(σ)| OEIS

123, 132, 213, 312 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, . . . A000079

231 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . . A000108

321 1, 2, 4, 9, 22, 57, 154, 429, 1223, 3550, . . . A105633

σ-avoiding Fishburn permutations.

Avoiding patterns of length 4

Regarding Fishburn permutations that avoid a pattern of length 4, there are at least 13
Wilf equivalence classes: 10 classes with a single pattern, a class with eight patterns
enumerated by the Catalan numbers, and for the remaining 6 patterns, we have the
following conjectures.

Conjecture 3. Fn(2413) ∼ Fn(2431) ∼ Fn(3241), enumerated by 1, 2, 5, 15, 52, 201, . . . .

Conjecture 4. Fn(3214) ∼ Fn(4132) ∼ Fn(4213), enumerated by 1, 2, 5, 14, 43, 143, . . . .

We can prove that Fn(1342) is enumerated by [5, A007317].

Theorem 5.

|Fn(1342)| =
n

∑
k=1

(
n− 1
k− 1

)
Cn−k.
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However, our focus will be on the enumeration of the Catalan equivalence class

Pattern σ |Fn(σ)| OEIS

1234, 1243, 1324, 1423,
2134, 2143, 3124, 3142

1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . . A000108

Theorem 6. We have Fn(3142) = Fn(231), hence |Fn(3142)| = Cn.

Proof. Since 3142 contains the pattern 231, we have Fn(231) ⊆ Fn(3142).

To prove the reverse inclusion, suppose there exists π ∈ Fn(3142) such that π contains
the pattern 231. Let i < j < k be the positions of the most-left closest 231 pattern
contained in π. In other words, assume the plot of π is of the form

where no elements of π may occur in the shaded regions. It follows that, if ` is the
position of π(k) + 1, then i ≤ ` < j. But this is not possible since, π(`) < π(`+ 1)
violates the Fishburn condition, and π(`) > π(`+ 1) implies π(k) > π(`+ 1) which
forces the existence of a 3142 pattern. In conclusion, no permutation π ∈ Fn(3142) is
allowed to contain a 231 pattern. Therefore, Fn(3142) ⊆ Fn(231).

Theorem 7. Fn(1234) ∼ Fn(1243) ∼ Fn(2143) ∼ Fn(2134).

The first and third equivalence relations can be shown using a bijection

φ : Avn(τ ⊕ 12)→ Avn(τ ⊕ 21)

given by West in [6]. A similar bijective map

ψ : Avn(12⊕ τ)→ Avn(21⊕ τ),

allows us to show that Fn(1234) ∼ Fn(2134) and Fn(1243) ∼ Fn(2143).

Finally, using several related bijections one can prove:

Theorem 8. Fn(1423) ∼ Fn(1243).

Theorem 9. Fn(3142) ∼ Fn(3124) ∼ Fn(1324).

Theorem 10. Fn(3142) ∼ Fn(2143).
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Further remarks

Some classes of Fishburn permutations that avoid a pattern of length 4 appear to be
in bijection with certain pattern avoiding ascent sequences. It would be interesting to
provide explicit bijections.

Regarding indecomposable Fishburn permutations, we have results for avoiders of any
pattern of length 3 (see table below) and for some patterns of length 4. For the latter,
our limited preliminary data suggests the existence of 19 Wilf equivalence classes. We
are particularly curious about F ind

n (1342) as it appears to be equinumerous with the
set Avn−1(2413, 3421), cf. [5, A165538].

Pattern σ |F ind
n (σ)| OEIS

123 1, 1, 2, 5, 12, 27, 58, 121, 248, 503, . . . A000325

132, 213 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, . . . A000079

231 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . . A000108

312 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . A000012

321 1, 1, 1, 2, 5, 13, 35, 97, 275, 794, . . . A082582
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Permutation patterns: gamma-positivity and (−1)-phenomenon

Bin Han Université Claude Bernard Lyon 1

This talk is based on joint work with Shishuo Fu, Dazhao Tang, Jiang Zeng

Introduction

A polynomial h(x) = ∑n
i=0 aixi ∈ R[x] is called palindromic if ai = an−i for 0 ≤ i ≤ n.

As the vector space of all palindromic polynomials of degree no greater than n has the
γ-basis {xi(1 + x)n−2i}bn/2c

i=0 , any palindromic polynomial h(x) admits the γ-expansion

h(x) =
bn/2c
∑
i=0

γixi(1 + x)n−2i,

and the sequence {γk}n/2
k=0 is called the γ-vector of h. Having a nonnegative γ-vector

leads to the unimodality of the coefficient sequence {ak}n
k=0 directly. we say that h is

γ-positive if the γ-vector of h is nonnegative.

Gamma positivity polynomials arise naturally in some combinatorial sequence. For
example, the Narayana polynomials Nn(t) are γ-positive (cf. [2, Section 4.3]) and have
the following γ-expansion for the Narayana polynomial

Nn(t) := ∑
π∈Sn(231)

tdes π =
b n−1

2 c
∑
k=0

γN
n,ktk(1 + t)n−1−2k. (1)

where

γN
n,k = #{π ∈ Sn(231) : dd π = 0, des π = k}. (2)

By taking t = −1 in (1), we can recover the following (−1)-phenomenon involving the
Catalan number Cn:

∑
π∈Sn(231)

(−1)des π =

{
0 if n is even,

(−1)
n−1

2 C n−1
2

if n is odd.
(3)

In this talk, we first prove several new interpretations of a kind of q-Narayana polynomi-
als along with their corresponding γ-expansions using pattern avoiding permutations,
and consider such (−1)-phenomenon for these subsets as well. Moreover, we enu-
merate the alternating permutations avoiding simultaneously two patterns, namely
(2413, 3142) and (1342, 2431), of length four.
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Part I: Catalan families

We define the q-Narayana polynomials Nn(t, q) as

Nn(t, q) = ∑
π∈Sn(321)

texc πqinv−exc π.

We can state our main contribution:

Theorem 1. The q-Narayana polynomials Nn(t, q) also have the following ten interpretations

Nn(t, q) = ∑
π∈Sn(τ)

tdes πqstat π,

with τ being a pattern of length 3, and stat being a permutation statistic. Ten choices for the
pair (τ, stat) are listed in Table 1.

Table 1: Ten choices for (τ, stat)

# τ stat # τ stat

1 231 13-2 6 132 2-31
2 231 adi∗ 7 231 31-2
3 312 2-13 8 312 2-31
4 312 adi 9 213 13-2
5 213 31-2 10 132 2-13

Theorem 2. For n ≥ 1, the following γ-expansions formula holds true

Nn(t, q) =
b n−1

2 c
∑
k=0

γn,k(q)tk(1 + t)n−1−2k, (4)

where

γn,k(q) = ∑
π∈Ŝn,k(321)

qinv π−exc π (5)

= ∑
π∈S̃n,k(213)

q(31-2) π = ∑
π∈S̃n,k(312)

q(2-13) π (6)

= ∑
π∈S̃n,k(132)

q(2-31) π = ∑
π∈S̃n,k(231)

q(13-2) π. (7)

Remark 3. 1. When q = 1, equation (4) reduce to a classical result of Narayana
polynomials [2, Section 4.3].

2. The main tool of the proof of Theorem 1 is the continued fraction method. The
proof of Theorem 2 is based on the so-called Modified Foata-Strehl action. The
definitions of permutation statistics.
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Part II: alternating permutations avoiding two patterns of length four

A permutation is said to be alternating (or up-down) if it starts with an ascent and then
descents and ascents come in turn. We denote by An the set of alternating permutations
of length n, and by An(p1, p2, · · · , pm) the set of alternating permutations of length n
that avoid patterns p1, p2, . . . , pm.

Theorem 4. Let rn := |A2n+1(2413, 3142)|, n ≥ 0, R(x) :=
∞
∑

n=1
rnxn, then

R(x) = x(R(x) + 1)2 + x(R(x) + 1)3. (8)

Consequently, r0 = 1 and for n ≥ 1,

rn =
2
n

n−1

∑
i=0

2i
(

2n
i

)(
n

i + 1

)
. (9)

Theorem 5. Let tn := |A2n(2413, 3142)|, n ≥ 1, T(x) :=
∞
∑

n=1
tnxn, then

1
2

R(x) =
1
2

R(x) · T(x) + T(x). (10)

Consequently, t1 = 1 and for n ≥ 2,

tn =
4

n− 1

n−2

∑
i=0

2i
(

2n− 1
i

)(
n− 1
i + 1

)
. (11)

Theorem 6. Let un := |A2n+1(1342, 2431)| and U(x) :=
∞
∑

n=0
unxn, then

U(x) =
√

1− 4x√
1− 4x− 2x

=
1

1− 2x

1− 2x

1− x

1− x
. . .

. (12)

Remark 7. The proof of all the theorems can be found in the article [1].

References
[1] S. Fu, D. Tang, B. Han, J, Zeng, (q, t)-Catalan numbers: gamma expansions,

pattern avoidances and the (−1)-phenomenon, Adv. in Appl. Math., 106 (2019)
57–95.

[2] T. K. Petersen, Eulerian Numbers, With a foreword by Richard Stanley. Birkhäuser
Advanced Texts: Basler Lehrbücher. Birkhäuser/Springer, New York, 2015.

80



Exhaustive generation of pattern-avoiding permutations

Hung P. Hoang ETH Zurich

This talk is based on joint work with Elizabeth Hartung, Torsten Mütze, and Aaron Williams

In this work we propose an algorithmic framework for exhaustively generating differ-
ent classes of pattern-avoiding permutations, generalizing the well-known Steinhaus-
Johnson-Trotter algorithm. We present a simple greedy algorithm that works for a
broad class of classical patterns, vincular patterns, multiset patterns, as well as for
conjunctions and disjunctions of those, and for the more general setting of bound-
ing the number of occurences of a pattern. We thus obtain Gray codes for various
pattern-avoiding permutations, including vexillary, skew-merged, X-shaped, separable,
Baxter and twisted Baxter permutations, etc. Using standard bijections, these Gray
codes also translate into Gray codes for other combinatorial objects, in particular for
rectangulations, which are divisions of a square into n rectangles; see Figure 1.

12
−→

34 13
−→
42 3

−→
421 42

−→
31

1
−→

243
−→

1324 32
−→
41

−→
4213

−→
1423 31

−→
24

−→
3214 21

−→
43

41
−→

23
−→

3142 23
−→

14 2134

−→
4132 43

−→
12 2

−→
341

1
−→
432

−→
4321

−→
2431

Figure 1: Twisted Baxter permutations (2413∧ 3412-avoiding) of length n = 4 generated
by our algorithm and resulting Gray code for diagonal rectangulations. The arrows
indicate the substring rotations that create the next permutation.

Introduction The Steinhaus-Johnson-Trotter order, also known as plain change order,
is a well-known Gray code that orders all n! permutations of {1, . . . , n}, so that any
two consecutive permutations differ in an adjacent transposition [6, 12]. In this work
we propose an algorithmic framework for exhaustively generating different classes of
pattern-avoiding permutations, generalizing the Steinhaus-Johnson-Trotter algorithm.
Specifically, in our Gray codes successive permutations differ by a jump, which means
that one value of the permutation is moved to the left or right over some number of
smaller values, which corresponds to a cyclic substring rotation. Furthermore, the
Gray codes only use minimal jumps, meaning that a shorter jump of the same value
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Table 1: Permutation patterns and corresponding combinatorial objects and orderings
generated by our algorithm.

Patterns Combinatorial objects and ordering References/OEIS
none permutations by adjacent A000142

transpositions → plain change order [6, 12]
231 = 231 Catalan families A000108

• binary trees by rotations [9]
• triangulations by edge flips
• Dyck paths by hill flips

231 set partitions by exchanges A000110
→ Kaye’s Gray code order [7]

132∧ 231 = 132∧ 231: binary strings by bitflips A000079
permutations without peaks → reflected Gray code order (BRGC) [5]
2143: vexillary permutations [8], A005802
conjunction of vk tame patterns with v2 = 35, v3 = 91, v4 = 2346: [3], A224318,
k-vexillary permutations (k ≥ 1) A223034, A223905
2143∧ 3412: skew-merged permutations [11], A029759
2143∧ 2413∧ 3142∧ 3412: X-shaped permutations [4], A006012
2413∧ 3142 slicing floorplans (=guillotine [1], A006318
separable permutations partitions) by flips
2413∧ 3142: Baxter mosaic floorplans (=diagonal [1], A001181
2413∧ 3412: twisted Baxter rectangulations=R-equivalent
2143∧ 3142 rectangulations) by flips
2143∧ 3412 S-equivalent rectangulations by flips [2], A214358
2143∧ 3412∧ 2413∧ 3142 S-equivalent guillotine rect. by flips [2], A078482
35124∧35142∧24513∧42513: generic rectangulations (=rectangular [10] (not in OEIS)
2-clumped permutations drawings) by flips and wall slides
conjunction of ck tame patterns with ck = 2(k/2)!(k/2 + 1)! for k [10] (not in OEIS)
even and ck = 2((k + 1)/2)!2 for k odd: k-clumped permutations

would create the forbidden pattern. For example, when considering 231-avoiding
permutations, the permutation 42135 could be followed by 21435. This is because the
value 4 jumps to the right over two smaller values and a shorter jump would produce
the forbidden permutation 24135.

Overview of our results We propose the following simple greedy algorithm to
generate each permutation from the previous one: Perform a minimal jump with
the largest possible value that yields a new permutation in the list. We show that
this algorithm generates the Johnson-Trotter-Steinhaus order as well several classes
of pattern-avoiding permutations. These patterns include any classical pattern in
which the largest value is not in the first or last position, and any vincular pattern in
which the only pair of adjacent entries includes the largest value. For example, our
algorithm generates all 231-avoiding permutations of any fixed length n, as well as
all 231-avoiding permutations, where the underlining denotes a vincular pair. Table 1
lists several more examples of patterns for which our algorithm solves the exhaustive
generation problem successfully. The algorithm also works for additional types of
patterns that are given by conjunctions such as 132∧ 231, meaning that both patterns
must be avoided, and disjunctions such as 132∨ 231, meaning that at least one of the
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patterns must be avoided. We can also form more complicated propositional formulas
of patterns connected by ∧ and ∨ in this way. In the most general setting, we can
prescribe any upper bound for the number of occurences of a pattern in the formula,
where the case of zero occurences is pattern-avoidance. The algorithm also works
for multiset patterns such as 121 = 132∧ 231, which in this particular case generates
all permutations without peaks. A a result, we obtain minimal jump Gray codes for
various pattern-avoiding permutations, including vexillary, skew-merged, X-shaped,
separable, Baxter and twisted Baxter permutations.

