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Abstract.
We analyze the cost used by a naive exhaustive search algorithm for finding a maximum independent set in ran-

dom graphs under the usual Gn;p-model where each possible edge appears independently with the same probability
p. The expected cost turns out to be of the less common asymptotic order nc log n, which we explore from several
different perspectives. Also we collect many instances where such an order appears, from algorithmics to analysis,
from probability to algebra. The limiting distribution of the cost required by the algorithm under a purely idealized
random model is proved to be normal. The approach we develop is of some generality and is amenable for other
graph algorithms.
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1. Introduction. An independent set or stable set of a graph G is a subset of vertices in
G no two of which are adjacent. The Maximum Independent Set (MIS) Problem consists in
finding an independent set with the largest cardinality; it is among the first known NP-hard
problems and has become a fundamental, representative, prototype instance of combinatorial
optimization and computational complexity; see [27]. A large number of algorithms (exact or
approximate, deterministic or randomized), as well as many applications, have been studied
in the literature; see [6, 25, 68] and the references therein for more information.

The fact that there exist several problems that are essentially equivalent (including maxi-
mum clique and minimum node cover) adds particularly further dimensions to the algorithmic
aspects and structural richness of the problem. One of the simplest ways of computing ˛.G/,
the cardinality of an MIS of G (or the stability number), is the following formulation in terms
of polynomial optimization (see [1, 31])

˛.G/ D max
.x1;:::;xn/2Œ0;1�n

0@ X
16i6n

xi �

X
.i;j/2E

xixj

1A ;
where E is the set of edges of G. Such an expression leads readily to an easily coded algo-
rithm, but with deterministic exponential complexity O.2n/. The algorithmic, theoretical and
practical connections of many other formulations similar to this one have also been widely
discussed; see [1].

Another simple means to find an MIS of a graph G is the following exhaustive (or branch-
ing or enumerative) algorithm. Start with any node, say v in G. Then either v is in an MIS or

�LIPN, Institut Galilée, Université Paris 13, 93430, Villetaneuse, France
|Institute of Statistical Science, Institute of Information Science, Academia Sinica, Taipei 115, Taiwan. Part of

the work of this author was done while he was visiting ISM (Institute of Statistical Mathematics), Tokyo; he thanks
ISM for its hospitality and support.
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it is not. This leads to the recursive decomposition

˛.G/ D max
�
˛ .G n fvg/„ ƒ‚ …
v 62MIS.G/

; 1C ˛
�
G nN �.v/

�„ ƒ‚ …
v2MIS.G/

�
; (1.1)

where MIS.G/ denotes an MIS of G and N �.v/ denotes the union of v and all its neighbors.
Such a simple procedure was the origin of many refined algorithms in the literature, including
alternative formulations such as backtracking (see [67]) or branch and bound (see [25]).

Tarjan and Trojanowski [63] proposed an improved exhaustive algorithm with worst-
case time complexity O.2n=3/. Their paper was followed and refined by many since then;
see [6, 68] and [25] for more information and references. In particular, Chvátal [12] gener-
alized Tarjan and Trojanowski’s algorithm and showed inter alia that for almost all graphs
with n nodes, a special class of algorithms (which he called order-driven) has time bound
O.nc0 log nC2/, where c0 WD 2= log 2. He also characterized exponential algorithms and con-
jectured that a similar bound of the form O.nc log n/ holds for a wider class of recursive al-
gorithms for some c > 0. Pittel [54] then refined Chvátal’s bounds by showing that, under
the usual Gn;p-model (namely, each pair of nodes has the same probability p 2 .0; 1/ of
being connected by an edge, and one independent of the others), the cost of Chvátal’s algo-
rithms (called f-driven, more general than order-driven) is bounded between n.

1
4
�"/ log� n and

n.
1
2
C"/ log� n with high probability, for any " > 0, where q WD 1 � p and � WD 1=q.
The infrequent scale nc log n D ec.log n/2 is central to our study here and can be seen

through several different angles that will be examined in the following paragraphs. The sim-
plest algorithmic connection to MIS problem is via the following argument. It is well-known
that for any random graph G (under the Gn;p-model), the value of ˛.G/ is highly concen-
trated for fixed p 2 .0; 1/, namely, there exists a sequence mn such that ˛.G/ D mn or
˛.G/ D mn C 1 with high probability; see [5]. Asymptotically (� WD 1=q),

mn D 2 log� n � 2 log� log� nCO.1/:

For more information on this and related estimates, see [5] and the references therein. Thus a
simple randomized (approximate) MIS-finding algorithm consists in examining all possible�

n

mn

�
C

�
n

mn C 1

�
D O

�
n2 log� n

�
subsets and determining if at least one of them is independent; otherwise (which happens with
very small probability; see [5]), we resort to exhaustive algorithms such as that discussed in
this paper.

From a different algorithmic viewpoint, Jerrum [39] studied the following Metropolis
algorithm for maximum clique. Sequentially increase the clique, say K by (i) choose a vertex
v uniformly at random; (ii) if v 62 K and v is connected to every vertex of K, then add v to
K; (iii) if v 2 K, then v is subtracted from K with probability ƒ�1. He proved that for all
ƒ > 1, there exists an initial state from which the expected time for the Metropolis process
to reach a clique of size at least .1C "/ log�.pn/ exceeds n�.log pn/. See [13] for an account
of more recent developments on the complexity of the MIS problem.

We aim in this paper at a more precise analysis of the cost used by the simple recursive,
exhaustive algorithm implied by (1.1). The exact details of the algorithm matter less and the
overall cost is dominated by the total number of recursive calls, denoted by Xn, which is a
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random variable under the same Gn;p-model. Then the mean value �n WD E.Xn/ satisfies

�n D �n�1„ƒ‚…
v 62MIS.G/

C

X
06k<n

�n;k�k„ ƒ‚ …
v2MIS.G/

; (1.2)

for n > 2, with the initial conditions �0 D 0 and �1 D 1, where

�n;k WD P.v has n � 1 � k neighbors/ D
�

n � 1

k

�
pn�1�kqk :

How fast does �n grow as a function of n? (i) If p is close to 1, then the graph is
very dense and thus the sum in (1.2) is small (many nodes being removed), so we expect a
polynomial time bound by simple iteration; (ii) If p is sufficiently small, then the second term
is large, and we expect an exponential time bound; (iii) What happens for p in between? In
this case the asymptotics of �n turns out to be nontrivial and we will show that

log�n D

�
log n

log� n

�2

2 log �
C

�
1
2
C

1
log �

�
log n � log log nC P0

�
log�

n
log� n

�
C o.1/; (1.3)

where P0.t/ is a bounded, periodic function of period 1. We will give a precise expression
for P0. Note that

�n

n
1
2

log� n
�
.log n/

1
2

log� log n�1�
log log�

log�

n
log� log n� 1

2
� 1

log��
log log�

log�

� n�K
! 0; (1.4)

for any K > 0, where the symbol an � bn means that an and bn are asymptotically of the
same order. Thus �n D o

�
n

1
2

log� n�K
�

. On the other hand, the asymptotic pattern (1.3) is to
some extent generic, as we will see below.

An intuitive way to see why we have the asymptotic form (1.3) for log�n is to look at
the simpler functional equation

�.x/ D �.x � 1/C �.qx/; (1.5)

since the binomial distribution is highly concentrated around its mean value pn, and we
expect that �n � �.n/ (under suitable initial conditions). This functional equation and the
like (such as �n D �n�1 C �bqnc) has a rich literature. Most of them are connected to special
integer partitions; important pointers are provided in Encyclopedia of Integer Sequences;
see for example A000123, A002577, A005704, A005705, and A005706. In particular, it is
connected to partitions of integers into powers of � D 1=q > 2 when � is a positive integer;
see [15, 26, 48]. It is known that (under suitable initial conditions)

log �.x/ D

�
log x

log� x

�2

2 log �
C

�
1
2
C

1
log �

�
log x � log log x C P1

�
log�

x
log� x

�
C o.1/;

(1.6)

for large x, where P1.t/ is a bounded 1-periodic function; see [15, 20]. Thus

j log�n � log �.n/j D
ˇ̌̌
P0

�
log�

x
log� x

�
� P1

�
log�

x
log� x

�ˇ̌̌
C o.1/:

http://oeis.org/A000123
http://oeis.org/A002577
http://oeis.org/A005704
http://oeis.org/A005705
http://oeis.org/A005706
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We see that approximating the binomial distribution in (1.2) by its mean value

E.�n�1�Binom.n�1Ip// � �n�1�E.Binom.n�1Ip// � �bqnc

gives a very precise estimate, where Binom.n � 1Ip/ denotes a binomial distribution with
parameters n � 1 and p.

