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Abstract. We consider three basic graph parameters, the node-independence number, the path
node-covering number, and the size of the kernel, and study their distributional behaviour for an

important class of random tree models, namely the class of simply generated trees, which contains,
e.g., binary trees, rooted labelled trees and planted plane trees, as special instances. We can show
for simply generated tree families that the mean and the variance of each of the three parameters
under consideration behave for a randomly chosen tree of size n asymptotically ∼ µn and ∼ νn,

where the constants µ and ν depend on the tree family and the parameter studied. Furthermore we
show for all parameters, suitably normalized, convergence in distribution to a Gaussian distributed
random variable.

1. Introduction

We are dealing here with three basic graph parameters for simple graphs G = (V,E) (no multiple
edges or loops are appearing), with vertex-set V = V (G) and edge-set E = E(G). The parameters
node-independence number and path node-covering number are defined for undirected graphs, whereas
the parameter size of the kernel requires directed graphs:

Node-independence number: A subset S ⊆ V (G) is called independent if no two nodes of S
are joined by an edge e ∈ E(G) of G. The node-independence number N(G) (often denoted
by α(G)) of an undirected graph G = (V,E) is given by the number of nodes in any largest
independent subset S of nodes of G.

Path node-covering number: A set Q of disjoint paths in a graph G is called a node-covering
of G if every node v ∈ V (G) of G is contained in a path of Q. The path node-covering number
(also called path number) P (G) of an undirected graph G = (V,E) is given by the smallest
number of paths Q in a node-covering of G.

Size of the kernel: A kernel K of a directed graph G = (V,E) is a nonempty subset K ⊆ V (G)
with the following two properties: (i) for any two vertices a, b in the kernel, a, b ∈ K, the edge
(a, b) does not belong to E(G), i.e., (a, b) 6∈ E, (ii) for any vertex c outside the kernel, c 6∈ K,
there exists a vertex d in the kernel, d ∈ K, such that the edge(c, d) belongs to E(G), (c, d) ∈ E.
One can also define a kernel as a nonempty independent and dominating set of nodes in G,
see, e.g., [3]. If a kernel K of a directed graph G exists and if this kernel is unique, then we
define the size of the kernel K(G) as the number of vertices of K.

The parameters under consideration are illustrated in Figure 1-3.

Whereas the parameters node-independence number and path node-covering number are well-defined
for any undirected graph, it is well-known that not every directed graph has a kernel and if a directed
graph has a kernel, this kernel is not necessarily unique. In game theory the existence of a kernel
corresponds to a winning strategy for Nim-type games with two players. Imagine that two players A
and B play the following game on a directed graph G = (V,E) in which they move a token in each
turn. Player A starts the game by choosing an initial vertex v0 ∈ V . Then player B has to make the
first move from v0 to a vertex v1 ∈ V . A move consists in taking the token from the present position
vi and placing it on a child of vi, i.e., a vertex vi+1 such that (vi, vi+1) ∈ E. Then player A has to
make a move from v1 to a vertex v2 ∈ V . Now again player B has to make a move from v2 to a vertex
v3 ∈ V , and so on. The first player unable to move loses the game. If one plays the game on an
acyclic graph then one obtains a finite game, i.e., it ends after a finite number of moves, and thus one
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Figure 1. A tree T of size
16 with node-independence
number N(T ) = 10. The
nodes colored black give a
largest independent set of T
with 10 independent nodes.
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Figure 2. A tree T of size
16 with path node-covering
number P (T ) = 5. An ex-
ample of a node-covering of
T with the minimal number
of 5 paths is given.

Figure 3. A directed tree
T of size 16 with kernel-size
K(T ) = 9. The unique kernel
of T is given by the 9 nodes
colored black.

of the two players must have a winning strategy. For graphs with cycles one can extend the rules by
saying that the game is lost for the player who replays a position previously reached, this also leads to
a finite game. It is shown in [14] that any directed acyclic graph has a unique kernel, which is exactly
the set of winning positions of player A: A always forces player B to leave the kernel, until B cannot
play anymore. Thus, for directed acyclic graphs the parameter size of the kernel is well-defined and
corresponds with the cardinality of the set of winning positions of the first player.