Moreover, the jump orderings of permutations generated by our algorithm translate
into Gray codes for other combinatorial objects that are in ono-to-one correspondence
to permutations. These objects and Gray codes are shown in Table 1, and the bijections
are explained in the listed papers. In this way, our algorithm provides a unified
description of four known classical Gray codes, namely the aforementioned Steinhaus-
Johnson-Trotter algorithm, the binary reflected Gray code [5], and two Gray codes for
binary trees [9] and set partitions [7]. Moreover, we obtain new Gray codes for five
different classes of rectangulations, also known as floorplans, which are divisions of a
square into n rectangles, subject to different conditions; see Figure 1.
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Catalan words avoiding pairs of length three patterns

Carine Khalil LIB, Université de Bourgogne Franche-Comté Dijon, France

This talk is based on joint work with Jean-Luc Baril and Vincent Vajnovszki

Catalans words are particular growth-restricted words over the set of non-negative
integers: the word w = w1w2 . . . wn is called Catalan word if w1 = 0 and 0 ≤ wi ≤
wi−1 + 1 for i = 2, 3, . . . , n. We denote by Cn the set of length n Catalan words, and
|Cn| is the nth Catalan number, see for instance [4, exercise 6.19.u, p. 222].

A pattern π = p1 p2 . . . pk is said to be contained in the word w if there is a sub-
sequence of w, wi1 wi2 . . . wik , order-isomorphic with p1 p2 . . . pk. If w does not contain
π, we say that w avoids π. If π is a pattern (a set of patterns), Cn(π) denotes the words
in Cn avoiding π (each pattern in π), and cn(π) = |Cn(π)|.

Sequel of the work initiated in [1] where, among other things, Catalan words avoiding a
length three pattern are enumerated, in this article we almost complete the enumeration
of Catalan words avoiding a pair of length three patterns (the remaining difficult case
is left as open problem) and obtain the Wilf classification of these pairs of patterns.
Some of the resulting enumerating sequences are not yet recorded in [3] .

Our methods include structural characterization, recurrence relations, constructive
bijections and (bivariate) generating functions. For some pairs of patterns we give
the descent distribution and popularity on the set of Catalan words avoiding these
patterns.

At the end of this introductory part, we recall results from [1] summarized in Table 1.

Pattern π Sequence cn(π) Generating function OEIS
012, 001, 010 2n−1 1−x

1−2x A011782
021 (n− 1) · 2n−2 + 1 1−4x+5x2−x3

(1−x)(1−2x)2 A005183

102, 201 3n−1+1
2

1−3x+x2

(1−x)(1−3x) A007051
120, 101 F2n−1

1−2x
1−3x+x2 A001519

011 n(n−1)
2 + 1 1−2x+2x2

(1−x)3 A000124

000 − 1−2x2

1−x−3x2+x3 −
100 d (1+

√
3)n+1

12 e 1−2x−x2+x3

1−3x+2x3 A057960

110 1
2 ∑

b n
2 c

k=0 (
n+1

2 k+1)2
k − n−1

2
1−3x+2x2+x3

(1−x)2(1−2x−x2)
−

210 − 1−5x+7x2−x3−x4

(1−2x)(1−4x+3x2+x3)
−

Table 1: The cardinality of Cn(π) for each pattern π of length three.
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Avoiding a length two and a length three pattern

Proposition For n ≥ 3 we have:

• cn(00, σ) =

{
0 if σ = 012,
1 otherwise.

• cn(01, σ) =

{
0 if σ = 000,
1 otherwise.

• cn(10, σ) =


Fn+1 if σ = 000,
n if σ ∈ {001, 011, 012},
2n−1 otherwise.

Avoiding two length three patterns

Our enumerating results for Catalan words avoiding a pairs of patterns of length three
are encompassed in Table 2. The enumeration is given either by a closed expression or
by a (bivariate) generating function according to the length (and number of descents).
As a byproduct, we give the descent distribution and the descent popularity on the set
of Catalan words avoiding some of these pairs of patterns.
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Pattern-Avoiding Fillings of Skew Shapes

Vít Jelínek Charles University, Prague

This talk is based on joint work with Mark Karpilovskij

A polyomino is a finite collection of unit squares (called cells) in the plane whose vertices
have integer coordinates. A filling of a polyomino is a mapping assigning a value 0
or 1 to each cell of the polyomino. A transversal filling (or just a transversal) is a filling
with exactly one 1-cell in each row and column. With this terminology, a permutation
diagram can be seen as a transversal of a square-shaped polyomino. For consistency
with permutation diagrams, we shall number the rows of polyominoes from bottom to
top, starting with the first (i.e., lowest) non-empty row, and columns are numbered
from left to right. We will identify a permutation with its diagram, and view diagrams
as special cases of fillings.

To delete a row from a polyomino (or a filling of a polyomino) means to remove all
the cells from that row and then move all the cells above the deleted row downwards
by one step to close the gap. Column deletion is defined analogously. We say that
a polyomino P contains a polyomino Q if Q can be obtained from P by a sequence
of row deletions and column deletions. An erasure in a filling is an operation that
changes a 1-cell into a 0-cell. We say that a filling F contains a filling G, if G can
be obtained from F by a sequence of row deletions, column deletions and erasures.
Note that if F and G are permutation diagrams, then F contains G if and only if the
permutation represented by F contains the permutation represented by G in the sense
of the classical Wilf containment.

For our purposes we will only be interested in a special type of polyominoes known as
skew shapes. A skew shape is a polyomino whose boundary is a union of two internally
disjoint lattice paths consisting of up-steps and right-steps; see Figure 1. Clearly, a
square is also a skew shape, so permutation diagrams are special cases of transversals
of skew shapes.

Figure 1: A skew shape

We say that a permutation π is more restrictive for permutations than a permutation σ,
written π 6p σ, if the number of π-avoiding permutations of size n is no greater than
the number of σ avoiding permutations of size n, i.e., if |Avn(π)| ≤ |Avn(σ)|. Similarly,
we say that a permutation π is more restrictive for skew transversals than a permutation
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σ, written π 6s σ, if for every skew shape S, the number of π-avoiding transversals of
S is no greater than the number of those that avoid σ. We will extend 6p and 6s to
sets of patterns in a straightforward way.

The partial order 6p is known as the Wilf order of permutation patterns. Since a
permutation diagram is a special case of a skew transversal, we observe that π 6s σ

implies π 6p σ. However, our main motivation for the study of pattern avoidance in
skew shapes stems from the following easy fact, which is based on standard arguments
on patterns in polyominoes (see, e.g., Backelin et al. [1]).

Fact 1. If π 6s σ for some permutations π and σ, then for any two permutations α and β, we
also have α	 π 	 β 6s α	 σ	 β, and consequently α	 π 	 β 6p α	 σ	 β.

To make Fact 1 useful, we need nontrivial examples of patterns comparable in the 6s

order. Unfortunately, the only known such examples are based on the following fact,
which can be derived from the results of Burstein and Pantone [2, Lemmas 1.4 and 1.5]
or Jelínek [3, Lemmas 29 and 30].

Fact 2. Let F0 be the skew filling from Figure 2. For each skew shape S, its number of 21-
avoiding transversals is equal to its number of {12, F0}-avoiding transversals. It follows that
21 6s 12, and consequently, for any α and β, α	 21	 β 6p α	 12	 β.

1
1

1

S0 F0

Figure 2: The skew shape S0 (left) and its filling F0 (right). The empty cells of the filling
correspond to zeros.

Computer-generated data suggest that the inequality 21 6s 12 might be a special case
of a more general result, which we state here as a conjecture (see [3, Conjecture 26]).

Conjecture 3. Let ιk = 12 · · · k be the identity permutation of size k, and let δk = k · · · 21 be
the decreasing permutation of size k. Then δk 6s ιk.

Our results

We obtained several results that either strengthen Fact 2 or establish special cases of
Conjecture 3.

Our first result shows that the Wilf order relationship α	 21	 β 6p α	 12	 β can be
strengthened to a Wilf equivalence result.

Theorem 4. For any pair of nonempty permutations α and β, there is a finite set X of
permutations, such that the permutation α	 21	 β is Wilf-equivalent to the set of permutations
X ∪ {α	 12	 β}.
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We remark that a special case of this result has been proven by Burstein and Pantone [2],
who showed that 4321 is Wilf-equivalent to {4231, 5276143}.

Another of our results extends the equivalence between 21 an {12, F0} from Fact 2 to
non-transversal fillings.

Theorem 5. Let S be a skew shape. Let S(21) be the set of (not necessarily transversal)
21-avoiding fillings of S, and similarly let S(12, F0) be the set of {12, F0}-avoiding fillings of S.
Then |S(21)| = |S(12, F0)|.

We note that our proof of Theorem 5 is different from the known proofs of Fact 2,
which do not seem to generalize to non-transversal fillings.

Our last theorem offers a partial support for Conjecture 3, as well as a generalization
of known results of Backelin, West and Xin [1] for Ferrers diagrams.

Theorem 6. Let S be a skew shape that does not contain the shape S0 from Figure 2, and let
k ≥ 1 be an integer. With ιk and δk as in Conjecture 3, the number of ιk-avoiding transversals
of S is equal to the number of δk-avoiding transversals of S.
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On a New Parameter of Permutations Arising in a Context

of Testing for Forbidden Patterns

Gil Laufer Department of Computer Science, University of Haifa, Israel

This talk is based on joint work with Yuri Rabinovich

The algorithmic problem of checking whether a given real-valued sequence f =
( f (1), f (2), . . . , f (n)) contains a fixed order-pattern π of length k (usually thought of
as a permutation) has a long history, and is of considerable interest. A break-through
sophisticated algorithm of Guillemot and Marx [2] provides a solution for this problem
in a time linear in n, namely 2O(k2 log k) · n.

More recently, this problem was studied in the framework of Property Testing, a
novel and rapidly developing direction in both theoretical and practical CS. Newman
et al. [3] posed, among other things, the followed problem (we discuss here only what
is professionally called the one-sided error nonadaptive version, with a fixed ε, say
ε = 0.1, and with a particular distance function defined below).

Call a sequence f π-free if f does not contain π as a subpattern. That is, f does
contain a π-copy, i.e., a subset of indices (i1, i2, · · · , ik) ordered in increasing order,
such that f (ix) > f (iy) whenever π(x) > π(y). Call a sequence f π-abundant, or ε-far
from being π-free, if no matter how one alters εn arbitrarily chosen values of f , the
resulting f ′ will still contain a π-copy.

Testing for π-freeness means separating between the π-free and the π-abundant
sequences f . More concretely, it is a randomized procedure that produces a (small)
sample S ⊂ {1, 2, . . . , n}, such that for any π-abundant f , the probability that f |S, the
restriction of f on S, is not π-free is > 0.999. The query complexity of this procedure
is the size of S as a function of n. And the question is: What is the query complexity of
testing for π-freeness, i.e., the query complexity of the best possible procedure for doing it?

One of the main results of Newman et al. [3] was to show that, on one hand, the
query complexity of testing for a (any) monotone π is Θ̃ε(1), while on the other hand,
for any non-monotone permutation it is Ω̃ε(n0.5). (The notation hides the multiplicative
terms polynomial in log n and ε−1). The latter bound is tight, e.g., for π = (132). A
trivial upper bound for any π of length k is Oε(n1−1/k). Newman et al. [3] have also
constructed infinite families of permutations with query complexity Ωε(n1−2/k+1).

The study of Newman et al. [3] was continued and greatly extended by Ben-Eliezer
and Canonne [1]. In particular, they have established an upper bound of Oε(n1−1/k−1)
for any π of length k, and constructed infinite families of permutations with query
complexity Oε(n1−1/`) for any fixed `. Their main result, at least as far as the present
paper is concerned, is as follows.

After having defined a new numeric parameter u(π) of a permutation π, ranging
in {1, 2, · · · , k− 1} where k is the size of π, Ben-Eliezer and Canonne [1] established a
lower bound of Ω̃ε(n1−1/u(π)) for testing π-freeness. This lower bound is tight in all
known cases; they conjecture that it is always tight.

Ben-Eliezer and Canonne [1] have also established the following properties of the
parameter u(π). It is 1 iff π is monotone. It is (k− 1) iff the maximum of π is adjacent
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to its minimum. And, for k large, π is almost surely either (k− 2) or (k− 3).
The main problem with this interesting new parameter is its involved and rather

unnatural definition, which makes the computation, or even the estimation, of u(π)
extremely difficult. To upper bound u(π), Ben-Eliezer and Canonne [1] have introduced
another parameter m(π), and used in a number of cases to compute u(π).

The current paper is a natural addition to the study of Ben-Eliezer and Canonne [1].
Our main results are as follows.

As mentioned above, u(π) ≤ m(π). We demonstrate that m(π) is easily computable
(in time linear in k), and that it provides a 3-approximation of u(π):

Theorem 1. u(π) ≤ m(π) ≤ 3u(π)

This result clarifies the meaning of u(π). Since m(π), as opposed to u(π), is quite
well understood, it seems that a natural first step towards verifying the conjecture of
Ben-Eliezer and Canonne would be to show that the query complexity of testing for
π-freeness is Õε(n1−1/m(π)).

We also close a small gap left in [1] about the asymptotic behavior of u(π).

Theorem 2. Let π be a random uniform permutation from Sk. Then, as k grows, the probability
that u(π) = k− 2 converges to 5/6, and the probability that u(π) = k− 3 converges to 1/6.

Key Definitions

Definition 3. A partition Λ = (σ1, ..., σl) of the permutation π is a sequence of disjoint
sub-permutations of π, that is, σ1 = π|[j0+1,j1], σ2 = π|[j1+1,j2], . . ., σl = π|[jl−1+1,jl ],
where j0 = 0, jl = k, and the j′s are strictly increasing.

A signed partition Λ∗ is a partition Λ = (σ1, ..., σl), where each σi is assigned a sign
s(σi) ∈ {+,−}.
Definition 4. Given a signed partition Λ∗, where Λ = (σ1, ..., σl), the sequence fΛ∗ of
length k2 is defined as follows. It will be convenient to view fΛ∗ as a function with
domain [1, k2], and range

⋃k−1
r=0 {i + 1/2k, i + 2/2k, ..., i + k/2k} ⊂ (0, k).

Let the support of σi, i = 1, . . . , l be [ji−1 + 1, ji] as before. The length of σi,
|σi| = ji − ji−1, will be denoted by `i. Define the interval Ii = [kji−1 + 1, kji] of length
k`i. Clearly, the intervals Ii, i = 1, . . . , l constitute a partition of [1, k2].

The following function fσ∗i supported on Ik is defined as follows. For r = 1, . . . , k− 1
and q = 1, . . . , `i, if s(σi) = +, set fσ∗i (kji−1 + r`i + q) = r + σi(q)/2k; else, if s(σi) = −,
set fσ∗i (kji−1 + r`i + q) = (k− 1− r) + σi(q)/2k.