An even simpler way to see the dominant order xc log x is to approximate (1.5) by the
delay differential equation (since �.x/ � �.x � 1/ � �0.x/ for large x)

!0.x/ D !.qx/; (1.7)

which is a special case of the so-called “pantograph equations”

!0.x/ D a!.qx/C b!.x/;

originally arising from the study of current collection systems for electric locomotives; see
[37, 43, 51]. Since the usual polynomial or exponential functions fail to satisfy (1.7), we try
instead a solution of the form !.x/ D xc log x ; then c should be chosen to satisfy the equation

x1�2c log �
D 2cec.log �/2 log x:

So we should take c D 1=.2 log �/ C O.x�1 log x/. This gives the dominant term .log x/2

2 log �
for log!.x/. More precise asymptotic solutions are thoroughly discussed in [16, 43]. In
particular, all solutions of the equation !0.x/ D a!.qx/ with a > 0 satisfies

log!.x/ D

�
log x

log� x

�2

2 log �
C

�
1
2
C

1
log � C

log a
log �

�
log x �

�
1C

log a
log �

�
log log x

C P2

�
log�

x
log� x

�
C o.1/;

for large x, where P2.t/ is a bounded 1-periodic function. We see once again the generality
of the asymptotic pattern (1.3).

On the other hand, the function

$.x/ WD exp

 �
log.x=

p
q/
�2

2 log.1=q/

!
satisfies the q-difference equation

$.x/ D x$.qx/;

and is a fundamental factor in the asymptotic theory of q-difference equations; see the two
survey papers [3, 18] and the references therein. This equation will also play an important
role in our analysis.

From yet another angle, one easily checks that the series

M.x/ WD
X
j>0

q.
j
2/

j !
xj

satisfies the equation (1.7). The largest term occurs, by simple calculus, at

j � log� x � log� log� x C 1
2
C o.1/;
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and, by the analytic approach we use in this paper, we can deduce that the logarithm of the
series is, up to an error of O.1/, of the same asymptotic order as log �.x/; see (1.6) and
Section 6. The function M.x/ arises sporadically in many different contexts and plays an
important rôle in the corresponding asymptotic estimates; see Section 6 for a list of some
representative references.

A closely related sum arises in the average-case analysis of a simple backtracking algo-
rithm (see [67]), which corresponds to the expected number of independent sets in a random
graph (or, equivalently, the expected number of cliques by interchanging q and p)

Jn WD

X
16j6n

�
n

j

�
qj.j�1/=2; (1.8)

see [49, 67]. Wilf [67] showed that Jn D O.nlog n/when p D 1=2. While such a crude bound
is easily obtained, the more precise asymptotics of Jn is nontrivial. First, it is straightforward
to check that Jn � M.n/ for large n. Second, the approach we develop in this paper can
be used to show that Jn has an asymptotic expansion similar to (1.3). Indeed, it is readily
checked that Jn C 1 satisfies the same recurrence relation as �n with different initial condi-
tions. So the asymptotics of Jn follows the same pattern (1.3) as that of �n; see Section 6 for
more details.

Thus examining all independent sets one after another in the backtracking style of Wilf
[67] and identifying the one with the maximum cardinality also leads to an expected nc log n-
complexity.

The diverse aspects we discussed of algorithms or equations leading to the scale nc log n

are summarized in Figure 1. The bridge connecting the algorithms and the analysis is the
binomial recurrence (1.2) as explained above.

This paper is organized as follows. We derive in the next section an asymptotic expansion
for �n using a purely analytic approach. The interest of deriving such a precise asymptotic
approximation is at least fourfold.

Asymptotics: It goes much beyond the crude description nc log n and provides a more
precise description; see particularly (1.4) and its implication mentioned there. In-
deed, few papers in the literature address such an aspect; see [15, 16, 20, 43, 53, 57].

Numerics: All scales involved in problems of similar nature here are expressed either
in log or in log log, making them more subtle to be identified by numerical simula-
tions. The inherent periodic functions and the slow convergence further add to the
complications.

Methodology: Our approach, different from previous ones that rely on explicit gener-
ating functions in product forms, is based on the underlying functional equation and
is of some generality; it is akin to some extent to Mahler’s analysis in [48].

Generality: The asymptotic pattern (1.3) is also of some generality, an aspect already
examined in details in several papers; see for example [16, 20, 43]. See also the last
section for a list of diverse contexts where the order nc log n appears.

Alternative approaches leading to different asymptotic expansions are discussed in Sec-
tion 3. A rough estimate for �n was derived in [47] by an elementary approach.

The next curiosity after the expected value is the variance. But due to strong dependence
of the subproblems, the variance is quite challenging at this stage. We consider instead an
idealized independent version of Xn (the total cost of the exhaustive algorithm implied by
(1.1)), namely

Yn
d
D Yn�1 C Y �n�1�Binom.n�1Ip/ .n > 2/; (1.9)
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MIS-finding
algorithms

& nc log n

.xc log x/

Exhaustive algorithms

an � an�1 DP
06k<n

�n;k ak

Randomized algorithms� n
bc log nc

�

Backtracking algorithmsP
16k6n

�n
k

�
q

�k
2

�

Mahler’s partitions

an � an�1 D abqnc

Pantograph equations

f 0.x/ D

af .qx/C bf .x/

q-difference equations

f .x/ D xf .qx/

FIG. 1.1. The connection between MIS-finding algorithms and the scale nc log n (discrete) or xc log x (con-
tinuous). The circles on the right-hand side are more algorithmic in nature, while those on the left-hand side more
analytic in nature.

with Y1 WD 1 and Y0 WD 0, where “ d
D” stands for equality in distribution, Y �n is an identical

copy of Yn and the two terms on the right-hand side are independent. The original random
variable Xn satisfies the same distributional recurrence (see (2.1)) but with the two terms
(Xn�1 and X �

n�1�Binom.n�1Ip/
) on the right-hand side dependent. We expect that Yn would

provide an insight of the possible stochastic behavior of Xn although we were unable to eval-
uate their difference. We show, by a method of moments, that Yn is asymptotically normally
distributed in addition to deriving an asymptotic estimate for the variance. Monte Carlo sim-
ulations for n up to a few hundreds show that the limiting distribution of Xn seems likely
to be normal, although the ratio between its variance and that of Yn grows like a concave
function. But the sample size n is not large enough to provide more convincing conclusions
from simulations.

Once the asymptotic normality of Yn is clarified, a natural question then is the limit law
of the random variables (by changing the underlying binomial to uniform distribution)

Zn
d
D Zn�1 CZUniform.0;n�1/ .n > 2/; (1.10)

with Z0 D 0 and Z1 D 1. In this case, we prove that the mean is asymptotic to cn�1=4e2
p

n

and the limit law is no more normal. Surprisingly, the mean sequence, which is, up to a factor
of n!, A005189 in Encyclopedia of Integer Sequences) also occurs in the study of the theory
of measurement (and two-sided generalized Fibonacci sequences); see [21, 22].

We conclude this paper with a few remarks and a list of many instances where nc log n

arises, further clarifications and connections being given elsewhere.