Despite the fact that all considered quantities are basic graph parameters, relatively little is known
about the behaviour of the node-independence number, the path node-covering number and the size
of the kernel for random tree families. For random (n, n)-trees bounds for the node-independence
number of almost all (n, n)-trees are given in [4]. In [10] and [11] the expected node-independence
number has been determined for trees selected at random among all trees of size n, asymptotically for
n → ∞, for several random tree families, as rooted labelled unordered trees (also called Cayley-trees
or rooted labelled trees for short), planted plane trees (also called ordered trees) and recursive trees.
For these tree families analogous results for the path node-covering number of random size-n trees are
shown in [13]. The expected size of the kernel has been determined for randomly chosen trees of size
n, asymptotically for n → ∞, for the family of directed rooted labelled trees in [2]. However, as far
as we know, the only limiting distribution result has been obtained in [15] for the node-independence
number of random rooted labelled trees: it was shown for this tree family that the node-independence
number of a randomly chosen tree of size n is asymptotically normal, with mean µn and variance νn,

where ν = µ(1−µ−µ2)
1+µ and µ is given by the solution of tet = 1.
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In this paper we are going to study the parameters under consideration for an important class of
tree families, called simply generated tree families. Simply generated tree families were introduced
in [12] and they include rooted labelled trees, planted plane trees and also binary trees as special
instances. Moreover, they are strongly related to Galton-Watson branching processes, since it is well
known [1] that random simply generated trees can be considered as conditioned Galton-Watson trees,
obtained as the family tree of a Galton-Watson branching process conditioned on the given total size.
A detailed definition of simply generated trees is given in Subsection 2.2.

In a probabilistic setting we are studying here the random variables Nn, Pn and Kn. Given a simply
generated tree family T , Nn and Pn count the node-independence number N(T ) and the path node-
covering number P (T ), respectively, of a randomly chosen simply generated tree T ∈ T of size n,
where the size of T is measured as usual by the number of nodes of T . Since simply generated trees
can be considered as weighted trees, we assume as the model of randomness that every tree T of size
n is selected with probability proportional to its weight. For the size of the kernel we are considering
random directed simply generated trees, i.e., we assume that any of the 2n−1 orientations of the n− 1
edges of a size-n tree can occur with the same probability. Let us denote the family of directed trees
obtained from T with T̃ . Then Kn counts the size of the kernel of a randomly chosen directed simply
generated tree T ∈ T̃ of size n.

We can show that the behaviour of the quantities examined is similar for all simply generated tree
families, provided that they satisfy several technical conditions, e.g., it holds that for every simply

generated tree family T there exist constants µ
[N ]
T and σ

[N ]
T such that, apart from degenerate cases,

the node-independence number Nn is asymptotically normal, for n → ∞, with mean E(Nn) ∼ µ
[N ]
T n

and variance V(Nn) ∼ ν
[N ]
T n. Analogous results hold for the path node-covering number Pn and the

size of the kernel Kn also.

Furthermore, since the maximum matching number M(T ) of a tree T of size n, also called edge-
independence number of T , and the node-independence number N(T ) are strongly connected due to
the following relation (see, e.g., [4, 10]): N(T )+M(T ) = n, one immediately obtains as a corollary also
limiting distribution results for the random variableMn, which counts the maximum matching number
M(T ) of a randomly chosen tree T of size n of a simply generated tree family T . It holds that the

maximum matching numberMn is asymptotically normal, for n→ ∞, with mean E(Mn) ∼ (1−µ[N ]
T )n

and variance V(Mn) ∼ ν
[N ]
T n.

2. Mathematical preliminaries

2.1. Recursive descriptions of the parameters. Fundamental for our treatment of the parameters
studied are the following recursive descriptions of the quantities for rooted trees. For the node-
independence number N(T ) this description appeared first in [10], where the authors mention that it
goes back to De Brujn. For the path node-covering number P (T ) it has been given in [13]. Hence, we
will only briefly discuss these two cases, and give a more detailed recursive description of the size of
the kernel K(T ) of a directed tree, extending the considerations of [2].