Finally, given an integer x ∈ [1, k2] such that x ∈ Ii, set fΛ∗(x) = fσ∗i (x).
See Figure 1 for a visualization of fΛ∗ .

Observe the following property of fΛ∗ : the set of all x ∈ [1, k2] satisfying r < fΛ∗(x) <
r + 1 for some integer r ∈ [0, k− 1] forms a π-copy in fΛ∗ . Such a π-copy will be called
trivial. Thus, fΛ∗ has k trivial copies.

Definition 5. A signed partition Λ∗ of π will be called unique, if all the π-copies
contained in fΛ∗ are trivial.

The parameter u(π) is the maximal possible size of a unique signed partition Λ∗ of
the permutation π.
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Figure 1: Permutation π = (1, 4, 3, 2, 5) and its sign-partition Λ∗ = (σ1, σ2, σ3), where
σ1 = (1, 4), σ2 = (3), σ3 = (2, 5), and s(σ1) = −, s(σ2) = +, s(σ3) = −. This is a
unique sign-partition, with one trivial π-copy for each range (r, r + 1), r = 0, 1, 2, 3, 4.

The other important parameter m(π) is defined as follows.

Definition 6. A partition Λ = (σ1, ..., σl) of π is called covering if ∪l
i=1Rangeπ(σi) =

[1, k], where each Rangeπ(σi) = [min(σi), max(σi)] is a continuous real interval.
The parameter m(π) is the maximal possible size of a covering partition Λ of the

permutation π.

It was shown in [1] that a unique (signed) partition is necessarily covering, hence
m(π) ≥ u(π).

(For lack of space, the proofs are delayed to the full version.)
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A Generalization of Dyck Paths and Catalan numbers

Young-Yoon Lee Samsung Electronics Co., Ltd.

A generalization of Dyck paths

In this talk, motivated by tennis ball problem [1] and regular pruning problem [2], we
will present generating functions of the generalized Catalan numbers.

Definition 1. For r < m, let D(m,r)
n denote a (m, r)-Dyck path of order n, which is a

lattice path from (0, 0) to (n, (m− r)b n
r c) with steps E = (1, 0) and N = (0, 1) that

never go above the path (Er Nm−r)b
n
r cEn−rb n

r c as illustrated in Figure 1.

(a) D(2,1)
6 (b) D(3,1)

3 (c) D(5,3)
10

Figure 1: (m, r)-Dyck paths

Figure 1 shows some examples of (m, r)-Dyck paths.

Definition 2. Let c(m,r)
n denote (m, r)-Catalan number, the number of the (m, r)-Dyck

paths of order n. The generating function is denoted by

C(m,r)(z) = ∑
n≥0

c(m,r)
n zn.

Remark 3. It is well known that the number of (m, 1)-Dyck paths of order n is given by
m-Catalan numbers [3], defined by

c(m,1)
n =

1
mn + 1

(
mn + 1

n

)
=

1
(m− 1)n + 1

(
mn
n

)
=

1
n

(
mn

n− 1

)
.

Let us recall that the generating function ω = C(m,1)(z) satisfies the following equation:

ω = 1 + zωm.

Remark 4. The number of (m, m− 1)-Dyck paths of order n is enumerated by [3]

c(m,m−1)
n =

1 + d
mν + 1 + d

(
mν + 1 + d

ν

)
=

1 + d
(m− 1)ν + 1 + d

(
mν + d

ν

)
=

1 + d
ν

(
mν + d
ν− 1

)
,

where ν = b n
m−1c and d = n− (m− 1)ν.
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A generalization of Catalan numbers

For any r < m, we wish to show the generating functions of (m, r)-Catalan numbers in
the following theorems.

Lemma 5. If m and r are coprime, the algebraic equation in ω

(ω− 1)r = zrωm (1)

has a solution called ω0(z) in the polynomial ring Q[z]. In the polynomial ring C[z], it has r
solutions called ωk(z), k = 0, · · · , r− 1, where ωk(z) = ω0(φkz) and φ = ei 2π

r .

Theorem 6. If m and r are coprime, the generating function C(m,r) is given by

C(m,r)(z) =
r

∑
p=1

(z− 1)p−1ep(ω0, · · · , ωr−1) =
−1 + ∏r−1

k=0(1 + (z− 1)ωk(z))
z− 1

, (2)

where ωk = ωk(z), k = 0, · · · , r − 1, are r solutions of (1), and ep(ω0, · · · , ωr−1), p =
0, · · · , r, are the elementary symmetric polynomials in r solutions, which is given by

ep(ω0, · · · , ωr−1) = ∑
0≤k1<···<kp<r

p

∏
j=1

ωk j(z).

Suppose φ = ei 2π
r denotes the r-th primitive root of unity. As an application of the

discrete Fourier transform, let C(k)(z), k = 0, · · · r− 1, denote the generating functions
of the subsequences {crn+k}n≥0:

C(k)(z) = ∑
n≥0

crn+kzrn+k =
1
r

r−1

∑
j=0

φ−jkC(φjz).

Theorem 7. If m and r are coprime, the generating function C(gm,gr) is given by

C(gm,gr)(z) =
−1 + ∏

g−1
l=0

(
1 + (z− 1)∑r−1

k=0 ψ−klC(m,r)
(k) (ψlz)

)
z− 1

(3)

=
−1 + ∏

g−1
l=0

(
1 + (z− 1)∑n≥0 φln ∑r−1

k=0 c(m,r)
rn+kzrn+k

)
z− 1

, (4)

where ψ = ei 2π
gr and φ = ψr = ei 2π

g .
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The growth of the Möbius function on the permutation

poset

David Marchant The Open University

In this talk, we will show that the growth of the principal Möbius function, µ[1, π], on
the permutation poset is at least exponential in the length of the permutation.

Background

The Möbius function µ[σ, π] is defined on an interval of a poset as follows: for σ � π,
µ[σ, π] = 0; for all π, µ[π, π] = 1; and for σ < π,

µ[σ, π] = − ∑
λ∈[σ,π)

µ[σ, λ]

The problem of the Möbius function on the permutation pattern poset was first raised
by Wilf [6]. Earlier work by Smith [4] showed that the growth was at least O(n2),
and recently Jelínek, Kantor, Kynčl and Tancer [3] improved this lower bound to
O(n7). In the other direction, Brignall, Jelínek, Kynčl and Marchant [1] show that the
proportion of permutations of length n with principal Möbius function equal to zero is
asymptotically bounded below by (1− 1/e)2 ≥ 0.3995.

2413-balloon permutations

We show that, given some permutation β, we can construct a permutation that we call
the “2413-balloon” of β. This permutation will have four more points than β, and a
generic example is shown in Figure 1. We then show that if π is a 2413-balloon of β,
and β is itself a 2413-balloon, then µ[1, π] = 2µ[1, β]. From this we deduce that the
growth of the principal Möbius function is at least exponential.

If β = 25314 (which is a 2413-balloon), then we can construct a hereditary class that
contains only the simple permutations {1, 12, 21, 2413, 25314}, where the growth of the
principal Möbius function is exponential, answering questions in Burstein et al [2] and
Jelínek et al [3].

β

Figure 1: The 2413-balloon of the permutation β.
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Outline of the proof

We start by assuming that β is a 2413-balloon, and that π is the 2413-ballon of β. We
partition the chains in the poset interval [1, π] into into three sets, R, G, and B. We then
show that there are parity-reversing involutions on the sets G and B, and therefore, by
a Corollary to Hall’s Theorem [5, Proposition 3.8.5], the contribution to µ[1, π] of the
chains in these sets is zero. It follows that µ[1, π] is determined by the chains in R. We
then show that the Hall sum of R can be written in terms of µ[1, β], which leads to:

Theorem 1. Let π be a 2413-balloon of β, where β is itself a 2413-balloon. Then µ[1, π] =
2µ[1, β].

We define maxµ(n) = max{|µ[1, π]| : |π| = n}, and we define a method of constructing
a permutation π(n) of length n,

π(n) =



1 If n = 1

12 If n = 2

132 If n = 3

2413 If n = 4

2413} π(n−4) Otherwise

Note that for n > 8, π(n) is a double 2413-balloon.

It is now simple to show that:

Theorem 2. For all n, maxµ(n) ≥ 2bn/4c−1.
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[1] R. Brignall, V. Jelínek, J. Kynčl and D. Marchant. Zeros of the Möbius function of

permutations. http://arxiv.org/abs/1810.05449, 2018.

[2] A. Burstein, V. Jelínek, E. Jelínková, and E. Steingrímsson. The Möbius function of
separable and decomposable permutations. Journal of Combinatorial Theory, Series A,
118(8):2346–2364, 2011.
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Enumeration of Permutation Classes by Inflation of

Independent Sets of Graphs

Émile Nadeau Reykjavik University

This talk is based on joint work with Christian Bean and Henning Ulfarsson

We present a way to obtain permutation classes by inflation of independent sets of
certain graphs. We cover classes of the form Av(2314, 3124, P) and Av(2413, 3142, P).
These results allow us to enumerate a total of 48 classes, with bases containing only
length 4 patterns. Using a modified approach, we also demonstrate a result for classes
of the form Av(2134, 2413, P) that allows us to enumerate eight more classes described
by bases containing only length 4 patterns. We finally use our results to prove an
unbalanced Wilf-equivalence between Av(2134, 2413) and Av(2314, 3124, 12435, 13524).

Inflating the up-core

Bean, Tannock, and Ulfarsson [1] show a link between the permutations in Av(123)
and independent sets of certain graphs Un whose vertices are the cells of the staircase
grid of size n. These graphs are called up-cores. We extend their results to enumerate
Av(2314, 3124), and moreover certain sub-classes avoiding patterns of the form 1⊕ π

where π is skew-indecomposable.

More precisely, we choose an independent set of size k in the graph Un together with
a list of k non-empty permutations in Av(2314, 3124, P) where P is a set of skew-
indecomposable permutations. We establish a bijection between these objects and
permutations in Av(2314, 3124, 1⊕ P). From [1], we get that the number of independent
set of size k in an up-core of a staircase grid of size n is given by the coefficient of xnyk

in the generating function F(x, y) satisfying

F = 1 + xF +
xyF2

1− y(F− 1)
.

Using it, we get the enumeration of these classes:

Theorem 1. Let P be a set of skew-indecomposable permutations and A(x) be the generating
function of Av(2314, 3124, P). Then Av(2314, 3124, 1⊕ P) is enumerated by F(x, A− 1).

This can be used to enumerate eight classes avoiding length 4 patterns, and many more
avoiding longer patterns.

Moreover, using the down-core, also introduced in [1], we state a similar theorem for
the class Av(2413, 3142, 1⊕ P) where P is a set of sum-indecomposable permutations.
This can be used to enumerate eight more classes avoiding length 4 patterns.

Theorem 2. Let P be a set of sum-indecomposable permutations and A(x) be the generating
function of Av(2413, 3142, P). Then Av(2413, 3142, 1⊕ P) is enumerated by F(x, A− 1).
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New cores

We also describe new graphs on the staircase grid of size n. We prove that the number
of independent sets of size k for such a graph is given by the coefficient of xnyk in the
generating function G(x, y) that satisfies

G = 1 + xG +
xyG

1− x(y + 1)
.

Using a similar bijection, as we did for Theorem 1, we prove two theorems that
enumerate 32 classes avoiding patterns of length 4.

Theorem 3. Let P be a set of skew-indecomposable permutations and A(x) be the generating
function of Av(2314, 3124, 3142, P) (resp. Av(2314, 3124, 2413, P)). Then the generating
function of Av(2314, 3124, 3142, 1⊕ P) (resp. Av(2314, 3124, 2413, 1⊕ P)) is G(x, A− 1).

An small modification of G to track the number of rows of the independent set with a
third variable also allows to handle classes of the type Av(2413, 3142, 3124, 1⊕ P) and
Av(2413, 3142, 2413, 1⊕ P) for P a set of sum-indecomposable permutations.

Avoiding 2134 and 2413

We use independent sets in a core graph with marked cells in the staircase grid
to enumerate of Av(2134, 2413) and certain sub-classes. The class is symmetric to
Av(3142, 4312) enumerated by Albert, Atkinson, and Vatter [2]. We define

×π =

{
α if π = 1⊕ α

π otherwise
and π× =

{
α if π = α⊕ 1

π otherwise
.

We show that for a set of patterns P satisfying that for all π ∈ P

• π is skew-indecomposable,

• π avoids and

• π contains or π = α⊕ 1 with α skew-indecomposable.

Theorem 4. The generating function of Av(2134, 2413, P) is

H
(

xB,
x

1− x
, B− 1, xC

)
where

• B(x) is the generating function of Av(2134, 2413,×P),

• C(x) is the generating function of Av(213,×P×),
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• H(x, y, z, s) = s(y+1)−1
syz+(1−s)x+(1−x)sy+s−1

The proofs of all theorems nicely highlight the structure of all the permutation classes.
For example, we can extract the structure of the skew-indecomposable permutations
in Av(2134, 2413) as seen in Figure 1.

•

•

s

s

y

y′

•
•

s

y′

. . . . . .

. . .

. . .
. . ...

.

..
.

Contains a permutation in
Av(2134, 2413, ×P ) split by
removing the topmost point

•x

Figure 1: Structure of the two types of skew-indecomposable permutations in
Av(2134, 2413). The cells marked s contain a permutation in Av(213), the cell marked
x contains a permutation in Av(2134, 2413), the cell marked y contains a non-empty
decreasing sequence and the cells marked y′ contain a decreasing sequence.

Unbalanced Wilf-equivalence

We demonstrate the Wilf-equivalence of the classes Av(2314, 3124, 13524, 12435) and
Av(2134, 2413). We first compute A(x), the generating function for the first class using
Theorem 1. We get that A(x) = F(x, B − 1) where B is the generating function of
Av(2314, 3124, 2413, 1324). Then, with Theorem 3, we get that B(x) = G(x, C − 1)
where C(x) is the generating function for Av(213). Since C(x) is known, A(x) can
be computed explicitly. Moreover, by Theorem 4, the generating function D(x) of
Av(2134, 2413) satisfies D(x) = H

(
xD, x

1−x , D− 1, xC
)
. Solving and comparing with

A(x) shows the Wilf-equivalence. This fact leads us to believe that a direct proof using
the core structure might be possible.

Several other unbalanced Wilf-equivalences can be derived using our theorems.
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Solving hard problems effectively on permutations of small

grid-width

Michal Opler Charles University

This talk is based on joint work with Vít Jelínek

In this talk, we will introduce a grid-like decomposition of permutations and a corre-
sponding parameter called grid-width, which are well-suited for designing dynamic
programming algorithms. We will provide some examples of hard problems that can
be effectively solved on permutations of small grid-width.