Notations. Throughout this paper, 0 < p < 1, q D 1 � p, and � D 1=q.

http://oeis.org/A005189
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2. Expected cost. We derive asymptotic approximations to �n in this section by an
analytic approach, which is briefly sketched in Figure 2.1.

2.1. Preliminaries and main result. Recall that Xn denotes the cost used by the ex-
haustive search algorithm (implied by (1.1)) for finding an MIS in a random graph, and it
satisfies the recurrence

Xn
d
D Xn�1 CX �n�1�Binom.n�1Ip/; (2.1)

with X0 D 0 and X1 D 1, where X �n
d
D Xn, and the two terms on the right-hand side are

dependent.
From (2.1), we see that the expected value �n of Xn satisfies the recurrence (1.2). Our

analytic approach then proceeds along the line depicted in Figure 2.1. While the approach
appears standard (see [24, 38, 62]), the major difference is that instead of Mellin transform,
we need Laplace transform since the quantity in question is not polynomially bounded. An-
other technical novelty is the justification of the analytic de-Poissonization for which we rely
strongly on the manipulation of functional equations, differing significantly from previous
approaches; [38, 62].

Recurrence relation

�n D �n�1 C
X

k
�n;k�k

Poisson generating function

Qf 0.z/ D Qf .qz/ C e�z

Poisson-Charlier expansion

�n �
Qf .n/ �

n

2
Qf 00.n/

Modified Laplace transform

Qf �.s/ D s Qf �.qs/ C
s

1C s

de-Poissonization

�n D
n!

2�i

I
z�n�1ez Qf .z/ dz

Inverse transform

Qf .x/ D
1

2�i

Z
exs

s
Qf �.s/ ds

FIG. 2.1. Our analytic approach to the asymptotics of �n. Here �n;k WD
�
n�1

k

�
qkpn�1�k .

Generating functions (GFs).. Let f .z/ WD
P

n>0 �nzn=n! denote the exponential GFs
of �n. Then f satisfies, by (1.2), the equation

f 0.z/ D 1C f .z/C epzf .qz/;

with f .0/ D 0, or, equivalently, denoting by Qf .z/ WD e�zf .z/ the Poisson GF of �n,

Qf 0.z/ D Qf .qz/C e�z ; (2.2)

with Qf .0/ D 0.
Closed-form expressions.. Let Qf .z/ D

P
n>0 Q�nzn=n!. From the q-differential equation

(2.2), we derive the recurrence

Q�nC1 D qn
Q�n C .�1/n .n > 1/:

By iteration, we then obtain the closed-form expression

Q�n D

X
06j<n

.�1/j q.n�1�j/.nCj/=2 .n > 1/:
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Since f .z/ D ez Qf .z/, we then have

�n D

X
16k6n

�
n

k

� X
06j<k

.�1/j q.k�1�j/.kCj/=2 .n > 1/: (2.3)

This expression is, although exact, less useful for large n; also its asymptotic behavior remains
opaque, notably due to the appearance of .�1/j . See also (3.4) for another closed-form
expression for �n without any power of �1.

Asymptotic approximations.. Our aim in this section is to derive the following asymp-
totic approximation to �n.

THEOREM 2.1. The expected cost �n of the exhaustive search on a random graph satis-
fies

�n D

G
�

log�
n

log� n

�
p

2�
�
n1= log �C1=2

log� n
exp

0B@
�

log n
log� n

�2

2 log �

1CA�1CO

�
.log log n/2

log n

��
; (2.4)

as n!1, where G.u/ is defined by (fug being the fractional part of u)

G.u/ D q.fug
2�fug/=2

X
j2Z

qj.jC1/=2

1C qj�fug
q�jfug;

(see (2.8)) and is a bounded, 1-periodic function of u. Note that (2.4) implies (1.3) with

P0.u/ D �
1
2

log 2� � log � C log G.u/:

Our approach leads indeed to an asymptotic expansion, but we content ourselves with the
statement of (2.4); see (2.18), (2.23) and (3.3).

The function f (and thus Qf ) is an entire function. It follows immediately that we have
the identity

�n D

X
j>0

Qf .j/.n/

j !
�j .n/;

(referred to as the Poisson-Charlier expansion in [35]) where the �j .n/’s are polynomials of
n of degree bj=2c; see (2.24). See also [38] for different representations. However, the hard
part always lies in justifying the asymptotic nature of the expansion, namely,

�n D

X
06j<k

Qf .j/.n/

j !
�j .n/CO

�
nbk=2c Qf .k/.n/

�
;

for k D 2; 3; : : : . In particular, the first-order asymptotic equivalent “�n �
Qf .n/” is often

called the Poisson heuristic. Thus the asymptotics of �n is reduced to that of Qf .x/ once
we justify the asymptotic nature of the expansion. Of special mention is that, unlike almost
all papers in the literature, we need only the asymptotic behavior of Qf .x/ for real values of
x, all analysis involving complex parameters being carefully handled by the corresponding
functional equation.

We will derive an asymptotic expansion for Qf .x/ for large real x by Laplace trans-
form techniques and suitable manipulation of the saddle-point method, and then bridge the
asymptotics of �n and Qf .n/ by a variant of the saddle-point method (or de-Poissonization
procedure; see [38]); see Figure 2.1 for a sketch of our proof.
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2.2. Asymptotics of Qf .x/. We derive an asymptotic expansion for Qf .x/ in this subsec-
tion.

Modified Laplace transform.. For technical convenience, consider the modified Laplace
transform

Qf ?.s/ WD
1

s

Z 1
0

e�x=s Qf .x/ dx:

Note that this use of the Laplace transform differs from the usual one by a factor 1=s and
by a change of variables s 7! 1=s. Also the use of the exponential GF coupling with this
Laplace transform is equivalent to considering the ordinary GF of �n; see Section 3.2 for
more information.

Then the functional-differential equation (2.2) translates into the following functional
equation for Qf ?

Qf ?.s/ D s Qf ?.qs/C
s

1C s
; (2.5)

for <.s/ > 0.
Iterating the equation (2.5) indefinitely, we get

Qf ?.s/ D
X
j>0

qj.jC1/=2

1C qj s
sjC1: (2.6)

We will approximate Qf ?.s/ for large s by means of the function

F.s/ D
X

�1<j<1

qj.jC1/=2

1C qj s
sjC1;

because adding terms of the form s�j , j > 0, does not alter the dominant asymptotic order
of both functions for large jsj.

LEMMA 2.2. For x > 1, we have

F.x/ D x1=2 exp
�
.log x/2

2 log �

�
G .log� x/ ; (2.7)

where

G.u/ WD q.fug
2Cfug/=2F

�
q�fug

�
(2.8)

is a continuous, positive, periodic function with period 1.
Proof. One can easily check that F.s/ satisfies a functional equation similar to that of

Jacobi’s theta functions

F.s/ D sF.qs/ .s 2 C/: (2.9)

Iterating N times this functional equation, we obtain

F.s/ D qN.N�1/=2sN F
�
qN s

�
.s 2 C/: (2.10)

Assume x > 1. Take

N D blog� xc D log� x C �;
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where � D �flog� xg. Then we have

F.x/ D exp
�

N.N � 1/

2
log q CN log x

�
F
�
eN log qClog x

�
D exp

�
.log x/2

2 log �
C

log x

2
C
�.� � 1/

2
log q

�
F
�
e� log q

�
D q.�

2��/=2x1=2 exp
�
.log x/2

2 log �

�
F
�
e� log q

�
;

which, together with the functional equation F.1=q/ D F.1/=q (or G.u C 1/ D G.u/),
proves the lemma.

Asymptotic expansion of Qf .x/: saddle-point method. By the Laplace inversion formula
with suitable change of variables, we have

Qf .x/ D
1

2� i

Z rCi1

r�i1

exs

s
Qf ?
�

1

s

�
ds; (2.11)

where r > 0 is a small number whose value will be specified later. We now derive a few
estimates for Qf ?.s/.