Node-independence number. One uses the following partition of rooted trees T , where r denotes the
root of T , into two classes, type I[N ] trees and type II[N ] trees. A rooted tree T is called a type I[N ]

tree, if every largest set of N(T ) independent nodes of T contains the root r. If at least one largest
set of N(T ) independent nodes of T does not contain the root r, then T is called a type II[N ] tree.
By removing the root r of a rooted tree T and the edges incident to r we obtain a (possibly empty)
collection of rooted trees B1, . . . , Bj , the so called branches, whose roots were originally joined to r.
We will use the following result.

Lemma 1 (Meir & Moon [10]). If each of the branches B1, . . . , Bj of T is a type II[N ] tree, then T

is a type I[N ] tree and N(T ) = 1 +
∑j

k=1N(Bk). If at least one of the branches B1, . . . , Bj of T is a

type I[N ] tree, then T is a type II[N ] tree and N(T ) =
∑j

k=1N(Bk).
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Path node-covering number. Again one uses a partition of rooted trees T , where r denotes the root
of T , into two classes, which are called here type I[P ] trees and type II[P ] trees. To describe them we
use the following notation: a vertex v ∈ V is called an interior node in a node-covering Q if it has
degree two in Q, otherwise v is in Q an endnode (degree one in Q) or an isolated node (degree zero
in Q). A rooted tree T is called a type I[P ] tree, if the root r is an interior node in every smallest set
of P (T ) paths of a node-covering Q of T . If the root r is an endnode or an isolated node in at least
one smallest set of P (T ) paths of a node covering Q of T , then T is called a type II[P ] tree.

Lemma 2 (Meir & Moon, [13]). If each of the branches B1, . . . , Bj of T is a type I[P ] tree, then T

is a type II[P ] tree and P (T ) = 1 +
∑j

k=1 P (Bk). If exactly one of the branches B1, . . . , Bj of T is a

type II[P ] tree, then T is a type II[P ] tree and P (T ) =
∑j

k=1 P (Bk). If at least two of the branches

B1, . . . , Bj of T are type II[P ] trees, then T is a type I[P ] tree and P (T ) = −1 +
∑j

k=1 P (Bk).

Size of the kernel. Here we use a natural partition of directed rooted trees T , where r denotes the
root of T , into two classes, which are called type I[K] trees and type II[K] trees. A directed rooted tree
T is called a type I[K] tree if the root r is contained in the kernel K of T and it is called a type II[K]

tree if the root r is not contained in the kernel of T .

However, in order to establish a recursive description of the size of the kernel K(T ) of a rooted tree

T with root r we introduce the auxiliary parameter K̂(T ). Given a tree T , the parameter K̃(T ) is

defined as K̂(T ) := K(T̂ )− 1, where the tree T̂ is obtained from T by attaching an additional node w
(i.e., w 6∈ T ) to the root r by a directed edge e = (r, w). This quantity is required here to describe the
“recoloring” of a tree whose root is originally in the kernel, when we attach the root to a new node,
which will itself lie in the kernel.

By removing the root r of a directed rooted tree T and the directed edges incident to r we obtain
a (possibly empty) collection of directed rooted trees B1, . . . , Bj , whose roots were originally joined

to r. We obtain then the following characterization of type I[K] and type II[K] trees via the type of
the branches B1, . . . , Bj and the orientation of the edges connecting r with the roots of the branches

together with a recursive description of K(T ) using the auxiliary quantity K̂(T ).

Lemma 3. If at least one of the branches B1, . . . , Bj of T , let us assume Bℓ, is a type I[K] tree that

is attached to the root r of T by a directed edge e = (r, root(Bℓ)), then T is a type II[K] tree and

K(T ) =

j
∑

k=1

K(Bk).

If every branch Bℓ of the branches B1, . . . , Bj of T has one of the following three properties:

(i) it is a type II[K] tree that is attached to the root r of T by a directed edge e = (r, root(Bℓ)),
(ii) it is a type II[K] tree that is attached to the root r of T by a directed edge e = (root(Bℓ), r),

(iii) it is a type I[K] tree that is attached to the root r of T by a directed edge e = (root(Bℓ), r),

then T is a type I[K] tree.