Grid-width

Definition 1. An interval family I is a set of pairwise disjoint integer intervals with the
natural ordering I1, . . . , In such that for j < k, Ij < Ik. For two interval families I and
J , let I × J denote the naturally defined set of boxes in the plane. For a point set
A in the plane, let x(A) denote its projection on the x-axis and equivalently y(A) its
projection on the y-axis. The intervalicity of a set A ⊆ [n], denoted by I(A), is the size
of the smallest interval family whose union is equal to A.

Definition 2. A grid tree of a permutation π ∈ Sn is a rooted binary tree T with n leaves,
each leaf being labeled by a distinct point of the permutation diagram {(i, πi); i ∈ [n]}.
Let ST

v denote the point set of the labels on the leaves in the subtree of T rooted in v.
The grid-width of a vertex v in T is the maximum of the intervalicities I(x(ST

v )) and
I(y(ST

v )), and the grid-with of T, denoted by gwT(π), is the maximum grid-width of
a vertex of T. Finally, the grid-width of a permutation π, denoted by gw(π), is the
minimum of gwT(π) over all grid trees T of π. See Figure 1.

The following observations show that the notion of small grid-width lines up with our
current view of "well-behaved" permutation classes.

Proposition 3. A permutation π has grid-width equal to 1 if and only if it is separable.

Proposition 4. Any permutation class that contains only finitely many simple permutations
has bounded grid-width.

Relation to other decompositions

The notion of grid-width is very closely related to the notion of tree-complexity defined
by Ahal and Rabinovich [1]. Furthermore, Ahal and Rabinovich [1, Proposition 3.6]
showed that the tree-complexity of a permutation π is, up to a constant multiplicative
factor, equivalent to the tree-width of the adjacency graph Gπ, which we define below.
We will omit the definition of tree-complexity itself, and focus on the relation between
grid-width of π and tree-width of Gπ.
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Figure 1: Possible grid tree decomposition of permutation 2735416 with grid-width 2.
The dashed lines highlight consecutive intervals in each projection.

Definition 5. For a permutation π ∈ Sn, its adjacency graph Gπ is defined as follows.
The set of vertices of Gπ is the set {(i, πi); i ∈ [n]}. Two vertices (x1, y1), (x2, y2) are
adjacent if |x1 − x2| = 1 or |y1 − y2| = 1.

Proposition 6. For any permutation π ∈ Sn, it holds that 1
8 tw(Gπ) ≤ gw(π) ≤ tw(Gπ) +

2. Moreover, given a tree decomposition of width k for Gπ, we can compute a grid tree of π of
grid-width at most k + 2 in linear time.

The previous proposition allows us to use general tree-width approximating algorithms
to obtain good approximation of grid-width. In particular, applying the algorithm due
to Bodlaender et al. [2] we obtain the following result.

Corollary 7. We can compute a grid tree of permutation π with grid-width at most 5gw(π) +
O(1) in time 2O(gw(π))n.

Algorithmic applications

We illustrate how one can use grid trees of small grid-width to obtain efficient algo-
rithms on the following NP-complete problems.

Permutation Pattern Matching (PPM)
Input: Permutations π of size k and τ of size n.
Question: Is π contained in τ?
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Longest Common Subpattern (LCP)
Input: Permutations π of size k and τ of size n.
Output: A pattern of maximal size contained in both π and τ.

Theorem 8. We can solve both LCP and PPM in time O(nO(gw(π))).

Longest C Subpattern (LCS)
Input: Permutation π of size n.
Output: Longest permutation σ ∈ C contained in π.

Previously, LCS was known to be polynomially solvable for separable permutations [3].
We introduce more general framework that allows us to infer polynomial tractability
of LCS for many different classes.

Definition 9. We say that a permutation class C is grid tree recognizable, or GT-
recognizable for short, if there is an algorithm A that receives the grid-width g and
outputs a tree automaton that recognizes C over grid trees of grid-width at most g.

Theorem 10. For a GT-recognizable class C such that every π ∈ C has grid-width bounded
by some constant, LCS can be solved in polynomial time.
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Consecutive permutation patterns in trees and mappings

Alois Panholzer Vienna University of Technology

In this presentation, we will give results concerning avoidance and occurrence of
consecutive permutation patterns in labelled trees and mappings.

Introduction

In the combinatorial and probabilistic literature various studies of quantities related
to the labelling of trees, where the vertices of objects of size n are labelled with
distinct integers of [n] := {1, 2, . . . , n}, can be found. However, only very recently
studies concerning avoidance [2] or occurrence [1] of classical permutation patterns
in families of labelled trees and forests have been initiated. Analyses of certain
consecutive permutation patterns also appear in literature, in particular, occurrences of
the pattern 12, i.e., ascents, in rooted labelled trees have been treated in [3], and there
are a huge number of results for trees avoiding the pattern 21, so-called increasing
trees. Furthermore, alternating (or intransitive) trees, which avoid the set of patterns
{123, 321}, have been treated for several tree families (see, e.g., [5] and references
therein).

It seems that apart from the before mentioned work almost no further results on the
occurrence or avoidance of consecutive permutation patterns of length 3 or higher are
available for trees. Here we initiate such a study by treating the enumeration problem
when avoiding a single pattern of length 3, and analysing the number of occurrences
of a single pattern of length 3, for rooted labelled trees, also called Cayley-trees (the
enumeration formula nn−1 for the number of rooted labelled trees of size n is attributed
to A. Cayley). We assume here edges in the tree as oriented towards the root node and
the occurrence of a consecutive permutation pattern s = s(1) . . . s(k) ∈ Sk of length
k corresponds to a directed path p = (v1, v2, . . . , vk) of k vertices, whose sequence of
labels is order-isomorphic to s.

Moreover, we consider n-mappings, i.e., functions f : [n]→ [n] and the corresponding
functional digraphs G f = (V, E), i.e., the directed graph with vertex-set V = [n] and
edge-set E = {(i, f (i)) : i ∈ [n]}, and extend the notion of consecutive permutation
pattern occurrence/avoidance to them. Although structural properties of the functional
digraphs of random mappings, where one of the nn n-mappings is chosen with equal
probability, have widely been studied, there are only few results concerning label
patterns in mappings. As one example we mention the study [6] of alternating
mappings, i.e., functions f , for which the iteration sequences i = f 0(i), f 1(i), f 2(i), . . .
are always forming an alternating sequence, i.e., where the functional digraph G f
avoids the set of patterns {123, 321}.

The structure of the functional digraph of a mapping is rather simple and is well
described in [4]: the weakly connected components of such graphs are just cycles
of Cayley trees. This connection, although slightly more involved when taking into
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account the labels of the nodes, also allows to gain results concerning consecutive
permutation patterns in mappings from corresponding results in trees.

Results for avoiding a pattern of length 3

Due to obvious symmetry arguments, the permutation patterns s = s(1) . . . s(k) and
s̃ = s̃(1) . . . s̃(k), with s̃(j) = k + 1− s(j), for 1 ≤ j ≤ k, are strongly consecutive-Wilf
equivalent. For patterns s of length 3 this yields the three equivalence classes 123 ∼= 321,
132 ∼= 312, and 231 ∼= 213.

Theorem 1. The exponential generating functions T[s](z) of the number T[s]
n of rooted labelled

trees of size n that avoid a given consecutive pattern s of length 3 are all characterized as
solutions of certain functional equations given below. Moreover, the exponential generating
functions M[s](z) of the number M[s]

n of n-mappings that avoid the corresponding pattern s
can be expressed via the function T[s](z) as stated below.

Pattern class Av(s) T := T[s](z) M := M[s](z)
Av(123)
Av(321)

z = e−T
∫ T

0
et

1+t dt M = 1
1−z(1+T)

Av(132)
Av(312)

z =
∫ T

0 e−t−(T−t)e−t
dt M = eT−1+e−T

1−eT
∫ T

0 e−2t−(T−t)e−t dt

Av(231)
Av(213)

z = e−T
∫ T

0 et−1+e−t
dt M = 1

1−ze1−e−T

Theorem 2. The numbers T[s]
n and M[s]

n of rooted labelled trees of size n and n-mappings,
respectively, that avoid a given consecutive pattern s of length 3 are asymptotically, for n→ ∞,
given as follows:

T[s]
n ∼ cT · γn · nn−1, M[s]

n ∼ cM · γn · nn,

with γ = 1
eρ , where ρ is the radius of convergence of the corresponding generating function

T[s](z) characterised via solutions of certain functional equations, and where cT, cM are some
computable constants. Numerical values of the occurring constants are given below.

Pattern s ρ γ cT cM

123 0.42718536 . . . 0.86117050 . . . 1.53000135 . . . 1.53000135 . . .
132 0.44084481 . . . 0.83448739 . . . 1.74299311 . . . 1.83550666 . . .
231 0.44922576 . . . 0.81891883 . . . 2.23735314 . . . 2.23735314 . . .

Remark 3.

• The numbers T[s]
n are for n ∈ [8] given as follows.

T[s]
n , n ∈ [8]

Pattern s
1 2 3 4 5 6 7 8

123 1 2 8 50 426 4606 60418 932282
132 1 2 8 49 407 4280 54537 816905
231 1 2 8 49 406 4248 53740 797786
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• Only the enumeration sequence of T[123]
n occurs in OEIS as sequence A225052,

but without giving a combinatorial meaning. Now we can provide such one as
rooted labelled trees without double-ascents.

• According to Theorem 2 one obtains the following asymptotic relation for the
enumeration sequences T[s]

n :

T[231]
n � T[132]

n � T[123]
n .

• For s = 123 and s = 231 one has the relation M[s]
n = nT[s]

n , which can also
be shown by a combinatorial argument. This relation does not hold, not even
asymptotically, for the pattern s = 132, for which we get M[s]

n ∼ 1.0530 . . . · nT[s]
n .

Results for occurrences of patterns of length 3

Theorem 4. The exponential generating functions F[s](z, v) of the number F[s]
n,m of rooted

labelled trees of size n with m occurrences of a given consecutive pattern s of length 3 are
characterized as solutions of certain functional equations given below. Moreover, the exponential
generating functions G[s](z, v) of the number G[s]

n,m of n-mappings with m occurrences of the
corresponding pattern s can be expressed via the functions F[s](z, v) as stated below.

Pattern s F := F[s](z, v) G := G[s](z, v)

123 z = e−F
∫ F

0 et(1− (v− 1)t)
1

v−1 dt G = 1

1−z(1−(v−1)F)−
1

v−1

132 z =
∫ F

0 e−t−(F−t)e(v−1)t
dt G = e

(v−1)F+1−e(v−1)F
v−1

1−eF
∫ F

0 e(v−2)t−(F−t)e(v−1)t dt

231 z = e−F
∫ F

0 e
(1−v)t−1+e(v−1)t

1−v dt G = 1

1−ze
1−e(v−1)F

1−v

Theorem 5. Let X[s]
n and Y[s]

n be the random variables counting the number of occurrences of
the pattern s of length 3 in a randomly chosen size-n tree or n-mapping, respectively. Then
mean and variance of these r.v. are given as follows:

123 132 231
E(X[s]

n )

E(Y[s]
n )

n
6 − 1

2 +
1

3n ∼ 1
6 n

V(X[s]
n ) 2n

15 − 1
3 +

1
3n2 − 2

15n3

V(Y[s]
n )

n
5 − 2

3 +
1

3n + 2
3n2 − 8

15n3 2n
15 − 1

4 − 1
2n + 5

4n2 − 19
30n3

7n
60 − 1

6 − 7
12n + 7

6n2 − 8
15n3

Furthermore, after suitable normalization, the r.v. X[s]
n and Y[s]

n converge in distribution to a

standard normal distribution N (0, 1), i.e., X[s]
n −E(X[s]

n )√
V(X[s]

n )

(d)−→ N (0, 1), analogous for Y[s]
n .

Remark 6.
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• As expected, the r.v. X[s]
n and Y[s]

n satisfy a central limit theorem with linear mean
and variance. However, interestingly the variance, and thus the normalization
constants, are different for the three pattern classes of length 3.

• For the patterns 123 and 231 one gets the relation Gn,m = nFn,m, for n ≥ 1, which
can also be shown via a pattern-preserving bijection from marked labelled trees
to mappings. For the pattern 132 this relation does not hold, but the r.v. X[s]

n and
Y[s]

n have the same limiting behaviour.

Outlook

The study of consecutive patterns in labelled trees could be extended in various ways.
We mention a few such directions for which we obtained some preliminary results via
the method presented.

• Sets of patterns. There seem to be several interesting classes of sets of patterns
of length 3; some (but as it seems, not all) of them could be treated by using a
decomposition w.r.t. the largest or smallest labelled vertex.

• Patterns of length 4 or higher. Although computations quickly get quite involved,
there is some hope to obtain at least partial results.

• Other tree families. There are other combinatorial tree families, most notably
labelled ordered trees and labelled binary trees, where the approach presented
could be applied. Again, computations are more involved, since one has to take
into account the number of possible “attachment points” to reconstruct a tree
after the decomposition.
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How many chord diagrams have no short chords?

Jay Pantone Marquette University

This talk is based on joint work with Peter Doyle and Everett Sullivan

A chord diagram consists of 2n points labeled 1, 2, . . . 2n arranged in a circle in increasing
order and connected in pairs by chords. A linear chord diagram is a chord diagram in
which the points have been arranged linearly, with labels increasing from left to right.
Figure 1 shows a chord diagram on the left and a linear chord diagram on the right.
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1 2 3 4 5 6 7 8 9 10 11 12

Figure 1: On the left, a chord diagram. On the right, the linear chord diagram that
results from breaking apart the chord diagram on the left between points 1 and 2n and
“straightening”.

Chord diagrams and their linear counterparts (known often in the literature as match-
ings) are foundational combinatorial structures, appearing for example in the analysis
of RNA folding [5], interconnection networks [4, Section V.4], and the representation
theory of Lie algebras [2]. The introductory section of [7] catalogs a number of other
applications and interesting references.

Among enumerative combinatorialists, the study of patterns in (linear) chord diagrams
has proved to be a particularly fruitful endeavor that closely parallels the study of
patterns in permutations. In her 2015 thesis, Jefferson [5] ported the substitution
decomposition and several related techniques from the realm of permutation patterns
to that of linear chord diagrams. Several other authors have investigated classes of
linear chord diagrams that avoid certain types of patterns, e.g., Bloom and Elizalde [1],
Chen, Mansour, and Yan [3], and Jelínek [6].

In this talk, we consider a type of pattern avoidance distinct from the references above;
our notion is more akin to consecutive permutation patterns, while those above are
analogues of classical permutation patterns—our patterns must occur locally.

For the rest of this abstract we refer only to linear chord diagrams, referring to them
simply as chord diagrams. The analysis here can be readily adapted to the circular
variety with some care.