LEMMA 2.3. (i) If r > 0 and jt j > 1, then

Qf ?
�

1

r C i t

�
D O

�
1

jt j

�
I (2.12)

(ii) if 0 < r 6 1 and jt j 6 1, then

Qf ?
�

1

r C i t

�
D F

�
1

r C i t

�
CO.1/I (2.13)

(iii) if r > 0 and cmr 6 jt j 6 1, where cm WD
p

q�2m � 1, m > 1, then

Qf ?
�

1

r C i t

�
D O

�
rmq.

m
2 /F

�
1

r

��
: (2.14)

Proof. First, (2.12) follows from (2.6) since Qf ?.s/ D O.jsj/ as jsj ! 0. For the estimate
(2.13), we observe thatˇ̌̌̌

1

1C sqj

ˇ̌̌̌
6 minfq�j

jsj�1; 1g .<.s/ > 0/:

Then

Qf ?.s/ D F.s/CO
�
jsj�1

�
;

for <.s/ > 0 and jsj > c > 0. Also for r > 0

<

�
1

r C i t

�
D

r

r2 C t2
> 0I

and, for jt j 6 1 and 0 < r 6 1

1

jr C i t j
>

1
p

2
:
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From these two estimates, we then deduce (2.13).
On the other hand if <.s/ > 0, then

j Qf ?.s/j 6
X
j>0

qj.jC1/=2
jsjjC1 6 #.jsj/;

where

#.x/ WD
X

�1<j<1

qj.j�1/=2xj :

It is easily checked that #.x/ satisfies the same functional equation (2.9) as F.x/, namely,

#.x/ D x#.qx/:

Thus, by the same arguments used for proving (2.7), we have, for x > 1,

#.x/ D x1=2 exp
�
.log x/2

2 log �

�
g.log� x/;

where g.x/ is a continuous, bounded, periodic function. Comparing this expression with
(2.7) for F.x/, we conclude that #.x/ D O.F.x// for x > 1.

Let cm WD
p

q�2m � 1, m > 1. Then, for 0 < r < 1,

max
cmr6jt j61

ˇ̌̌̌
Qf ?
�

1

r C i t

�ˇ̌̌̌
6 max

cmr6jt j61

ˇ̌̌̌
#

�
1

p
r2 C t2

�ˇ̌̌̌
D #.qm=r/

D rmqm.m�1/=2#.1=r/

D O
�
rmq.

m
2 /F.1=r/

�
:

This proves (2.14) and the lemma.
By splitting the integral in (2.11) into three ranges jt j 6 cmr , cmr < jt j 6 1, and jt j > 1,

where t D =.s/, and then applying the estimates (2.12) and (2.14), we deduce that

Qf .x/e�xr
D Ir .x/CO

�
rm�1q.

m
2 /F.1=r/C 1

�
; (2.15)

where

Ir .x/ WD
1

2�

Z cmr

�cmr

eixt

r C i t
F

�
1

r C i t

�
dt:

It remains to evaluate more precisely the integral Ir .x/ by the saddle-point method.
We now take

N D blog�.1=r/c D log�.1=r/C �;

where � D �flog�.1=r/g. Applying the functional equation (2.10) with s D 1=.r C i t/, we
get

Ir .x/ D
1

2�

Z cmr

�cmr

eixt qN.N�1/=2

.r C i t/NC1
F

�
rq�

r C i t

�
dt:
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By the relation

F.1=r/ D qN.N�1/=2r�N F.q�/;

we then have

Ir .x/ D
F.1=r/

2�r

Z cmr

�cmr

eixt

�
r

r C i t

�NC1
F.rq�=.r C i t//

F.q�/
dt

D
F.1=r/exr

2�

Z cm

�cm

eirxt

�
1

1C i t

�NC1
F.q�=.1C i t//

F.q�/
dt

D
F.1=r/exr

2�

Z cm

�cm

e�xrt2=2H.t/ dt;

where

H.t/ WD exr.it�log.1Cit/Ct2=2/ F.q�=.1C i t//

.1C i t/1C�F.q�/
:

So far the choice of r > 0 is arbitrary. For an optimal choice, take r D r.x/ > 0 to be the
approximate saddle-point such that

1

r
log

1

r
D x log �: (2.16)

Note that r can be expressed in terms of the Lambert-W function (principal solution of the
equation W .x/eW .x/ D x) as

r D
W .x log �/

x log �
I

thus log.1=r/ D W .x log �/. Asymptotically,

W .x/ D log x � log log x C
log log x

log x
C
.log log x/2 � 2 log log x

2.log x/2
CO

�
.log log x/3

.log x/3

�
;

(2.17)

as x !1; see [14] for more information on W .
Since m > 1 is arbitrary and r � x�1 log x, the relation (2.15) is an asymptotic approx-

imation, albeit less explicit.
To derive a more explicit expansion, we first observe that

exr F.1=r/ D r�1= log ��1=2e.log.1=r//2=.2 log �/G.log�.1=r//;

by (2.7) and (2.16). Then what remains is standard (see [24]): evaluating the integral in (2.15)
by Laplace’s method (a change of variable t 7! t=

p
xr followed by an asymptotic expansion

of H.t=
p

xr/ for large xr and then an integration term by term), and we obtain the following
expansion.

PROPOSITION 2.4. With r given by (2.16), Qf .x/ satisfies the asymptotic expansion

Qf .x/ �
e.log.1=r//2=.2 log �/G.log�.1=r//

r1= log �C1=2
p

2� log�.1=r/

0@1C
X
j>1

�j .log�.1=r//.log�.1=r//�j

1A ; (2.18)
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as x !1, where G is given in (2.8) and the �j .u/’s are bounded, 1-periodic functions of u

involving the derivatives of F
�
q�fug

�
. In particular,

�1.u/ D �

 
1

12
�
fug.1 � fug/

2
C
.1 � fug/q�fugF 0

�
q�fug

�
F
�
q�fug

� C
q�2fugF 00

�
q�fug

�
2F

�
q�fug

� !
:

By using (2.17), the leading term in (2.18) can be expressed completely in terms of log x

as follows.
COROLLARY 2.5. As x !1, Qf .x/ satisfies

Qf .x/ D
G
�

log�
x

log� x

�
p

2�
�

x1= log �C1=2

log� x
exp

0B@
�

log x
log� x

�2

2 log �

1CA�1CO

�
.log log x/2

log x

��
:

(2.19)

This gives Theorem 2.1 with x here replaced by n.
As another consequence, we see, by (2.2) and (2.19), that

Qf 0.x/

Qf .x/
�

Qf .qx/

Qf .x/
�

log� x

x
:

More generally, we have the following asymptotic relations for Qf .j/.x/ and Qf .qj x/.
COROLLARY 2.6. For j > 1

Qf .j/.x/

Qf .x/
�

�
log� x

x

�j

(2.20)

Qf .qj x/

Qf .x/
� q�j.j�1/=2

�
log� x

x

�j

: (2.21)

Note that (2.20) also follows easily from the integral representation

Qf .j/.x/ D
1

2� i

Z rCi1

r�i1

exs

sj�1
Qf ?
�

1

s

�
ds;

and exactly the same arguments used above.

2.3. Asymptotics of �n. We first derive a simple lemma for the ratio f .x C y/=f .x/

when y is not too large by using (2.20).
LEMMA 2.7. Assume x > 1. If jyj D o.x= log x/, then

Qf .x C y/

Qf .x/
D 1CO

�
jyj log x

x

�
: (2.22)

Proof. By (2.20), we have

log
Qf .x C y/

Qf .x/
D y

Z 1

0

Qf 0.x C yt/

Qf .x C yt/
dt

D yO

 Z 1

0

log jx C yt j

jx C yt j
dt

!