If we denote by L the following index set:

L := {ℓ : 1 ≤ ℓ ≤ j, Bℓ is a type I[K] tree that is attached to the root r of T

by a directed edge e = (r, root(Bℓ))},

then we obtain for type I[K] trees the following recursive description of K(T ) and K̂(T ):

K(T ) = 1 +
∑

ℓ 6∈L

K(Bℓ) +
∑

ℓ∈L

K̂(Bℓ), K̂(T ) =

j
∑

k=1

K(Bk).
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2.2. Simply generated tree families. A class T of simply generated trees can be defined in the
following way. A sequence of non-negative real numbers (ϕk)k≥0 with ϕ0 > 0 (ϕk can be seen as the
multiplicative weight of a node with out-degree k) is used to define the weight w(T ) of any ordered
tree T by w(T ) :=

∏

v ϕd(v), where v ranges over all vertices of T and d(v) is the out-degree (the
number of children) of v (in order to avoid degenerate cases we always assume that there exists a
k ≥ 2 such that ϕk > 0). The family T consists then of all trees T with w(T ) 6= 0 together with
their weights w(T ). It follows further that for a given degree-weight sequence (ϕk)k≥0 the generating
function T (z) :=

∑

n≥1 Tnz
n of the quantity total weights Tn :=

∑

|T |=n w(T ), where |T | denotes the

size of the tree T , satisfies the functional equation

T (z) = zϕ
(

T (z)
)

, (1)

where the degree-weight generating function ϕ(t) is given by ϕ(t) =
∑

k≥0 ϕkt
k.

A class T̃ of directed simply generated trees is obtained from the corresponding undirected simply
generated tree family T if for every tree T ∈ T , 2|T |−1 copies T̃1, . . . , T̃2|T |−1 of T are equipped with
all possible orientations of the |T | − 1 edges of T . The weights of the trees remain unchanged by

the orientation: if T̃ ∈ T̃ denotes a directed simply generated tree and T ∈ T its corresponding
undirected tree, then w(T̃ ) = w(T ). Of course, the total weights T̃n :=

∑

|T̃ |=n w(T̃ ) are given by

T̃n = 2n−1Tn and the generating function T̃ (z) :=
∑

n≥1 T̃nz
n satisfies T̃ (z) = T (2z)

2 and also the
functional equation

T̃ (z) = zϕ
(

2T̃ (z)
)

.

The asymptotic behaviour of T (z) as solution of (1) is discussed in detail in [7] and we collect some
of their results concerning T (z) and the growth of its coefficients Tn. We consider here T (z) as a
complex function, z ∈ C.

We will make throughout this paper always the following assumptions on ϕ(t).

Assumption 1. The degree-weight generating function ϕ(t) =
∑

k≥0 ϕkt
k, with ϕk ≥ 0 for all k ≥ 0,

satisfies the following three properties:

(i) ϕ(t) has a positive radius of convergence R > 0,
(ii) there exists a minimal positive solution τ < R of the equation tϕ′(t) = ϕ(t),

(iii) the period p := gcd{k : ϕk > 0} is one: p = 1.

If Assumption 1 is satisfied, then it holds that τ is the only solution of smallest modulus of the
equation tϕ′(t) = ϕ(t) (if τ̂ ∈ C is another solution of this equation then |τ̂ | > τ) and the function
T (z) has a unique dominant singularity z = ρ with ρ = τ

ϕ(τ) = 1
ϕ′(τ) (again, if ρ̂ is another singularity

of T (z) then |ρ̂| > ρ).

Furthermore, the local expansion of T (z) around the singularity z = ρ is given as follows, where κ
denotes a certain constant:

T (z) = τ −
√

2ϕ(τ)

ϕ′′(τ)

√

1 − z

ρ
+ κ

(

1 − z

ρ

)

+ O
(

(

1 − z

ρ

)
3

2

)

. (2)

By applying singularity analysis [8] one can translate the expansion (2) into the following asymptotic
expansion of the coefficients Tn:

Tn =

√

ϕ(τ)

2πϕ′′(τ)
ρ−nn−

3

2

(

1 + O(n−1)
)

. (3)

We want to mention further that it is often advantageous to describe a simply generated tree family
T by the formal recursive equation

T = ©×
(

ϕ0 · {ǫ} ∪̇ ϕ1 · T ∪̇ ϕ2 · T × T ∪̇ ϕ3 · T × T × T ∪̇ · · ·
)

= ©× ϕ(T ), (4)

with © a node, × the cartesian product, and ϕ(T ) the substituted structure (see e. g. [16]).