Definition 1. A partial chord diagram is an arrangement of n points in a line such that
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each point is either connected to no other point (isolated) or connected to exactly one
other point by a chord. Figure 2 depicts a partial chord diagram with two chords and
three isolated points.

1 2 3 4 5 6 7

Figure 2: A partial chord diagram with two chords and three isolated points. For
visual emphasis, we draw isolated points with a straight vertical line connected to no
other points.

A partial chord diagram is the result of restricting a chord diagram to an interval of
points.

Definition 2. Given a chord diagram C with n chords, the restriction of C to the interval
of integers [α, β] ∈ {1, 2, . . . , 2n}, denoted C[α,β], is the partial chord diagram formed
from C by deleting all endpoints with labels not in [α, β], deleting all chords that have
an endpoint not in [α, β], and relabeling the remaining points 1, 2, . . . , β− α + 1. Note
that this may leave isolated points. Figure 3 shows C[3,9], with C the chord diagram on
the right side of Figure 1.

1 2 3 4 5 6 7

Figure 3: The partial chord diagram C[3,9] for the chord diagram C shown on the right
side of Figure 1.

We now define analogues of pattern avoidance and permutation classes for linear chord
diagrams. These definitions are adaptations of those found in the thesis of Sullivan [8],
and his later work [9].

Definition 3. The chord diagram C with n chords contains the partial chord diagram P
if there is some integer interval [α, β] ⊆ {1, . . . , 2n} such that C[α,β] = P. If C does not
contain P, then C avoids P.

Definition 4. Given partial chord diagrams P1, . . . , Pk, we define Av(P1, . . . , Pk) to be
the set of chord diagrams that avoid each of P1, . . . , Pk.

We call C = Av(P1, . . . , Pk) a chord diagram class, and like permutation classes we are
interested in properties of the counting sequence of C. Letting Cn denote the chord
diagrams in C with n chords, we may define the generating function

fC(z) = ∑
n≥0
Cnzn.
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Based on extensive empirical evidence we present the following conjecture, which
contrasts sharply with the situation in both classical and consecutive permutation
patterns.

Conjecture 5. For any finite set of partial chord diagrams P1, . . . , Pk, the chord diagram class
C has a D-finite generating function. That is, fC(z) satisfies a linear differential equation with
coefficients in Q[z].

In this talk, we prove a specialization of this conjecture.

Definition 6. The length of a chord with endpoints α < β is β− α. A chord diagram is
said to have minimum-length-k if all of its chords have length at least k.

LetMk be the set of all chord diagrams with minimum-length-k. It is easily verified
that eachMk is a chord diagram class avoiding a finite set of partial chord diagrams.

By combining several symbolic and analytic tools, including finite state automata, the
sieve method, creative telescoping, and a trick we call the “gap method”, we prove our
main theorem below.

Theorem 7. For all k ≥ 1, the generating function fMK(z) is D-finite.
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Pattern Hopf algebras on marked permutations and enriched

set species

Raul Penaguiao University of Zürich

In this talk we introduce pattern Hopf algebras in combinatorial structures. We start
by considering the functions that count patterns. These pattern functions satisfy a
product relation, and we are able to endow the linear span of pattern functions with
a compatible coproduct. In this way, several combinatorial objects generate a Hopf
algebra. For example, the Hopf algebra on permutations studied by Vargas in [6] is a
particular case of this construction.

Questions of algebraic nature arise when dealing with these Hopf algebras: freeness,
the character group, and so on. We discuss here the freeness of these Hopf algebras.

A particular case of such a Hopf algebra structure, defined on marked permutations,
is of interest to us. These objects have an inherent multiplication structure that stems
from the inflation operation on permutations, and this product operation is central in
establishing that this Hopf algebra is a free algebra.

Introduction

The notion of substructures is important in mathematics, and particularly in combi-
natorics. In graph theory, minors and induced subgraphs are the main examples of
studied substructures. Other objects also get attention in this topic: set partitions, trees,
paths and, to a bigger extent, permutations, where the study of substructures leads us
to the concept of a pattern in permutations.

A priori unrelated, Hopf algebras are a natural tool in algebraic combinatorics to
study graphs, set compositions and permutations. For instance, the celebrated Hopf
algebra on permutations named after Malvenuto and Reutenauer sheds some light
on the structure of shuffles in permutations. Other examples of Hopf algebras in
combinatorics are the word quasisymmetric functions with a basis indexed by set
compositions, and the permutation pattern Hopf algebra introduced by Vargas in [6].
A seminal work on the interactions between combinatorics and Hopf algebras is [4].

With that in mind, we build upon the notion of species, as presented in [1] by Aguiar
and Mahajan, in order to connect these two areas of algebraic combinatorics, introduc-
ing in [5] the notion of presheaf.

In the 1950’s, Chen, Fox and Lyndon introduced to us, in [3], the concept of a Lyndon
word, and used it to establish that the shuffle algebra on words is free. This gave
our comunity a readily availabe tool to establish the freeness of a Hopf algebra, with
a surprising amount of flexibility. Indeed, Vargas used this same method in [6] to
establish the freeness of the pattern algebra on permutations.

The particular case of a pattern Hopf algebra that interests us is the one on marked
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permutations. We exploit the remarkable product structure that arises from the inflation
of two marked permutations. The study of the freeness of the pattern Hopf algebra
on marked permutations reduces to a unique factorisation theorem, presented below,
and a careful tunning of the application of the theory of Lyndon words to establish the
freeness of an algebra.

Pattern functions, cover numbers and the inflation of marked permutations

For us, a permutation in a set S is a pair of orders in S, as described in [2]. A marked
permutation π∗ on a set I is a pair of orders in I t {∗}, that is a permutation on
I t {∗}, and its size is |π∗| = #I. If J ⊆ I, then π∗|J is the restriction of the underlying
permutation to J t {∗}, and so is a marked permutation on the set J.

An occurence of a marked permutation π∗ in another marked permutation τ∗ is
an occurence of the underlying permutation where the marked element on both
permutations match. Equivalently, is a set J ⊆ I such that π∗|J and τ∗ are isomorphic
marked permutations.

Consider the following marked permutations: π∗1 = 32̄1, π∗2 = 2̄1, π∗3 = 142̄3. Then π∗2
is a pattern in π∗1 , but not in π∗3 .

Let us write pπ∗(τ
∗) for the number of occurences of π as a pattern in τ. Then, in the

previous examples, we have that pπ∗2
(π∗1) = 1 and pπ∗2

(π∗3) = 0.

Our first observation, is that these pattern functions have a product formula.

Proposition 1. Let π1, π∗2 , τ∗ be marked permutations, then

pπ∗1
(τ∗)pπ∗2

(τ∗) = ∑
σ∗

(
σ∗

π∗1 , π∗2

)
pσ∗(τ

∗) , (1)

where the coefficients ( σ∗
π∗1 ,π∗2

) have an explicit combinatorial interpretation, and where the sum
runs over marked permutations σ∗ up to isomorphism, with size at most |π∗1 | + |π∗2 |. In
particular, span{pπ∗ |π∗ marked permutation} = A(MPer) is a graded algebra.

Figure 1: The inflation
product of the marked
permutations 13̄2 and 2̄1
is 143̄2.

If π∗1 , π∗2 are two marked permutations, we can define the
inflation product π∗1 ∗ π∗2 of these marked permutations
by inflating the marked element of π∗1 with the marked
permutation π∗2 . In Fig.1, we have a graphical expression
of 13̄2 ∗ 2̄1.

A marked permutation π∗ is called simple when any fac-
torisation π∗ = τ∗1 · τ∗2 has τ∗1 = 1̄ or τ∗2 = 1̄. For example
1̄423 is a simple marked permutation, although it has a
decomposition as an ⊕ product.

We remark that the inflation product in marked permuta-
tions is not commutative. However, factorisations into sim-
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ples are not unique. For instance, both 1̄32 and 213̄ are simple, but 1̄32 ∗ 213̄ = 213̄ ∗ 1̄32.
This is an example of a two factor transposition.

Define the coproduct ∆ pπ∗ = ∑π∗=τ∗1 ·τ∗2 pτ∗1
⊗pτ∗2

in A(MPer). This coproduct is
compatibe with the product of pattern functions. With this, A(MPer) is a Hopf algebra
with a basis indexed by marked permutations.

Proposition 2. Let α∗ be a marked permutation with two factorisations a∗1 ∗ · · · ∗ a∗k and
b∗1 ∗ · · · ∗ b∗j into simple marked permutations. Then these factorisations can be obtained from
one to the other by explicit two factor transpositions. In particular, k = j and the simple factors
are the same up to order.

The freeness follows via a careful application of the theory of Lyndon words.

Theorem 3. The pattern algebra on marked permutations is free commutative.

Other pattern algebras

The process of building a Hopf algebra out of combinatorial structures with a restriction
and a product, that we went through above, is quite general.

For instance, the family of graphs with the disjoint union is a monoidal presheaf, and
the family of permutations with the ⊕ product is one as well. It turns out that having
a commutative product is enough to guarantee a unique factorisation theorem, hence:

Theorem 4. Any pattern algebra with a commutative monoidal structure is a free commutative
algebra.

The surprising feature of this result is that the coalgebra structure, which is the one
that pertains the monoidal strucutre, dictates whether the algebra structure is free. As
a consequence, pattern algebras in graphs, posets and matroids are free.
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Scaling limits of permutation classes

with a finite specification: a dichotomy

Adeline Pierrot LRI, Univ. Paris-Sud, CNRS, Univ. Paris-Saclay, Orsay, France

This talk is based on joint work with Frédérique Bassino, Mathilde Bouvel, Valentin Féray, Lucas
Gerin and Mickaël Maazoun. The full paper is available at https://arxiv.org/abs/1903.07522

We are interested in the description of the asymptotic properties of a uniform random
permutation of large size in a permutation class. We consider uniform random per-
mutations in classes having a finite combinatorial specification for the substitution
decomposition. These classes include all permutation classes having finitely many sim-
ple permutations, and also some classes having infinitely many simple permutations.
Our goal is to study their limiting behavior in the sense of permutons.

The limit depends on the structure of the specification restricted to families with the
largest growth rate. When it is strongly connected, two cases occur. If the associated
system of equations is linear, the limiting permuton is a deterministic X-shape. Other-
wise, the limiting permuton is the Brownian separable permuton, a random object that
already appeared as the limit of most substitution-closed permutation classes, among
which the separable permutations. Moreover these results can be combined to study
some non strongly connected cases.

To prove our result, we use a characterization of the convergence of random permutons
by the convergence of random subpermutations. Key steps are the combinatorial study
of families of permutations with marked elements inducing a given pattern, and the
singularity analysis of the corresponding generating functions.

(a) (b) (c) (d)

Figure 1: Large uniform random permutations in four different finitely specified
classes. These four cases are covered by the present paper.

Context and background

We see a permutation σ as its diagram, i.e. a square grid with dots at coordinates (i, σ(i)).
For θ a permutation of size d, the substitution θ[π(1), . . . , π(d)] is obtained by inflating
each point θ(i) of θ by a square containing the diagram of π(i). Each permutation
can be decomposed in a canonical way as successive substitutions, starting from the
indecomposable elements, which are called simple permutations.
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We are interested in classes C with a nice recursive description, namely a finite system
of combinatorial equations for C, called specification. Example: the class Csep of separable
permutations has the following specification, where Cnot⊕

sep (resp. Cnot	
sep ) is the set of

separable permutations that cannot be written as 12[π(1), π(2)] (resp. 21[π(1), π(2)]):
Csep = {•} ⊎ 12[Cnot⊕

sep , Csep]
⊎

21[Cnot	
sep , Csep];

Cnot⊕
sep = {•} ⊎ 21[Cnot	

sep , Csep];

Cnot	
sep = {•} ⊎ 12[Cnot⊕

sep , Csep].

(1)

The example of Csep is a particular case of a more general family of permutation
classes, that of substitution-closed classes. All these classes have specifications with three
equations. In [BBF+19], we obtained all the possible limiting shapes for such classes
with a unified combinatorial approach and a careful analysis.

Another sufficient condition for having a specification is that the class contains finitely
many simple permutations. [BBP+17] provides an algorithmic way to compute a
specification for such a class, implemented in [Maa19]. Unlike for substitution-closed
classes, the number of equations is not fixed, making a uniform analysis much harder.
We also note that a class may have a specification, while containing infinitely many
simple permutations (example: the class of pin-permutations [BHV08b, BBR11]).

A specification provides in an automatic way a random sampler for permutations
in the class. We show in Figure 1 large permutations in several classes obtained in
this way (using Boltzmann generators). As we can see on these examples, various
qualitative asymptotic behaviors may occur. The results of the present paper apply in
particular to each of these four cases, giving an explicit limit shape result.

Our limiting results are phrased in the framework of permutons, which can be thought
of as infinite rescaled permutations. A permuton is a measure on [0, 1]2, whose
projections on the horizontal and vertical axes are the uniform measure on [0, 1]. Every
permutation defines a permuton, by considering its rescaled diagram. The set of
permutons is endowed with the weak convergence topology of measures, providing a
natural notion of convergence for permutations.

Presentation of the results

We consider a permutation class C with a specification. This specification involves
several families of permutations C0 = C, C1, . . . , Cd. Among these families, the ones
with the smallest radius of convergence play a prominent role in the asymptotics; we
call such families critical. In our case, the class C is always critical.

An important information to study C through its specification is to know which families
appear in the equation defining each Ci in the specification. This is traditionally
encoded in a directed graph with vertex set {C0, . . . , Cd}, called dependency graph of
the specification. A standard assumption to study specifications is that this graph is
strongly connected, implying in particular that all families are critical. This assumption
is too strong in our context. We shall instead assume that the dependency graph
restricted to the critical families is strongly connected.
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Moreover, we restrict ourselves to specifications satisfying an analytic condition, which
is a weak assumption informally saying that the equations appearing in this system
are all analytic at the radius of convergence. Then, under the strong connectivity
assumption above, there are two possible asymptotic behaviors for a uniform random
permutation σn in C.

• Either the combinatorial equation defining each critical family Ci is linear in
every critical family (it may depend nonlinearly on non-critical families). This is
referred to as the essentially linear case. In this case, we prove the convergence of
σn in distribution towards a deterministic permuton, that has a shape of an X,
i.e. is supported by four line segments from the corners of [0, 1]2 to a common
central point. This permuton depends on the class C only through a quadruple
p whose components are in [0, 1], sum up to 1 and indicate the mass of the
four line segments (thus determining the coordinates of the central point). The
simulations (a) and (b) of Figure 1 fit in this framework (in the second case, the
limiting X-permuton is in some sense degenerate: only two components of its
quadruple p are nonzero, explaining the V-shape).