D O

�
jyj log jxj
jxj

�
;
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from which (2.22) follows.
THEOREM 2.8. The expected cost used by the exhaustive search algorithm satisfies the

asymptotic expansion

�n �
Qf .n/C

X
j>2

Qf .j/.n/

j !
�j .n/; (2.23)

where �j .n/ is a (Charlier) polynomial in n of degree bj=2c defined by

�j .n/ WD
X

06`6j

�
j

`

�
.�1/`

n!n`

.n � j C `/!
.j D 0; 1; : : : /: (2.24)

In particular, �0.n/ D 1, �1.n/ D 0, �2.n/ D �n, �3.n/ D 2n, and �4.n/ D 3n2 � 6n. Thus,
by (2.18) and (2.20),

�n D
Qf .n/

�
1CO

�
n�1.log n/2

��
;

which proves Theorem 2.1.
Proof. For simplicity, we prove only the following estimate

�n D
Qf .n/ �

n

2
Qf 00.n/CO

�
n�2.log n/4 Qf .n/

�
: (2.25)

The same method of proof easily extends to the proof of (2.23).
We start with the Taylor expansion of Qf .z/ at z D n to the fourth order

Qf .z/ D Qf .n/C Qf 0.n/.z � n/C
Qf 00.n/

2!
.z � n/2 C

Qf 000.n/

3!
.z � n/3 C .z � n/4R.z/;

(2.26)

where

R.z/ D
1

3!

Z 1

0

Qf .4/
�
nC .z � n/t

�
.1 � t/3 dt:

By applying successively the equation (2.2), we get

Qf .4/.z/ D �e�z
C q3e�qz

� q5e�q2z
C q6e�q3z

C q6 Qf .q4z/:

It follows thatˇ̌̌
R
�
nei�

�ˇ̌̌
6
Z 1

0

ˇ̌
Qf .4/
�
nC n.ei�

� 1/t
�ˇ̌

dt

D O

 
e�n cos �

C e�q3n cos �
C

Z 1

0

ˇ̌
Qf
�
q4nC q4n.ei�

� 1/t
�ˇ̌

dt

!
;

for j� j 6 � . Replacing first Qf .z/ inside the integral by e�zf .z/, using the inequality
jf .z/j 6 f .jzj/ and then substituting back f .q4n/ by eq4n Qf .q4n/, we then haveˇ̌̌

R
�
nei�

�ˇ̌̌
D O

 
e�q3n cos �

C f .q4n/

Z 1

0

ˇ̌
e�q4n�q4n.ei��1/t

ˇ̌
dt

!

D O

 
e�q3n cos �

C Qf .q4n/

Z 1

0

eq4n.1�cos �/t dt

!
D O

�
e�q3n cos �

C Qf .q4n/eq4n.1�cos �/
�
; (2.27)
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uniformly for j� j 6 � . By Cauchy’s integral formula and (2.26), we have

�n D
n!

2� i

I
jzjDn

z�n�1ez Qf .z/ dz

D
n!

2� i

I
jzjDn

z�n�1ez

 
Qf .n/C

Qf 0.n/

1!
.z � n/C

Qf 00.n/

2!
.z � n/2 C

Qf 000.n/

3!
.z � n/3

!
dz

CRn

D Qf .n/ �
n

2
Qf 00.n/C

n

3
Qf 000.n/CRn;

where

Rn WD
n!

2� i

I
jzjDn

z�n�1ez.z � n/4R.z/ dz:

By the estimate (2.27) for R.z/, we have

Rn D O

�
n!n4�n

Z �

��

�4en cos �
jR.nei� /j d�

�
D O

�
n!n4�n

Z �

��

�4en cos �
�
e�q3n cos �

C Qf .q4n/eq4n.1�cos �/
�

d�
�

D O

�
n!n4�n

Z �

��

�4en.1�q3/ cos � d� C n! Qf .q4n/n4�nen

Z �

��

�4e�.1�q4/n.1�cos �/ d�
�

D O
�
n!n�nC3=2e.1�q3/n

C n!enn�nC3=2 Qf .q4n/
�

D O
�
n2e�q3n

C n2 Qf .q4n/
�

D O
�
n�2.log n/4 Qf .n/

�
;

by (2.21). Note that again by (2.20)

n Qf 000.n/ D O
�
n�2.log n/3 Qf .n/

�
;

so this error bound is absorbed in O. Qf .n/n�2.log n/4/. This proves (2.25).

3. Alternative expansions and approaches. For more methodological interest, we dis-
cuss in this section other possible approaches to the asymptotic expansions we derived above.

3.1. An alternative expansion for Qf .x/. We begin with an alternative asymptotic ex-
pansion for Qf .x/, starting from the integral representation (2.11), which, as showed above,
can be approximated by

Qf .x/ D
1

2� i

Z rCi1

r�i1

exs

s
F

�
1

s

�
ds CO.1/

For simplicity, we drop the O.1/-term and write this as

Qf .x/ '
1

2� i

Z rCi1

r�i1

exs

s
F

�
1

s

�
ds:
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Now we use the same N D blog�.1=r/c D log�.1=r/ � � and

F

�
1

s

�
D qN.N�1/=2s�N F

�
qN

s

�
;

so that

Qf .x/ '
q.

N
2 /

2� i

Z rCi1

r�i1

exs

sNC1
F

�
qN

s

�
ds: (3.1)

Now instead of expanding F.qN =.r C i t// at t D 0, we expand F.qN =s/ at s D r , giving

F

�
qN

s

�
D F

�
qN

r
�

qN

r

�
1 �

r

s

��
D

X
m>0

.�1/mQm

m!
Fm

�
1 �

r

s

�m

;

where Q WD qN =r D q�flog�.1=r/g and Fj denotes F .j/.Q/. Substituting this expansion into
the integral representation (3.1) and then integrating term-by-term, we obtain

Qf .x/q�.
N
2 / '

X
m>0

.�1/mQm

m!
Fm �

1

2� i

Z rCi1

r�i1

exs

sNC1

�
1 �

r

s

�m

ds

D
xN

N !

X
m>0

.�1/mQm

m!
FmTm.N /; (3.2)

where, by the integral representation for Gamma function (see [24]),

Tm.N / WD
1

2� i

Z rCi1

r�i1

exs

sNC1

�
1 �

r

s

�m

ds

D

X
06j6m

�
m

j

�
.�r/j

N !xj

.N C j /!
:

For computational purposes, it is preferable to use the recurrence

Tm.N / D Tm�1.N / �
rx

N C 1
Tm�1.N C 1/:

The value of r is arbitrary up to now. If we take r D N=x, then

Tm.N / WD
X

06j6m

�
m

j

�
.�1/j

N !N j

.N C j /!
:

Note that jTm.N /j � N �dm=2e. In particular,

T0.N / D 1; T1.N / D
1

N C 1
; T3.N / D �

N � 2

.N C 1/.N C 2/
; � � � :

Since qN =r remains bounded, we can regroup the terms and get an asymptotic expansion in
terms of increasing powers of N �1, the first few terms being given as follows

Qf .x/

q.
N
2 /xN =N !

' F0 �
Q.2F1 C F2Q/

2N
C

Q.3F4Q3 C 28F3Q2 C 60F2QC 24F1/

24N 2

�
Q.F6Q5 C 22F5Q4 C 152F4Q3 C 384F3Q2 C 312F2QC 48F1/

48N 3

C � � � :
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On the other hand, if we choose r D .N C 1/=x, then T1.N / D 0 and

T0.N / D 1; T2.N / D �
1

N C 2
; T3.N / D �

4

.N C 2/.N C 3/
; � � � ;

so that

Qf .x/

q.
N
2 /xN =N !

' F0 �
F2Q2

2.N C 2/
C

Q3.3F4QC 16F3/

24.N C 2/2

�
Q3.F6Q3 C 16F5Q2 C 60F4QC 32F3/

48.N C 2/3
C � � � :

While jTm.N /j � N �dm=2e for m > 2 as in the case of r D N=x, this is a better expansion
because the first term incorporates more information.

The more transparent expansion (3.2) is a priori a formal one whose asymptotic nature
can be justified by the same local analysis as above. We summarize the analysis in the fol-
lowing theorem.