We also want to describe briefly the most important instances of simply generated tree families.



6 CYRIL BANDERIER, MARKUS KUBA, AND ALOIS PANHOLZER

Binary trees. They are simply generated trees with degree-weight generating function ϕ(t) = (1+ t)2.
The generating function T (z) satisfies the quadratic equation T (z) = z(1+T (z))2, which leads to the

solution T (z) = 1−2z−
√

1−4z
2z . Thus the number of binary trees of size n (i.e., the total weights) are

for n ≥ 1 given by the Catalan numbers: Tn = [zn]T (z) = 1
n+1

(

2n
n

)

.

Planted plane trees. They are simply generated trees with degree-weight generating function ϕ(t) =
1

1−t . The generating function T (z) satisfies the equation T (z) = z
1−T (z) , which leads to the solution

T (z) = 1−
√

1−4z
2 . Thus the number of planted plane trees of size n (i.e., the total weights) are for

n ≥ 1 given by Tn = [zn]T (z) = 1
n

(

2n−2
n−1

)

.

Rooted labelled trees. They can be considered as simply generated trees with degree-weight generating
function ϕ(t) = et. The generating function T (z) satisfies the equation T (z) = zeT (z). The sum of

the weights of all rooted labelled trees of size n is for n ≥ 1 given by Tn = [zn]T (z) = nn−1

n! . The

number of rooted labelled trees of size n is given by n!Tn = nn−1.

3. Results

We are stating here the results of the paper concerning the behaviour of the graph parameters studied
for random simply generated trees. Here Φ(x) denotes the distribution function of the standard normal
distribution N (0, 1).

Theorem 1. Let T be a simply generated tree family and T̃ the corresponding directed simply gen-
erated tree family, where the degree-weight generating function ϕ(t) satisfies Assumption 1. Then the
following results hold for the random variable Nn, which counts the node-independence number of a
random tree of size n in the family T , the r.v. Pn, which counts the path node-covering number of
a random tree of size n in the family T , and the r.v. Kn, which counts the size of the kernel of a
random tree of size n in the family T̃ .

(i) There exist constants µ
[N ]
T , µ

[P ]
T , µ

[K]
T and constants ν

[N ]
T , ν

[P ]
T , ν

[K]
T , which are specified in

Lemma 4-6, such that the expectations E(Nn), E(Pn), E(Kn) and the variances V(Nn), V(Pn),
V(Kn) are given by the following asymptotic expansions:

E(Nn) = µ
[N ]
T n+ O(1), V(Nn) = ν

[N ]
T n+ O(1),

E(Pn) = µ
[P ]
T n+ O(1), V(Pn) = ν

[P ]
T n+ O(1),

E(Kn) = µ
[K]
T n+ O(1), V(Kn) = ν

[K]
T n+ O(1).

(ii) If ν
[N ]
T 6= 0 then Nn is asymptotically normal distributed, where the rate of convergence is of

order O(n−
1

2 ):

sup
x∈R

∣

∣

∣

∣

∣

P

{

Nn − E(Nn)
√

V(Nn)
≤ x

}

− Φ(x)

∣

∣

∣

∣

∣

= O
( 1√

n

)

.

Analogous statements hold for Pn and Kn also, i.e., if ν
[P ]
T 6= 0 then Pn is asymptotically

normal distributed, and if ν
[K]
T 6= 0 then Kn is asymptotically normal distributed, both with

rate of convergence of order O(n−
1

2 ).

Remark. We conjecture that ν
[N ]
T 6= 0, ν

[P ]
T 6= 0 and ν

[K]
T 6= 0 holds for all simply generated tree

families satisfying Assumption 1, which would imply that degenerate cases are not appearing.