• The other possibility (called essentially branching case) is that the equation defining
some critical family Ci involves a product of at least two critical families (which
may be the same). In this case, we prove that σn converges in distribution towards
a biased Brownian separable permuton, as introduced in [BBF+19, Maa17]. In
this case, the limit depends only on C through a single real parameter p ∈ [0, 1].
The simulation (c) of Figure 1 illustrates this behavior.

Unlike the X-permuton, the Brownian separable permuton already appeared in our
previous works [BBF+19, BBF+18] as a universal limit of substitution-closed permuta-
tion classes. The second item above shows that the universality class of the Brownian
separable permuton extends further than the substitution-closed classes. The first item
reveals another (new) universality class, with a simple limiting object: the X-permuton.

Our main results stated above do not apply to the not strongly connected case. However,
we describe a strategy to reduce the study of such cases to the strongly connected one.
This strategy applies in particular to the class in the simulation (d) of Figure 1: the
limit in this case is a juxtaposition of two X-permutons of random relative sizes.

Proof tools: analytic combinatorics of algebraic systems

Our main results are convergence results of random permutations in some class C in the
topology of permutons. A general result relates such convergence to the convergence,
for each k ≥ 1, of the substructure, i.e. the pattern, induced by k random elements
of the permutation. This can be done by enumerating, for each π, the family Cπ of
permutations in C with k marked elements inducing the pattern π. It turns out that
the specification for C can be refined to a specification for Cπ.

We analyze the resulting specifications with analytic combinatorial tools. Namely,
it is standard to translate specifications into systems of equations for the associated
generating series. When the equations are analytic on a sufficiently large domain and
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when the dependency graph of the system is strongly connected, two different kinds
of behavior might happen:

• either the system is linear, and the series have all polar singularities at their
radius of convergence [BD15];
• or the system is called branching, and the series have all square-root singularities

(this is known as Drmota-Lalley-Woods theorem in the literature [FS09, Drm09]).

We need however to adapt the hypotheses of these theorems to our setting, and more
importantly, to make explicit the coefficients in the first-order asymptotic expansion of
the series.

We will apply these theorems to the critical series in our (refined) specifications,
considering the non-critical series as parameters. Once we know the kind of the
singularities of the series, the transfer theorem of analytic combinatorics [FS09] gives
us the asymptotic number of elements in C and Cπ for all π. We deduce from this
the probability that k marked elements in a uniform permutation in C induce a given
pattern π. Comparing these probabilities to those in the candidate limiting permutons,
this proves the desired convergence.
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Packing patterns in restricted permutations

Lara Pudwell Valparaiso University

Given a pattern ρ and a finite set S, let fS(ρ) be the maximum number of copies of ρ

in any member of S, and call any member of S that achieves this maximum ρ-optimal.
For example, fSn(12) = (n

2) since the increasing permutation In = 1 · · · n of length n
is 12-optimal with (n

2) copies of the pattern 12. Further, the packing density of ρ is
defined as

d(ρ) = lim
n→∞

fSn(ρ)

( n
|ρ|)

.

It is easy to see that d(Ik) = 1, since every subsequence of length k in In is a copy of
Ik. It takes more work to show d(132) = 2

√
3− 3. Exact values of d(ρ) are known for

some ρ ∈ S4, while for others there are bounds on d(ρ) with a conjecture of the precise
packing density. (See, for example, [1, 2, 3, 4].)

In this talk, our primary object of interest is fSn(σ)(ρ). From this computation, we also
determine the σ-restricted packing density of ρ, namely

dσ(ρ) = lim
n→∞

fSn(σ)(ρ)

( n
|ρ|)

,

for any choice of σ, ρ ∈ S3. We are also interested in packing patterns in the set of
alternating permutations An, which is the set of permutations that avoid both 123
and 321 consecutively. While the primary goal of this talk is to determine fS(ρ) and
the corresponding restricted packing densities, we will highlight bijections with other
mathematical objects as appropriate.

Packing in classical pattern classes

First, we consider fSn(σ)(ρ) and dσ(ρ) for σ, ρ ∈ S3. By symmetry, we may restrict our
attention to ρ = 123 and ρ = 132. Of course, dρ(ρ) = 0, so we assume σ 6= ρ.

In the case of ρ = 123, it is already known that d(123) = 1 because every subsequence
of length 3 in the permutation In is a 123 pattern. Similarly, for σ ∈ S3 \ {123},
dσ(123) = 1 because In ∈ Sn(σ).

Values of dσ(132) are more interesting. Because the optimal 132-packing permutation
in Sn is layered, it avoids 231 and 312. Therefore,

d231(132) = d312(132) = d(132) = 2
√

3− 3.

On the other hand, both
{

fSn(123)(132)
}

n≥1
and

{
fSn(213)(132)

}
n≥1

are given by OEIS

entry A200067, which is the “maximum sum of all products of absolute differences and
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distances between element pairs among the integer partitions of n.” This enumeration
implies

d123(132) = d213(132) =
4
9

.

While
{

fSn(321)(132)
}

n≥1
is new to the OEIS, it can be computed recursively, and the

restricted packing density is

d321(132) =
3
13

.

Packing in alternating permutations

While the set An of alternating permutations is not a classical pattern class, packing in
alternating permutations still produces interesting results, especially for the case when
ρ = Ik. In this case, the ρ-optimal permutation in An is the layered permutation

π∗ =

{
1⊕ 21⊕ 21⊕ · · · ⊕ 21⊕ 1 n even

1⊕ 21⊕ 21⊕ · · · ⊕ 21 n odd
.

While the structure of π∗ is unsurprising, the enumerations fAn(Ik) themselves are
interesting. In particular,

• fAn(12) =

⌈
(n− 1)2

2

⌉
(A000982), which has a variety of geometric interpreta-

tions.

• fAn(123) is given by A168380 (the atomic numbers of the augmented alkaline
earth metals group in the periodic table of chemical elements). It is striking
to see a sequence only listed for chemistry reasons in the OEIS appear in a
permutation enumeration context. Although { fAn(123)}n≥1 has many terms
beyond the number of elements in the alkaline earth group, we give a bijection
between copies of 123 in π∗ and legal tuples of integers used to described electron
orbitals in physical chemistry.

• fAn(1234) is given by A072819 when n is odd and 4 times A006325 when n is
even. The sequence for the odd case has an interpretation in terms of random
walks, while the sequence for the even case is a 4-dimensional analog of centered
polygonal numbers.
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Avoiding Baxter-like patterns

Simone Rinaldi University of Siena

This talk is based on joint work with Mathilde Bouvel and Veronica Guerrini

In this talk, we collect classical results, recent results, preliminary investigations and
open problems on the enumeration of permutations avoiding one to four Baxter-like
patterns, which we define as the vincular patterns in {2-14-3, 2-41-3, 3-14-2, 3-41-2}. Our
approach is to use generating trees and succession rules, in a unified manner for all
considered families.

Semi-Baxter

Baxter

2-41-3, 3-14-2

2-41-3, 3-14-2, 3-41-2

Strong Baxter ~ S-Twisted BaxterS-Twisted Baxter

~ Twisted Baxter

3-14-2, 3-41-2

~ Twisted Baxter~ Twisted Baxter

~ Strong Baxter

2-14-3, 2-41-3, 3-14-2

Full Baxter like avoidance

~ Plane~ Semi-Baxter

 2-14-3, 2-41-3

Plane

3-41-22-14-33-14-22-41-3

2-14-3, 3-41-22-14-3, 3-14-22-41-3, 3-41-2

Twisted Baxter

2-14-3, 2-41-3, 3-41-2 2-14-3, 3-14-2, 3-41-2

2-14-3, 2-41-3, 3-14-2. 3-41-2

S-permutations

Figure 1: The families of permutations avoiding one to four Baxter-like pattern(s).

Known cases

Avoiding one pattern: Up to symmetry, there are just two families avoiding a single
Baxter-like pattern: Av(2-41-3) (called semi-Baxter permutations – see [5]) and Av(2-14-3)
(called plane permutations – see [4]). Using generating trees, we proved in [5] that both
families are enumerated by the OEIS sequence A117106. The associated succession
rule is later denoted Ωsemi.

Avoiding two patterns: The famous Baxter permutations are defined as Av(2-41-3,
3-14-2). Generating trees and successions rules, combined with the “obstinate” kernel
method, can be used to prove that they are enumerated by the Baxter numbers – see [3].
The corresponding succession rule is denoted ΩBax in the sequel.
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Four other families, all symmetric of one another, are also enumerated by the Baxter
numbers. One representative is the family of twisted Baxter permutations: Av(2-41-3,
3-41-2). Although enumerated by the same sequence, the succession rule associated
with twisted Baxter permutations in [6] is different from ΩBax, and denoted ΩTBax.
The final family avoiding two Baxter-like patterns, called S-permutations, is Av(2-14-3,
2-14-3). It is not enumerated by the Baxter numbers, but by the OEIS sequence A214358
– see [1]. The proof of this result does not use generating trees.

Avoiding three patterns: So far, only the family Av(2-41-3, 3-14-2, 3-41-2) (called
strong Baxter permutations) has been enumerated – see [5]. (Note that the family
Av(2-41-3, 3-14-2, 2-14-3) is a symmetry of these strong Baxter permutations.) The
proof uses again generating trees, and the corresponding succession rule is denoted
Ωstrong. The OEIS sequence enumerating strong Baxter permutations is A281784.

Comparison of succession rules: For all families above (except the S-permutations),
the generating trees are obtained by letting permutations grow “on the right”, i.e. by
insertion of a final element. In addition, the encoding of the generating trees into
succession rules is done in the same way for all considered cases (namely, recording the
numbers of active sites above and below the final element). These two facts, together
with the inclusion relations among the considered families, imply that the succession
rule for a smaller family is a specialization of the one for a larger family, in the sense
that we discuss in [2, Section 4.1]. This appears clearly if one lists the succession rules
(all with root (1, 1)) as follows:

Ωsemi : (h, k)  (1, k + 1) . . . (h− 1, k + 1) (h, k + 1) (h + k, 1) . . . (h + 1, k)
ΩBax : (h, k)  (1, k + 1) . . . (h− 1, k + 1) (h, k + 1) (h + 1, 1) . . . (h + 1, k)
ΩTBax : (h, k)  (1, k) . . . (h− 1, k) (h, k + 1) (h + k, 1) . . . (h + 1, k)
Ωstrong : (h, k)  (1, k) . . . (h− 1, k) (h, k + 1) (h + 1, 1) . . . (h + 1, k).

Open cases

Avoiding two patterns: Even though the enumeration of the S-permutations has
been solved in [1], the proof (which does not use generating trees) does not allow
to include the S-permutations in the comparison of succession rules shown above.
We show that it is possible to write a succession rule for S-permutations, obtained
as previously by letting these permutations grow “on the right” and recording the
numbers of active sites above and below the final element. The resulting succession
rule, specializing Ωsemi, is however a colored succession rule with three colors, namely:

ΩS :


(1, 1)
(h, k)  (h + 1, 1)] . . . (h + 1, k− 1)] (h + 1, k) (h, k + 1) (h− 1, k + 1)[ . . . (1, k + 1)[

(h, k)]  (h + 1, 1)] . . . (h + 1, k− 1)] (h + 1, k) (h, k)[ (h− 1, k)[ . . . (1, k)[

(h, k)[  (h, 1)] . . . (h, k− 1)] (h, k)] (h, k + 1) (h− 1, k + 1)[ . . . (1, k + 1)[
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(The three colors red, blue and black are also indicated by the superscripts ], [, or no
superscript.)

We are working on re-deriving the enumeration of S-permutations from this succession
rule, using a variant of the kernel method.

Avoiding three patterns: Up to symmetry, only the family Av(2-14-3, 3-14-2, 3-41-2)
(of twisted Baxter S-permutations) remains to be enumerated. Specializing the above
succession rule, we have also provided a colored succession rule for this family, with
three colors. The enumeration of the family from this succession rule is work in
progress. The first terms of the enumerating sequence (easily obtained from the
succession rule) are 1, 2, 6, 21, 80, 322, 1354, 5901, 26494, 121960, 573458, 2745991.

Avoiding all four Baxter-like patterns: To our knowledge, the family Av(2-14-3,
2-41-3, 3-14-2, 3-41-2) has not yet been considered in the literature. Again, a succession
rule with three colors specializing the ones above can be obtained, and the derivation
of the enumeration from this succession rule remains to be done. The first terms of the
sequence enumerating Av(2-14-3, 2-41-3, 3-14-2, 3-41-2) are 1, 2, 6, 20, 72, 274, 1088, 4470,
18884, 81652, 360054, 1614618.
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Cyclic Schur-positive permutation sets

Yuval Roichman Bar-Ilan University, Israel yuvalr@math.biu.ac.il

This talk is based on joint work with Jonathan Bloom, Sergi Elizalde

We introduce a notion of cyclic Schur-positivity for sets of permutations, which is a
natural extension of the notion of Schur-positivity. Cyclic Schur-positive sets are
always Schur-positive, but the converse does not hold. Most Schur-positive sets of
permutations, including inverse descent classes, Knuth classes and conjugacy classes
are not cyclic Schur-positive.

In this paper we show that certain pattern-avoiding classes of permutations which
are invariant under either horizontal or vertical rotation, i.e., under rotation of the
positions or of the values, are cyclic Schur-positive. In the process, we also prove
a conjecture from [7] regarding the equidistribution of descent sets on vertical and
horizontal rotations of inverse descent classes.

Definitions

Let [n] = {1, 2, . . . , n} and let Sn denote the symmetric group on [n]. Recall that the
descent set of a permutation π ∈ Sn is

Des(π) := {i ∈ [n− 1] : π(i) > π(i + 1)}.

Given any subset A ⊆ Sn, we define the quasi-symmetric function

Q(A) := ∑
π∈A

Fn,Des(π),

where Fn,D is Gessel’s fundamental quasi-symmetric functions, first defined in [8]. A
symmetric function is called Schur-positive if all the coefficients in its expansion in the
basis of Schur functions are nonnegative. A subset A ⊆ Sn is called Schur-positive if
Q(A) is symmetric and Schur-positive.

It is possible to characterize Schur-positive permutation sets using standard Young
tableaux (SYT). This characterization is useful because it does not require computing
quasisymmetric functions, but rather finding a bijection from the set of permutations
to a multiset of SYT that preserves the descent set. As with permutations, there is a
well-studied notion of the descent set of a SYT. Let λ/µ denote a skew shape, where
λ and µ are partitions such that where the Young diagram of µ is contained in that
of λ, and let SYT(λ/µ) denote the set of standard Young tableaux of shape λ/µ. The
descent set of T ∈ SYT(λ/µ) is

Des(T) := {i ∈ [n− 1] : i + 1 is in a lower row than i in T}.