THEOREM 3.1. The Poisson generating function of�n satisfies the asymptotic expansion

Qf .x/ � q.
N
2 /

xN

N !

X
m>0

.�1/mQm

m!
F .m/.Q/Tm.N /; (3.3)

where N D blog�.1=r/c D log�.1=r/ � �, r WD N=x, Q WD q� log�.1=r/ and Tm.N / is
defined by

Tm.N / WD
X

06j6m

�
m

j

�
.�1/j

N !.N C 1/j

.N C j /!
:

Straightforward calculations give (when r D N=x)

log
�

q.
N
2 /

xN

N !

�
D

�
log x

log� x

�2

2 log �
C

�
1

log �
C

1

2

�
log x � log log x

�
1

2
log 2� �

�2 C �

2
CO

�
.log log x/2

log x

�
;

consistent with what we proved in (2.19) via directly applying the saddle-point method. For
similar types of approximation, see [32, 48].

3.2. Exponential GFs vs ordinary GFs. The different forms of the GFs of the sequence
�n have several interesting features which we now briefly explore.

Instead of Qf ?.s/, we start with considering the usual Laplace transform of Qf .z/

L .s/ D

Z 1
0

e�xs Qf .x/ dx;

which, by (2.6), satisfies

L .s/ D
X
j>0

q.
jC1

2 /

sjC1.s C qj /
:
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By inverting this series, we obtain

Qf .z/ D
X
j>0

q.
jC1

2 /

j !
zjC1

Z 1

0

e�qj uz.1 � u/j du:

From this exact expression, we deduce not only the exact expression (2.3) but also the fol-
lowing one (by multiplying both sides by ez and then expanding)

�n D n
X

06j<n

�
n � 1

j

�
q.
jC1

2 /
X

06`<n�j

�
n � 1 � j

`

�
qj`.1 � qj /n�1�j�`

j C `C 1
; (3.4)

where all terms are now positive; compare (2.3). But this expression and (2.3) are less useful
for numerical purposes for large n.

On the other hand, the consideration of our Qf ?.s/ bridges essentially exponential GF
(EGF) and ordinary GF (OGF) of �n. Indeed,

Qf ?.s/ D
1

s

Z 1
0

e�x�x=s
X
n>0

�n

n!
xn dx

D
1

1C s

X
n>0

�n

�
s

1C s

�n

;

which is essentially the Euler transform of the OGF; see [23].
Our proofs given above rely strongly on the use of EGF, but the use of OGF works

equally well for some of them. We consider the general recurrence

an D an�1 C

X
06j<n

�n;j aj C bn .n > 1/; (3.5)

with a0 given. Then the OGF A.z/ WD
P

n>1 anzn satisfies

A.z/ D zA.z/C
z

1 � pz
A

�
qz

1 � pz

�
C B.z/;

where B.z/ WD
P

n>1 bnzn. Thus NA.z/ WD .1 � z/A.z/ satisfies

NA.z/ D B.z/C
z

1 � z
NA

�
qz

1 � pz

�
;

which after iteration gives

NA.z/ D
X
j>0

qj.j�1/=2
� z

1 � z

�j

B

�
qj z

1 � .1 � qj /z

�
:

Thus

A.z/ D
X
j>0

qj.j�1/=2zj

.1 � z/jC1
B

�
qj z

1 � .1 � qj /z

�
: (3.6)

Closed-form expressions can be derived from this; we omit the details here.
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4. Variance of Yn. We derive in this section the asymptotics of the variance Yn (see
(1.9)), which can be regarded as a very rough independent approximation to Xn. We use an
elementary approach (no complex analysis being needed) here based on the recurrences of
the central moments and suitable tools of “asymptotic transfer” for the underlying recurrence.
The approach is, up to the technical development of the required asymptotic transfer tools,
by now standard; see [34, 36]. The same analysis provided here is also applicable to higher
central moments, which will be analyzed in the next section.

4.1. Recurrence. For the variance of Yn, we start with the recurrence (1.9), which trans-
lates into the recurrence satisfied by the moment GF Mn.y/ WD E

�
eYny

�
Mn.y/ DMn�1.y/

X
06j<n

�n;j Mj .y/ .n > 2/;

with M0.y/ D 1 and M1.y/ D ey , where �n;j WD
�

n�1
j

�
qj pn�1�j . This implies, with

NMn.y/ WD e��nyMn.y/ D E
�
e.Yn��n/y

�
, that

NMn.y/ D NMn�1.y/
X

06j<n

�n;j
NMj .y/e

�n;j y .n > 2/; (4.1)

with NMn.y/ D 1 for n < 2, where

�n;j WD �j C �n�1 � �n:

Let Mn;m WD E.Yn � �n/
m D NM

.m/
n .0/, m > 0. Then from (4.1), we deduce that

Mn;m DMn�1;m C

X
06j<n

�n;j Mj ;m C Tn;m; (4.2)

where, for m > 1,

Tn;m D

X
kC`ChDm
06k;`<m
06h6m

�
m

k; `; h

�
Mn�1;k

X
06j<n

�n;j Mj ;`�
h
n;j

D

X
06`<m

�
m

`

� X
06j<n

�n;j Mj ;`�
m�`
n;j

C

X
26k6m�2

�
m

k

�
Mn�1;k

X
06`6m�k

�
m � k

`

� X
06j<n

�n;j Mj ;`�
m�k�`
n;j : (4.3)

Note that since Mn;1 D 0 and
P

06j<n �n;j�n;j D 0, the terms with k D 1 and k D m � 1

vanish.
In particular, the variance �2

n DMn;2 satisfies

�2
n D �

2
n�1 C

X
06j<n

�n;j�
2
j C Tn;2;

where

Tn;2 D

X
06j<n

�n;j�
2
n;j :

This will be useful for our asymptotic analysis for �2
n .
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4.2. Asymptotics of Tn;2. To proceed further, we first consider the asymptotics of �n;j

for j D qnCO.n2=3/. By Taylor expansion and (2.2), we have

Qf .n/ � Qf .n � 1/ D Qf 0.n/ �
Qf 00.n/

2
C

Qf 000.n/

3!
CO

 Z 1

0

.1 � t/4 Qf .4/.n � t/ dt

!

D Qf 0.n/ �
Qf 00.n/

2
C

Qf 000.n/

3!
CO

�
Qf
�
q4n

��
;

and

Qf 00.n/ � Qf 00.n � 1/ D Qf 000.n/CO
�
Qf
�
q4n

��
:

These and (2.25) yield

�n � �n�1 D
Qf 0.n/ �

Qf 00.n/

2
CO

�
n2 Qf

�
q4n

��
D Qf .qn/CO

�
n2 Qf

�
q4n

��
;

since Qf
�
q2n

�
D O

�
n2.log n/�2 Qf

�
q4n

��
. Then, for j D qnC x

p
pqn, jxj 6 n1=6,

�n;j D �j � .�n � �n�1/

D Qf .qnC x
p

pqn/ � Qf .qn/CO
�
n2 Qf

�
q4n

��
D Qf 0.qn/x

p
pqnCO

�
n2.1C x2/ Qf

�
q4n

��
: (4.4)

Thus, by (2.20) and (2.21),

Tn;2 D

X
jxj6n1=6

�n;j

ˇ̌̌
Qf 0.qn/x

p
pqnCO

�
n2 Qf .q4n/

�ˇ̌̌2
CO

0@�2
n

X
jxj>n1=6

�n;j

1A
D pqn Qf 0.qn/2

X
jxj6n1=6

�n;j jxj
2
CO

�
n9=2 Qf 2

�
q4n

��
D pqn Qf 0.qn/2 CO

�
n9=2 Qf 2

�
q4n

��
� q�1pn�3.log� n/4 Qf .n/2: (4.5)

The next step then is to “transfer” this estimate to the asymptotics of the variance.