Theorem 2.

• For the family of binary trees all three parameters considered, Nn, Pn and Kn, are asymptot-
ically normal distributed, where the constants specified in Theorem 1 are given as follows:

µ[N ] = 4 − 2
√

3, ν[N ] =
52

3
− 10

√
3,

µ[P ] = 3 − 2
√

2, ν[P ] = 17 − 12
√

2,
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Node-independence number Path node-covering number
µ[N ] ν[N ] µ[P ] ν[P ]

Binary trees 0.53589838. . . 0.01282525. . . 0.17157287. . . 0.02943725. . .
Planted plane trees 0.61803398. . . 0.04721359. . . 0.35689586. . . 0.11161451. . .
Rooted labelled trees 0.56714329. . . 0.02568032. . . 0.25289897. . . 0.05975246. . .

Size of the kernel Maximum matching number
µ[K] ν[K] µ[M ] = 1 − µ[N ] ν[M ] = ν[N ]

Binary trees 0.48528137. . . 0.03575054. . . 0.46410161. . . 0.01282525. . .
Planted plane trees 0.57735026. . . 0.08860388. . . 0.38196601. . . 0.04721359. . .
Rooted labelled trees 0.52041864. . . 0.05547192. . . 0.43285670. . . 0.02568032. . .

Table 1. Numerical results for the parameters studied for the most important simply
generated tree families.

µ[K] = 6
√

2 − 8, ν[K] =
563

4
− 199

√
2

2
.

• For the family of planted plane trees all three parameters considered, Nn, Pn and Kn, are
asymptotically normal distributed, where the constants specified in Theorem 1 are given as
follows:

µ[N ] =

√
5

2
− 1

2
, ν[N ] =

√
5

5
− 2

5
,

µ[P ] = 4λ(1 − λ), ν[P ] =
−128λ2 + 78λ− 1

49
,

where λ is the smallest positive solution of 1 − 12t+ 20t2 − 8t3 = 0,

µ[K] =

√
3

3
, ν[K] =

2
√

3

9
− 8

27
.

• For the family of rooted (or unrooted) labelled trees all three parameters considered, Nn, Pn

and Kn, are asymptotically normal distributed, where the constants specified in Theorem 1 are
given as follows:

µ[N ] = λ, ν[N ] =
λ(1 − λ− λ2)

(1 + λ)2
,

where λ is the solution of tet = 1,

µ[P ] =
1 − 3λ+ λ2

2 − λ
, ν[N ] =

(λ− 1)(λ6 − 10λ5 + 42λ4 − 93λ3 + 111λ2 − 62λ+ 7)

(λ− 2)2(λ2 − 3λ+ 3)2
,

where λ is the solution of et(t− 2) + e(1 − t) = 0,

µ[K] =
2λ

1 + λ
, ν[K] =

2λ(1 − λ− λ2 − λ3)

(1 + λ)6
,

where λ is the solution of tet =
1

2
.

Numerical results for the constants appearing in Theorem 2 are given in Table 1.

For random labelled trees the limiting distribution result of the node-independence number together
with a computation of the constants µ[N ] and ν[N ] already appeared in [15]. For labelled trees and
planted plane trees the constants µ[N ] have been computed in [10] and [11], whereas the constants
µ[P ] have been computed in [13]. Finally for labelled trees the constant µ[K] already appears in [2].

Remark. The results hold for unrooted labelled trees also, since all parameters studied do not depend
on the actual root of a tree.
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4. Proof of Theorem 1 for the node-independence number

4.1. A system of functional equations. We will study the random variable Nn, which counts
the node-independence number of a random tree of size n in a simply generated tree family T that
satisfies Assumption 1. To do this we use the recursive description of the node-independence number
N(T ) described in Subsection 2.1, which leads to distributional recurrences for Nn conditioned on the
type I[N ] and type II[N ] trees.