For J ⊆ [n− 1], let xJ := ∏
i∈J

xi.
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Theorem 1 ([2, Prop. 9.1]). A subset A ⊆ Sn is Schur-positive if and only if there exist
nonnegative integers (mλ)λ`n such that

∑
π∈A

xDes(π) = ∑
λ`n

mλ ∑
T∈SYT(λ)

xDes(T). (1)

The following problem was first posed by Sagan and Woo.
Problem 2. Find symmetric/Schur-positive pattern-avoiding classes in Sn.

Cyclic Schur-positive permutation sets

The standard cyclic descent set for permutations was defined by Cellini [4] and later
studied by by Dilks, Petersen, Stembridge [5], and others. For π ∈ Sn let

cDes(π) := {i ∈ [n] : π(i) > π(i + 1)}, (2)

with the convention π(n + 1) := π(1).

The cyclic descent set for rectangular SYT was introduced by Rhoades [10] and gener-
alized to all skew shapes in [1]. For an explicit combinatorial approach, see [9].

Theorem 3 ([1, Theorem 1.1]). Let λ/µ be a skew shape. There exists a cyclic descent
extension for SYT(λ/µ) if and only if λ/µ is not a connected ribbon. Furthermore, for all
J ⊆ [n], all such cyclic extensions (cDes, ψ) share the same cardinalities |cDes−1(J)|.

In this paper we study the following cyclic analogue of Schur-positive permutation sets.
A subset A ⊆ Sn is cyclic Schur-positive (cSp) if there exists a collection of nonnegative
integers (mλ/µ)λ/µ `n such that

∑
π∈A

xcDes(π) = ∑
λ/µ `n

mλ/µ ∑
T∈SYT(λ/µ)

xcDes(T), (3)

where cDes on permutations in the LHS is defined by Eq. (2), and cDes on SYT in the
RHS is the cyclic descent extension defined in [1, 9]. Note that the sum in the RHS is
over skew shapes of size n, for which there exists a cyclic descent extension (i.e., are
not connected ribbons).

It can be shown that cSp sets of permutations are always Schur-positive, but the
converse does not hold. Most known Schur-positive sets of permutations are not cSp.
Problem 4. Find cSp subsets in Sn.

Main results

Let cn denote the n-cycle (1, 2, . . . , n) = 23 . . . n1 ∈ Sn, and let Cn := 〈cn〉 be the cyclic
subgroup generated by cn. Any set A ⊆ Sn−1 can be interpreted as a subset of Sn by
identifying Sn−1 with the set of permutations in Sn that fix n. With this interpretation,
we define the horizontal (respectively, vertical) rotation closure of A ⊆ Sn−1 as the set
ACn ⊆ Sn (respectively, Cn A ⊆ Sn). Our first main result states that horizontal
rotations of Schur-positive sets are always cSp.
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Theorem 5. For every Schur-positive set A ⊆ Sn−1, the set ACn ⊆ Sn is cSp.

For every J ⊆ [n− 2], define the descent class Dn−1,J := {π ∈ Sn−1 : Des(π) = J}.
The proof of the next theorem involves cDes-preserving operations on grid classes, as
defined in [3].

Theorem 6. For every positive integer n > 1 and every subset J ⊆ [n− 2] the distribution of
cDes on CnD−1

n−1,J is the same as on D−1
n−1,JCn.

It follows from Theorems 5 and 6 that the set CnD−1
n−1,J is cSp. In particular, it is

Schur-positive, providing an affirmative solution to [7, Conjecture 10.2].

Example: arc permutations

As shown in [6], the set of arc permutations can be characterized in terms of pattern
avoidance as

An := Sn(1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231).

Arc permutations satisfy An = CnEn−1, where En−1 = Sn−1(132, 312) is the set of
left-unimodal permutations. Using Theorems 5 and 6, we deduce the following.

Corollary 7. The set An is cSp.

The diagrams below give a pictorial description of a cDes-preserving bijection

φ : D−1
n−1,[i]Cn → CnD−1

n−1,[i],

which proves Theorem 6 in the special case J = [i]. Having i range between 0 and n,
we obtain a bijection between En−1Cn and An = CnEn−1.

φ7→

φ7→
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For π = σcn−j
n ∈ En−1Cn with π(j) = n, the two above cases correspond to π(1) <

π(j + 1) and π(1) > π(j + 1), respectively (note that when j = n, φ(π) = π).

Here is an example of the bijection:

φ(3 2 11 12 13 1 14 8 7 9 6 5 4 10) = 3 2 4 5 6 1 14 13 7 12 11 10 8 9.

φ7→

An explicit set of SYT on which cDes has the same distribution as it has on arc
permutations is described in the full version of this paper.
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Pattern avoidance in permutations and their squares

Rebecca Smith SUNY Brockport

This talk is based on joint work with Miklós Bóna

We will present results and open questions on permutations p such that both p and p2

avoid a given pattern q.

Introduction

The standard definition of pattern avoidance does not consider the other perspective
from which permutations can be studied, namely that of the symmetric group, where
the product of two permutations is defined, and the notion of a permutation’s inverse
is defined. Therefore, it is not surprising that pattern avoidance questions become
much more difficult if the symmetric group concept is present in them. (See [1], [2]
or [5] for a few results in this direction.) One exception to this is the straightforward
observation [3] that if p avoids q, then its inverse permutation p−1 avoids q−1.

We consider the following family of questions. Let us call a permutation p strongly q-
avoiding if both p and p2 avoid q. Let Savn(q) denote the number of strongly q-avoiding
permutations of length n. What can be said about the numbers Savn(q)?

The pattern 12 · · · k

For all k, if p is long enough, then either p or p2 must contain an increasing subsequence
of length k. That is, we have the following theorem:

Theorem 1. Let k be a positive integer, and let n ≥ (k− 1)3 + 1. Then Savn(12 · · · k) = 0.

The bound on the length of n relative to k for a strongly 12 · · · k-avoiding permutation
given above is tight for at least small values of k. This is trivially true for k = 1, 2.
Moreover, one example of a strongly 12 · · · k-avoiding permutation of length (k− 1)3

for k = 3 is p = 75863142 = (1746)(2538) whose square is p2 = 43218765. Similar
examples can be given for k = 4, 5, 6.

The pattern 312

In a 312-avoiding permutation, all entries on the left of the entry 1 must be smaller than
all entries on the right of 1, or a 312-pattern would be formed with the entry 1 in the
middle. Therefore, if p = p1 p2 · · · pn is a 312-avoiding permutation, and pi = 1, then
p maps the interval [1, i] into itself, and the interval [i + 1, n] into itself. That means
that p will be strongly 312-avoiding if and only if its restrictions to those two intervals
are strongly 312-avoiding. In other words, each non-empty strongly 312-avoiding
permutation p uniquely decomposes as p = LR, where L is a strongly 312-avoiding
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permutation ending in the entry 1, and R is a (possibly empty) strongly 312-avoiding
permutation.

Therefore, if Sav312(z) = ∑n≥0 Savn(312)zn, and B(z) is the ordinary generating func-
tion for the number of strongly 312-avoiding permutations ending in 1, then the
equality

Sav312(z) = 1 + B(z)Sav312(z), (1)

holds. This motivates our analysis of strongly 312-avoiding permutations that end in
the entry 1, specifically:

Theorem 2. For any permutation p ending in 1, the following two statements are equivalent.

(A) The permutation p is strongly 312-avoiding.

(B) The permutation p has form p = (k + 1)(k + 2) · · · n k(k − 1)(k − 2) · · · 1 where
k ≥ n

2 . That is, p is unimodal beginning with its n− k ≤ n
2 largest entries in increasing

order followed by the remaining k smallest entries in decreasing order.

Rearranging (1), we get the equality

Sav312(z) =
1

1− B(z)
. (2)

It follows from Theorem 2 that there are b n
2 c strongly 312-avoiding permutations

of length n and ending in 1 if n ≥ 2, and there is one such permutation if n = 1.
Therefore,

B(z) = z +
(z + 1)z2

(1− z2)2 =
z4 − z3 + z

(z− 1)2(z + 1)
.

So (2) yields

Sav312(z) =
−z3 + z2 + z− 1

z4 − 2z3 + z2 + 2z− 1
.

So in particular, Sav312(z) is rational. Its root of smallest modulus is about 0.4689899435,
so the exponential growth rate of the sequence of the numbers Sav312(n) is the recipro-
cal of that root, or about 2.132241882. The first few elements of the sequence, starting
with n = 1, are 1, 2, 4, 9, 19, 41, 87, 186, 396, 845.

Interestingly, the sequence is in the Encyclopedia of Integer Sequences [6] as Sequence
A122584, where it is mentioned in connection to work in Quantum mechanics [7].

The pattern 321

We give a lower bound for the numbers Sav321(n) that shows that for large n, the
inequality Sav321(n) > Sav312(n) holds.

Indeed, let us call a permutation p = p1 p2 · · · pn block-cyclic if it has the following
properties.
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1. It is possible to cut p into blocks B1, B2, . . . , Bt of entries in consecutive positions
so that for all i < j, the block Bi is on the left of the block Bj, and each entry in Bi
is smaller than each entry in Bj, and

2. Each block is either a singleton, or its entries can be written in one-line notation
as (a + i) (a + i + 1) · · · (a + k) (a + 1) · · · (a + i− 1), for some integers 1 < i ≤ k.
That is, each block is a singleton or a power of the cycle (a + 1 a + 2 · · · a + k)
that is not the identity.

Note that each block-cyclic permutation is 321-avoiding. Furthermore, any power of
a block-cyclic permutation is block-cyclic, and so it is also 321-avoiding. Therefore,
block-cyclic permutations are all 321-avoiding. Let hn be the number of block-cyclic
permutations of length n, and let H(z) = ∑n≥0 hnzn. The number of allowed blocks
of size k is 1 if k = 1, and k − 1 if k > 1 (since longer blocks cannot be monotone
increasing), leading to the formula

H(z) =
1

1− z−∑k≥2(k− 1)zk =
1

1− z− z2

(1−z)2

=
(1− z)2

1− 3z + 2z2 − z3 .

The singularity of smallest modulus of the denominator is about 0.430159709, so the
exponential growth rate of the sequence hn is the reciprocal of that number, or about
2.324717957. As hn ≤ Sav321(n) for all n, we have the following.

Corollary 3. The inequality

2.3247 ≤ lim sup
n→∞

n
√

Sav321(n)

holds.
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Hopping from Chebyshev polynomials to permutation statistics

Jordan Tirrell Mount Holyoke College

This talk is based on joint work with Yan Zhuang

We express exponential generating functions counting permutations by the peak
number, valley number, double ascent number, and double descent number statistics
in terms of the exponential generating function for Chebyshev polynomials. We give a
combinatorial proof of this result using monomino-domino tilings, inclusion-exclusion,
and the modified Foata–Strehl action (“valley hopping"). We also give a cyclic analogue.

Eulerian and peak polynomials evaluated at −1

Our work beings with a few observations about permutation statistic polynomials
evalutated at −1. For a permutation π = π1π2 · · ·πn ∈ Sn, we say that i ∈ {1, . . . , n−
1} is a descent if πi > πi+1, and i ∈ {2, . . . , n− 1} is a peak if πi−1 < πi > πi+1. Define
des(π) to be the number of descents of π and pk(π) to be the number of peaks of π.
We can use these statistics to define the Eulerian polynomials

An(t) := ∑
π∈Sn

tdes(π)

and the peak polynomials
Ppk

n (t) := ∑
π∈Sn

tpk(π),

whose exponential generating functions have the following expressions.

A(t; x) :=
∞

∑
n=1

An(t)
xn

n!
=

e(1−t)x − 1
1− te(1−t)x

;

Ppk(t; x) :=
∞

∑
n=1

Ppk
n (t)

xn

n!
=

1√
1− t coth(x

√
1− t)− 1

.

It is known [1, Théorème 5.6] that evaluating the Eulerian polynomials at −1 gives
a signed version of the tangent numbers. A combinatorial argument shows these
count alternating permutations of odd length. Evaluating the peak polynomials at −1
gives the sequence 0, 1, 2, 2, −8, −56, −112, 848, . . ., which has no known direct
combinatorial interpretation. This sequence appears on the OEIS [4, A006673], and
its exponential generating function is the logarithmic derivative of that of the Pell
numbers 1, 0, 1, 2, 5, 12, . . .. Interestingly, the exponential generating function for the
Eulerian polynomials evaluated at −1 is the logarithmic derivative of the exponential
generating function of an even simpler sequence: 1, 0, 1, 0, . . .. While it is not hard
to verify these facts by manipulating generating functions, we provide combinatorial
proofs using the modified Foata-Strehl action (“valley hopping").
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Chebyshev polynomials

To state our main result, we first generalize from the Pell numbers and the sequence
1, 0, 1, 0, . . . to polynomials Un(s, t) defined by the recurrence

Un(s, t) = 2tUn(s, t)− sUn(s, t) (1)

for n ≥ 2 with initial values U0(s, t) = 1 and U1(s, t) = 2t. These are a two-parameter
variant of the Chebyshev polynomials of the second kind. They are related to the usual
Chebyshev polynomials of the second kind Un(t) by the formulas Un(t) = Un(1, t) and
Un(s, t) = Un(s−1/2t)sn/2. From the recurrence (1), it is not hard to see that Un(s, t)
counts tilings of a 1× n rectangle with two types of monominoes, each weighted t,
and one type of domino, weighted −s.

We will work with the shifted exponential generating function

V(s, t; x) :=
∞

∑
n=0

Un(s, t)
xn+2

(n + 2)!
=

x2

2!
+ 2t

x3

3!
+ (4t2 − s)

x4

4!
+ · · · .

Note that 1 + V(−1, 0) and 1 + V(−1, 1) are the exponential generating functions for
the sequences we saw earlier, 1, 0, 1, 2, 5, 12, . . . (the Pell numbers) and 1, 0, 1, 0, . . .,
respectively. An expression for the exponential generating function of the polynomials
Un(t) is known (see [3, p. 301]) and we can use it to obtain the closed-form expression

V(s, t; x) =
1
s

(
1− cosh(x

√
t2 − s)etx +

tetx sinh(x
√

t2 − s)√
t2 − s

)
. (2)

Hopping to permutation statistics

Definition 1. For a permutation π = π1π2 · · ·πn ∈ Sn, we adopt the convention that
π0 = πn+1 = ∞ and characterize each i ∈ {1, . . . , n} as either a peak if πi−1 < πi >
πi+1, a valley if πi−1 > πi < πi+1, a double ascent if πi−1 < πi < πi+1, or a double descent
if πi−1 > πi > πi+1. We denote the number of valleys, double ascents, and double
descents by val, dasc, and ddes, respectively. We also write dbl = dasc+ ddes.

For any list of permutation statistics st1, st2, . . . , stm and variables t1, t2, . . . , tm, we
define the exponential generating function

P(st1,st2,...stm)(t1, t2, . . . , tm; x) :=
∞

∑
n=1

∑
π∈Sn

tst1(π)
1 tst2(π)

2 · · · tstm(π)
m

xn

n!
.