4.3. Asymptotic transfer. We now develop an asymptotic transfer result, which will be
used to compute the asymptotics of higher central moments of Yn (in particular the variance).

More generally, we consider a sequence fangn>0 satisfying the recurrence relation (3.5),
where a0 is finite (whose value is immaterial) and fbngn>1 is a given sequence.

LEMMA 4.1. If bn � nˇ.log n/� Qf .n/˛ , where ˛ > 0, ˇ; � 2 R. ThenX
j6n

bj �
n

˛ log� n
bn:
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Proof. Define '.t/ WD tˇ.log t/� Qf .t/˛ . By assumption, bn � '.n/. Since Qf 0.t/= Qf .t/ �
t�1 log� t (by (2.20)), we see that '0.t/ > 0 for t sufficiently large, say t > t0 > 0. Thus '.t/
is monotonically increasing for t > t0. ThenX

j6n

bj �

X
26j6n

'.j / D

Z n

2

'.t/ dt CO.'.n//:

By the asymptotic relation (2.20), we haveZ n

1

'.t/ dt D

Z n

1

tˇ.log t/� Qf .t/˛ dt

� .log �/
Z n

1

tˇC1.log t/��1 Qf .t/˛�1 Qf 0.t/ dt

�
log �
˛

Z n

1

tˇC1.log t/��1 d Qf .t/˛

D
n'.n/

˛ log� n
CO

�Z n

1

'.t/

t
dt

�
;

by an integration by parts. The integral on the right-hand side is easily estimated as follows.Z n

1

'.t/

t
dt D O

�
'.qn/

Z qn

1

t�1 dt C '.n/

Z n

qn

t�1 dt

�
D O.'.n//:

This proves the lemma.
PROPOSITION 4.2. If bn � nˇ.log n/� Qf .n/˛ , where ˛ > 1, ˇ; � 2 R, then

an D

�
1CO

�
n1�˛.log n/˛�1

�� X
06j6n

bj �
n

˛ log� n
bn: (4.6)

Proof. We start with obtaining upper and lower bounds for an. Since bn > 0 for suf-
ficiently large n, say n > n0. We may, without loss of generality, assume that bn > 0 for
n > n0 (for, otherwise, we consider b0n WD bn C maxj6n0

jbj j and then show the difference
between the corresponding a0n and an is of order Qf .n/). Then an > 0 and, by (3.5), we have
the lower bound

an > an�1 C bn >
X

06j6n

bj :

Now consider the sequence

Cn WD
anP

06j6n bj

> 1 .n > 1/;

and the increasing sequence

C �n WD max
16j6n

fCj g > 1:

Then we have the upper bound

ak 6 C �n

X
06j6k

bj ;
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for all k 6 n.
In view of the recurrence relation (3.5), we have

an 6 C �n�1

X
06j6n

bj C C �n�1

X
06j<n

�n;j

X
06`6j

b`:

By Lemma 4.1 and Corollary 2.6, we see that there exist an absolute constant K > 0 such
that X

06j<n

�n;j

X
06`6j

b` 6 Kn�˛.log n/˛
X

06j6n

bj D O
�
n1�˛.log n/˛�1bn

�
: (4.7)

It follows that

an 6 C �n�1 .1CKn�˛.log n/˛/
X

06j6n

bj :

By our definition of Cn, we then have

Cn 6 C �n�1 .1CKn�˛.log n/˛/ ;

and

C �n D maxfC �n�1;Cng 6 C �n�1 .1CKn�˛.log n/˛/ :

Consequently,

C �n 6 C �2

Y
26j6n

.1CKj�˛.log j /˛/ :

Since the finite product on the right-hand side is convergent, we conclude that the sequence
C �n is bounded, or more precisely,

C �n 6 C �2

Y
j>2

.1CKj�˛.log j /˛/ :

Thus we obtain the upper bound

an 6 C
X

06j6n

bj ;

where C > 0 is an absolute constant depending only on p; ˛; ˇ and � .
With this bound and defining Qan WD

P
06j<n �n;j aj , we can rewrite the recurrence

relation (3.5) as

an D an�1 C Qan C bn

D

X
06j6n

bj C

X
06k6n

Qak : (4.8)

Now by the estimate (4.7), we see that

X
06j6n

Qaj D O

0@1C
X

26j6n

j 1�˛.log j /˛�1bj

1A
D O

0@1C '.qn/
X

26j6qn

j 1�˛.log j /˛�1
C n1�˛.log n/˛�1

X
qn<j6n

bj

1A ;
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where '.t/ WD tˇ.log t/� Qf .t/˛ . Observe that

'.qn/ � n�˛.log n/˛bn � n�˛�1.log n/˛C1
X

06j6n

bj :

Thus

X
06j6n

Qaj D O

0@n1�˛.log n/˛�1
X

06j6n

bj

1A :
The proof of the Proposition is complete by substituting this estimate into (4.8).

Denote by Œzn�A.z/ for the coefficient of zn in the Taylor expansion of A.z/. Then, in
terms of ordinary GFs, the asymptotic transfer (4.6) can be stated alternatively as

Œzn�A.z/ � Œzn�
B.z/

1 � z
;

(when bn satisfies the assumption of Proposition 4.2), which means that the contribution from
terms in the sum in (3.6) with j > 1 is asymptotically negligible. Roughly, since

bn;j WD Œz
n�B

�
qj z

1 � .1 � qj /z

�
D n�1

X
16`6n

�
n

`

�
qj`.1 � qj /n�``b`;

we see that bn;j D O.qj bbqj nc/. We can then give an alternative proof of (4.6) by using
(3.6).

By (4.5) and a direct application of Proposition 4.2, we obtain an asymptotic approxima-
tion to the variance.

THEOREM 4.3. The variance of Yn satisfies

�2
n � C�n�2.log� n/3 Qf .n/2; (4.9)

where C� WD p=.2q/. Thus we have

V.Yn/

.E.Yn//2
� C�n�2.log n/3:

Asymptotics of V.Xn/ remains open. Monte Carlo simulations (with n a few hundred)
suggested that the ratio V.Xn/=V.Yn/ grows concavely, so that one would expect an order of
the form nˇ.log n/� for V.Xn/ for some 0 < ˇ < 1. But due to the complexity of the problem,
we could not run simulations of larger samples to draw more convincing conclusions.

5. Asymptotic normality. We prove in this section that Yn is asymptotically normally
distributed by the method of moments. Our approach is to start from the recurrence (4.2)
for the central moments and the asymptotic estimate (4.9) and then to apply inductively the
asymptotic transfer result (Proposition 4.2), similar to that used in our previous papers [34,
36].

THEOREM 5.1. The distribution of Yn is asymptotically normal, namely,

Yn � �n

�n

d
! N .0; 1/;

where
d
! denotes convergence in distribution. We will indeed prove convergence of all

moments.
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Proof. By standard moment convergence theorem, it suffices to show that

Mn;m D E.Yn � �n/
m

8<:�
.m/!

.m=2/!2m=2
�m

n ; if m is even;

D o.�m
n /; if m is odd;

(5.1)

for m > 0.
The cases when m 6 2 having been proved above, we assume m > 3. By induction

hypothesis, we have

Mn;k D O
�
�k

n

�
D O

�
n�k.log n/3k=2 Qf k.n/

�
;

for k < m. Then, by (4.4),X
06j<n

�n;j Mj ;`�
h
n;j D O

�
Mbqnc;`n

h=2 Qf .q2n/h
�

D O
�
n�`.log n/3`=2 Qf .qn/`nh=2 Qf .q2n/h

�
D O

�
n�2`�3h=2.log n/5`=2C2h Qf .n/`Ch

�
:

It follows (see (4.3)) that, for 0 6 ` < m,X
06j<n

�n;j Mj ;`�
m�`
n;j D O

�
n�`=2�3m=2.log n/`=2C2m Qf .n/m

�
I

and, for 2 6 k 6 m � 2 and 0 6 ` 6 m � k,

Mn�1;k

X
06j<n

�n;j Mj ;`�
m�k�`
n;j D O

�
n�`=2Ck=2�3m=2.log n/`=2�k=2C2m Qf .n/m

�
:

Thus the main contribution to the asymptotics of Tn;m will come from the terms in the second
group of sums in (4.3) with k D m � 2 and ` D 0. More precisely

Tn;m D

�
m

2

�
Mn�1;m�2Tn;2 CO

�
n�3=2�m.log n/3.mC1/=2 Qf .n/m

�
:

Note that Tn;2 � 2n.log� n/�1�2
n ; see (4.5).

Thus if m is even, then, by (4.5) and induction hypothesis,

Tn;m �
2m!�

.m � 2/=2
�
!2m=2

n�1.log� n/�m
n

�
2m!�

.m � 2/=2
�
!2m=2

C m=2
� n�m�1.log� n/.3m=2C1/ Qf .n/m:

Applying the asymptotic transfer result (Proposition 4.2) with ˛ D m, we obtain

Mn;m �
m!

.m=2/!2m=2
C m=2
� n�m.log n/3m=2 Qf .n/m

�
m!

.m=2/!2m=2
�m

n :

In a similar manner, we can prove that if m is odd, then

Mn;m D o.�m
n /:

This concludes the proof of (5.1) and the asymptotic normality of Yn.
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6. The random variables Zn. We briefly consider the random variables defined re-
cursively in (1.10). The major interest is in understanding the robustness of the asymptotic
normality when changing the underlying probability distribution from binomial to uniform.

THEOREM 6.1. The mean value of Zn satisfies

E.Zn/ D C n�1=4e2
p

n

�
1C

9

16
p

n
C

11

1536n
CO

�
n�3=2

��
; (6.1)

where

C WD
1

2

r
e

�

�
e�1
�

Z 1
1

e�v

v

�
dv � 0:06906 46192 : : :

The limit law of the normalized random variables Zn=E.Zn/ is not normal

Zn

E.Zn/

d
! Z;

where the distribution of Z is uniquely characterized by its moment sequence and the GF
�.y/ WD

P
m>1 E.Zm/ym=.m �m!/ satisfies the nonlinear differential equation

y2�00.y/C y�0.y/ � �.y/ D y�.y/�0.y/; (6.2)

with �.0/ D �0.0/ D 1.
Proof. (Sketch) The proof of the theorem is simpler and we sketch only the major steps.
Mean value.. First, �n WD E.Zn/ satisfies the recurrence

�n D �n�1 C
1

n

X
06j<n

�j .n > 2/;

with �0 D 0, and �1 D 1. The GF f .z/ of E.Zn/ satisfies the differential equation

f 0.z/ D
2 � z

.1 � z/2
f .z/C

1

1 � z
;

with the initial condition f .0/ D 0. The first-order differential equation is easily solved and
we obtain the closed-form expression

f .z/ D �
1

1 � z
C

e1=.1�z/

1 � z

 
e�1
�

Z 1
1

e�v � e�v=.1�z/

v
dv

!
:

From this, the asymptotic approximation (6.1) results from a direct application of the saddle-
point method (see Flajolet and Sedgewick’s book [24, Ch. VIII]); see also [22].

Asymptotic transfer.. For higher moments and the limit law, we are led to consider the
following recurrence.

an D an�1 C
1

n

X
06j<n

aj C bn .n > 2/; (6.3)

with a0 and a1 given. For simplicity, we assume a0 D b0 D 0.
PROPOSITION 6.2. Assume an satisfies (6.3). If bn � cnˇ�˛n , where ˛ > 1 and ˇ 2 R,

then

an �
c

˛ � ˛�1
nˇC1=2�˛n : (6.4)

The proof is similar to that for Proposition 4.2 and is omitted.
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Recurrence and induction.. By Proposition 6.2 and the following recurrence relation for
the moment GF Q.y/ WD E.eZny/

Qn.y/ D
Qn�1.y/

n

X
06j<n

Qj .y/ .n > 2/;

with Q0.y/ D 1 and Q1.y/ D ey , we deduce, by induction using (6.4), that

E.Zm
n / � �m�

m
n .m > 1/;

where

�m D
1

m �m�1

X
16j<m

�
m

j

�
�j

j
�m�j .m > 2/; (6.5)

with �0 D �1 D 1. It follows that the function �.y/ WD
P

m>1 �mym=.m � m!/ satisfies the
differential equation (6.2).

Unique determination of the distribution.. First, by a simple induction we can show, by
(6.5), that �m 6 cm!Km for a sufficiently large K > 0. This is enough for justifying the
unique determination. Instead of giving the details, it is more interesting to note that the
nonlinear differential equation (6.2) represents another typical case for which the asymptotic
behavior of its coefficients (E.Zm/ for large m) necessitates the use of the psi-series method
recently developed in [10]. We can show, by the approach used there, that

E.Zm/ D m �m!��m

�
2C

2

3m2
CO

�
m�3

��
;

where � > 0 is an effectively computable constant. Note that there is no term of the form
m�1 in the expansion, a typical situation when psi-series method applies; see [10].

Concluding remarks. The approach we used in this paper is of some generality and is
amenable to other quantities. We conclude this paper with a few examples and a list of some
concrete applications where the scale nc log n also appears.

First, the expected number of independent sets in a random graph (under the Gn;p model),
as given in (1.8), satisfies the recurrence ( NJn WD Jn C 1)

NJn D
NJn�1 C

X
06k<n

�
n � 1

k

�
qkpn�1�k NJk .n > 1/;

with NJ0 D 1. Thus the Poisson GF Qf .z/ WD e�z
P

n>0
NJnzn=n! satisfies the equation

Qf 0.z/ D Qf .qz/;

with Qf .0/ D 1. The modified Laplace transform then satisfies the functional equation

Qf ?.s/ D 1C s Qf ?.qs/;

which, by iteration, leads to the closed-form expression

Qf ?.s/ D
X
j>0

qj.j�1/=2sj :
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Thus all analysis as in Section 2 applies with F and G there replaced by

F.s/ WD
X
j2Z

qj.j�1/=2sj ; G.u/ WD q.fug
2Cfug/=2F

�
q�fug

�
:

We obtain for example

Jn D

G
�

log�
n

log� n

�
p

2�
�

n1= log �C1=2

log� n
exp

0B@
�

log n
log� n

�2

2 log �

1CA�1CO

�
.log log n/2

log n

��
:

The same approach also applies to the pantograph equation

ˆ0.z/ D aˆ.qz/C‰.z/ .a > 0/;

with ˆ.0/ and ‰.z/ given, for ‰.z/ satisfying properties that can be easily imposed.
Other extensions will be discussed elsewhere. We conclude with some other algorithmic,

combinatorial and analytic contexts where nc log n appears.
– Algorithmics: isomorphism testing (see [4, 29, 33, 50, 59]), autocorrelations of

strings (see [30, 58]), information theory (see [2]), random digital search trees (see
[19]), population recovery (see [66]), and asymptotics of recurrences (see [44, 52]);

– Combinatorics: partitions into powers (see [15, 48]; see also [26] for a brief histor-
ical account and more references), palindromic compositions (see [40]), combina-
torial number theory (see [7, 46]), and universal tree of minimum complexity (see
[11, 28]);

– Probability: log-normal distribution (see [41]), renewal theory (see [64, 65]), and
total positivity (see [42]);

– Algebra: commutative ring theory (see [8]), and semigroups (see [45, 56, 60]);
– Analysis: pantograph equations (see [37, 43]), eigenfunctions of operators (see

[61]), geometric partial differential equations (see [17]), and q-difference equations
(see [3, 9, 18, 55, 69, 70]).

This list shows to some extent the generality of the seemingly uncommon scale nc log n; also
it suggests the possibly nontrivial connections between instances in various areas, whose
clarification in turn may lead to further development of more useful tools such as those in this
paper.
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