We can now state our main theorem, which expresses the exponential generating
function for the (pk, dbl) polynomials as the logarithmic derivative of 1− sV(s, t; x)
(divided by −s).

Theorem 2. P(pk,dbl)(s, t; x) =
∂

∂x V(s, t; x)
1− sV(s, t; x)
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While this can be verified with the known exponential generating function formulas,
we present a combinatorial proof using the monomino-domino tiling interpretation of
Un(s, t), inclusion-exclusion, and the valley hopping group action based on a classical
group action of Foata and Strehl [2].

The exponential generating function for the quadruple distribution (pk, val, dasc, ddes)
then follows from

P(pk,val,dasc,ddes)(s, t, u, v; x) = tP(pk,dbl)

(
st,

1
2
(u + v); x

)
.

A cyclic analogue

Definition 3. Given π = π1π2 · · ·πn, we say that πi is either: a cyclic peak if i < πi >
ππi , a cyclic valley if i > πi < ππi , a cyclic double ascent if i < πi < ππi , a cyclic double
descent if i > πi > ππi , or a fixed point if i = πi. We denote the number of each of these
by cpk, cval, cdasc, cddes, and fix respectively. We also write cdbl = cdasc+ cddes.

We use a similar method with “cyclic valley hopping”, due to Sun and Wang [5], to
give a combinatorial proof of the following.

Theorem 4. 1 + P(cpk,cdbl,fix)(s, t, u; x) =
eu

1− sV(s, t; x)

From there, we can generalize to the quintuple distribution (cpk, cval, cdasc, cddes, fix)
over all permutations. See [6] for details.
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k-partial permutations and the center of the

wreath product Sk o Sn algebra

Omar Tout Lebanese University

We will introduce k-partial permutations and we will use them to show a polynomiality
property for the structure coefficients of the center of the wreath product Sk o Sn algebra.
More details can be found in [2].

The algebra of k-partial permutations

If i and k are two positive integers, the k-tuple pk(i) is the following set of size k :

pk(i) := {(i− 1)k + 1, (i− 1)k + 2, · · · , ik}.
Suppose we have a set d that is a disjoint union of some k-tuples

d =
r⊔

i=1

pk(ai),

where ai is a positive integer for any 1 ≤ i ≤ r. We define the group Bk
d to be the

following group of permutations:

Bk
d := {ω ∈ Sd | ∀1 ≤ i ≤ r, ∃1 ≤ j ≤ r with ω(pk(ai)) = pk(aj)},

where Sd is the group of permutations of the set d. In other words, the group Bk
d

consists of permutations that permute the blocks of the set d. It was shown in [1] that
Bk
[kn] is isomorphic to the wreath product Sk o Sn, where [kn] := {1, 2, . . . , kn}.

Definition 1. Let n be a non-negative integer. A k-partial permutation of n is a pair
(d, ω) where d ⊂ [kn] is a disjoint union of some k-tuples and ω ∈ Bk

d. The set of all
k-partial permutation of n will be denoted P k

kn.

For a permutation ω ∈ Bk
d and a partition ρ = (ρ1, . . . , ρl) of k we will construct the

partition ω(ρ) as follows. First decompose ω as a product of disjoint cycles. Consider
the collection of cycles C1, . . . , Cl such that C1 contains ρ1 elements of a certain k-tuple
pk(i), C2 contains ρ2 elements of the same k-tuple pk(i), etc. Now add the part m to
ω(ρ) if m is the number of k-tuples that form the cycles C1, . . . , Cl . We define type(ω)
to be the following family of partitions

type(ω) := (ω(ρ))ρ`k.

The type of a k-partial permutation (d, ω) of n is the type of its permutation ω.

Example 2. Consider the 3-partial permutation (d, ω), where d = p3(1) ∪ p3(2) ∪
p3(4) ∪ p3(6) and

ω =
(

1 2 3 | 4 5 6 | 10 11 12 | 16 17 18
12 10 11 | 4 5 6 | 16 18 17 | 1 2 3

)
.

Its cycle decomposition is (1, 12, 17, 2, 10, 16)(3, 11, 18)(4)(5)(6) and its type is formed
by ω(2, 1) = (3) and ω(13) = (1).
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If (d1, ω1) and (d2, ω2) are two k-partial permutations of n, we define their product as
follows:

(d1, ω1)(d2, ω2) = (d1 ∪ d2, ω1ω2),

where the composition ω1ω2 is made after extending both ω1 and ω2 by identity to
d1 ∪ d2. Let Ik

kn be the algebra over C generated by the following formal sums indexed
by families of partitions Λ = (λ(ρ))ρ`k with |Λ| := ∑ρ`k |Λ(ρ)| < n

CΛ;n := ∑
(d,ω)

(d, ω),

where the sum is taken over all (d, ω) ∈ P k
kn such that |d| = k|Λ| and type(ω) = Λ.

There is a surjective homomorphism between the algebras Ik
kn and Z(C[Bk

kn]), the
center of the group algebra C[Bk

kn], defined by

ψ(CΛ;n) =

(
n− |Λ|+ m1(Λ(1k))

m1(Λ(1k))

)
CΛn

,

where Λn is the family of partitions Λ except that Λ(1k) is replaced by Λ(1k)∪ (1n−|Λ|).

Let P k
∞ be the group of all the k-partial permutations with a finite support and consider

the algebra Ik
∞ generated by the elements CΛ, indexed by families of partitions, and

defined by
CΛ = ∑

(d,ω)

(d, ω),

where the sum runs over all k-partial permutations (d, ω) ∈ P k
∞ such that d is a union

of |Λ| k-tuples and ω has type Λ. The projection homomorphism from Ik
∞ to Ik

kn is
defined by Projn(Cλ) = 0 if |Λ| > n and if |Λ| ≤ n, Projn(CΛ) = CΛ;n.

Remark 3. In [3], the algebra I1
∞ appeared for the first time to prove a polynomiality

property for the structure coefficients of the center of the symmetric group algebra.

Structure coefficients of the center of Bk
kn algebra

A family of partitions Λ is called proper if the partition Λ(1k) does not have any part
equal to one. Let Λ and ∆ be two proper families of partitions with |Λ|, |∆| ≤ n. In
the algebra Ik

∞, we can write the product CΛC∆ as a linear combination of the basis
elements, that is

CΛC∆ = ∑
Γ

cΓ
Λ∆CΓ,

where the sum runs over the families of partitions Γ satisfying max(|Λ|, |∆|) ≤ |Γ| ≤
|Λ|+ |∆| and cΓ

Λ∆ are non-negative integers independent of n. If we apply ψ ◦ Projn to
this equality we get the following identity in the center of the group Bk

kn algebra:

CΛn
C∆n

= ∑
Γ

cΓ
Λ∆

(
n− |Γ|+ m1(Γ(1k))

m1(Γ(1k))

)
CΓn .

If we sum up all the partitions that give CΓn , the above sum can be turned into a sum
over proper families of partitions.
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Theorem 4. Let Λ, ∆ and Γ be three proper families of partitions satisfying max(|Λ|, |∆|) ≤
|Γ| ≤ |Λ|+ |∆|. For any integer n ≥ |Γ| we have

cΓn
Λn∆n

=
n−|Γ|
∑
r=1

c
Γ|Γ|+r
Λ∆

(
n− |Γ|

r

)
,

where c
Γ|Γ|+r
Λ∆ are non-negative integers independent of n.

Corollary 5. Let Λ, ∆ and Γ be three proper families of partitions satisfying max(|Λ|, |∆|) ≤
|Γ| ≤ |Λ|+ |∆|. The structure coefficient cΓn

Λn∆n
is a polynomial in n with non-negative integer

coefficients and of degree at most |Λ|+ |∆| − |Γ|.
Example 6. There are only two partitions of 2, namely (12) and (2). Thus the elements
generating I2

∞ are indexed by families of partitions Λ = (Λ(12), Λ(2)). Take for
instance Λ = ((1), (2)), then C((1),(2)) is the set of all 2-partial permutations with type
((1), (2)). For example, ({3, 4, 7, 8, 9, 10}, (3, 7, 4, 8)(9)(10)) ∈ C((1),(2)). We have the
following two complete expressions in I2

∞ :

C((1),∅)C((1),(1)) = 2C((1),(1)) + 2C((12),(1)) (1)

and
C(∅,(2))C(∅,(2)) = 2C((12),∅) + 2C(∅,(12)) + 2C(∅,(22)) + 3C((3),∅). (2)

For example the first coefficient 2 in the above first equation is due to the fact that there
are only two pairs (x, y) ∈ C((1),∅) × C((1),(1)) that satisfy xy = ({1, 2, 3, 4}; (1)(2)(3, 4)).
Namely (x, y) can be one and only one of the following pairs:((
{1, 2}; (1)(2)

)
,
(
{1, 2, 3, 4}; (1)(2)(3, 4)

))
or
((
{3, 4}; (3)(4)

)
,
(
{1, 2, 3, 4}; (1)(2)(3, 4)

))
.

Apply now ψ ◦ Projn for the above two expressions to get the following results in the
center of the hyperoctahedral group algebra Z(C[B2

2n]) :

C((1n),∅)C((1n−1),(1)) = C((1n−1),(1)) for any n ≥ 3

and for any n ≥ 5

C((1n−2),(2))C((1n−2),(2)) = n(n− 1)C((1n),∅) + 2C((1n−2),(12)) + 2C((1n−4),(22)) + 3C((1n−3,3),∅).

The first equation comes with no surprise since C((1n),∅) is the identity class.
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Classes of Sum-Decomposable Affine Permutations

Justin M. Troyka York University

This talk is based on joint work with Neal Madras

In this talk, we characterize the affine permutation classes whose elements are all
sum-decomposable. This characterization involves the infinite increasing oscillation.
We also enumerate the sum-decomposable affine permutations in a class in terms of
the corresponding ordinary permutation class, and we discuss the asymptotic number
of sum-decomposable affine permutations in a class according to whether the class is
supercritical or subcritical.

By the time you hear my talk, you hopefully will have heard about affine permutations
from invited speaker Neal Madras. To refresh your memory: an affine permutation of
size n is a bijection ω : Z→ Z such that

ω(i + n) = ω(i) + n for all i ∈ Z

and
n

∑
i=1

ω(i) =
n

∑
i=1

i (a “centering” condition).

Here is a new definition: we say an affine permutation is sum-decomposable, or just
decomposable, if it is a diagonal shift of an infinite direct sum (· · · ⊕ π ⊕ π ⊕ · · · ) for
some (ordinary) permutation π (see Figure 1 for an example). Being sum-decomposable

. . .

. . .

Figure 1: An affine permutation of size 6, whose values on 1, . . . , 6 are [1,−1, 4, 3, 6, 8].
It is sum-decomposable, because it is the infinite direct sum of the permutation 234165,
shifted diagonally downwards by 2 units.
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is a stronger condition than the boundedness condition from Neal’s talk (an affine
permutation ω of size n is bounded if |ω(i)− i| < n for all i ∈ Z).

We can talk about pattern containment and pattern avoidance for affine permutations in
much the same way as for ordinary permutations (after deciding a few minor details),
and then we can define an affine permutation class as a set of affine permutations that
is downwards closed in the containment order. If R is a set of affine or ordinary
permutations, we let AvA(R) denote the class of affine permutations that avoid all the
elements of R. Containing an ordinary permutation is a special case of containing an
affine permutation: indeed, for an affine permutation ω and an (ordinary) permutation
σ, ω contains σ if and only if ω contains the affine permutation (· · · ⊕ σ⊕ σ⊕ · · · ).

The infinite oscillation and recognizing decomposability

A class of affine permutations may have the property that every element of the
class is decomposable. We will say that a class with this property is decomposable.
There is an easy way to tell whether a class is decomposable, involving an affine
permutation called the infinite (increasing) oscillation. This is the permutation O =
[3, 0] = (. . . , 1,−2, 3, 0, 5, 2, . . .) shown in Figure 2. This permutation has made an

. . .

. . .

Figure 2: The infinite oscillation, O = [3, 0] = (. . . , 1,−2, 3, 0, 5, 2, . . .).

appearance in research on antichains in the permutation containment order [1] and
on growth rates of permutation classes [3]. Here it arises as the main obstruction to
decomposability.

Theorem 1. (a) An affine permutation is decomposable if and only if it avoids O.

(b) An affine permutation class is decomposable if and only if it does not have O as an element
if and only if the class is a subset of AvA(O).

If σ and τ are (ordinary) permutations and ω is an affine permutation, then ω contains
σ⊕ τ if and only if ω contains both σ and τ. Thus, when considering affine permuta-
tions that avoid an ordinary permutation, we need only consider sum-indecomposable
patterns. The sum-indecomposable permutations contained in O, which we may call
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finite oscillations, are:

1, 21, 312, 231, 3142, 2413, 31524, 24153, 315264, 241635, . . .

(there are two of each size after the first two). Thus, Theorem 1 tells us that, for a set R
of ordinary permutations, AvA(R) is decomposable if and only if one of the elements
of R has a block that is a finite oscillation.

Exact and asymptotic enumeration

Now that we can easily recognize when an affine permutation class is decomposable,
we turn to the problem of enumerating the elements of a decomposable class. For the
remainder of this abstract, let C be a sum-closed ordinary permutation class (meaning
the direct sum of permutations in C is in C). Define ⊕C to be the affine permutation
class consisting of diagonal shifts of infinite direct sums (· · · ⊕ π⊕ π⊕ · · · ) for π ∈ C.
We remark that, by Theorem 1, ⊕Av(R) = AvA(R ∪ {O}).

Let an, ãn, and cn be respectively the number of size-n permutations in C, the num-
ber of size-n affine permutations in ⊕C, and the number of size-n indecomposable
permutations in C. Define the generating functions

A(x) = ∑
n≥0

anxn and Ã(x) = ∑
n≥1

ãnxn and C(x) = ∑
n≥1

cnxn.

Theorem 2. Ã(x) = x C′(x) A(x) =
xA′(x)
A(x)

= x
d

dx
log(A(x)).

Theorem 2 allows us to easily obtain the number of affine permutations in ⊕C from
the number of ordinary permutations in C. It also leads to:

Corollary 3. max{an, ncn} ≤ ãn ≤ nan.

In contrast, for C = Av(321), the number of bounded affine permutations avoiding 321
is asymptotically (n2/2)an, as seen in Neal’s talk. Corollary 3 also implies that the
exponential growth rate of ⊕C is the same as that of C.

Time permitting, the talk will include asymptotic results for ãn that depend on whether
C is subcritical, critical, or supercritical (see [2]). In the subcritical case we get ãn ∼ λnan
for a constant λ, and in the supercritical case we get ãn ∼ λan for a constant λ.
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