Given a simply generated tree family T we denote by F the subfamily of type I[N ] trees and by
G the subfamily of type II[N ] trees in T . Furthermore we denote by Fn the total weight of size-n
trees of type I[N ], Fn :=

∑

|T |=n,T∈F w(T ), and by Gn the total weight of size-n trees of type II[N ],

Gn :=
∑

|T |=n,T∈G w(T ). Of course it holds Fn +Gn = Tn, where Tn gives the total weight of size-n

trees in T , see Subsection 2.2.

We introduce now the bivariate generating function of the probability that Nn has value m,

T (z, v) :=
∑

n≥1

∑

m≥0

TnP{Nn = m}znvm,

and the auxiliary generating functions for the corresponding probabilities conditioned on type I[N ]

and type II[N ] trees,

F (z, v) =
∑

n≥1

∑

m≥0

FnP{Nn = m | T ∈ F}znvm,

G(z, v) =
∑

n≥1

∑

m≥0

GnP{Nn = m | T ∈ G}znvm.

Of course we have the relation
T (z, v) = F (z, v) +G(z, v).

The recursive description of type I[N ] and type II[N ] trees given in Subsection 2.1 can be described by
the following formal equations:

F = ©×
(

ϕ0 · {ǫ} ∪̇ ϕ1 · G ∪̇ ϕ2 · G × G ∪̇ ϕ3 · G × G × G ∪̇ · · ·
)

= ©× ϕ(G), (5a)

G = ©×
(

ϕ1 ·
(

(F ∪̇ G) \ G
)

∪̇ ϕ2 ·
(

(F ∪̇ G)2 \ G2
)

∪̇ ϕ3 ·
(

(F ∪̇ G)3 \ G3
)

∪̇ · · ·
)

(5b)

= ©×
(

ϕ(F ∪̇ G) \ ϕ(G)
)

.

The formal recursive equation (5) together with the recursive description of N(T ) immediately leads
to the following system of functional equations for F (z, v) and G(z, v):

F (z, v) = zvϕ(G(z, v)), (6a)

G(z, v) = z
(

ϕ
(

F (z, v) +G(z, v)
)

− ϕ(G(z, v))
)

. (6b)

Since we can substitute F (z, v) by zvϕ(G(z, v)), we obtain a single functional equation for G(z, v):

G(z, v) = z
(

ϕ
(

zvϕ(G(z, v)) +G(z, v)
)

− ϕ(G(z, v))
)

, (7)

and T (z, v) can be expressed as follows:

T (z, v) = zvϕ(G(z, v)) +G(z, v). (8)

4.2. Treating the functional equations. In our distributional analysis of Nn we are interested in
the asymptotic behaviour of the coefficients [zn]T (z, v) uniformly in a neighbourhood of v = 1. We
will first establish a local expansion of G(z, v) around its dominant singularity (singularity of smallest
modulus) z = ρ(v), which holds uniformly for |v − 1| ≤ η with η > 0. This also leads to a local
expansion of T (z, v) around z = ρ(v) due to (8). To establish a suitable local expansion of G(z, v)
from the functional equation (8) we will apply a slightly modified version of a general theorem of
Drmota for such a kind of functional equations. Here, we basically state this theorem as given in
[6], which is suitable for our study of Nn here fz(z, y, v) := ∂

∂z f(z, y, v) always denotes the partial
derivative of the function f(z, y, v) w.r.t. z; analogous for the other variables.
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Theorem 3 (see Drmota [5],[6]). Suppose that f(z, y, v) =
∑

n,m fn,m(v)znym is an analytic function

in z, y around 0 and v around 0 such that f(0, y, v) = 0, that f(z, 0, v) 6= 0, and that all coefficients
fn,m(1) of f(z, y, 1) are real and non-negative. Then the unique solution y = y(z, v) =

∑

n yn(v)zn of
the functional equation

y = f(z, y, v),

with y(0, v) = 0, is analytic around 0 and has non-negative coefficients yn(1) for v = 1. Furthermore,
if the region of convergence of f(z, y, v) is large enough such that there exist non-negative solutions
z = ρ and y = τ1 of the system of equations

y = f(z, y, 1), (9a)

1 = fy(z, y, 1), (9b)

with fz(ρ, τ1, 1) 6= 0 and fyy(ρ, τ1, 1) 6= 0, and f(z, y, v) is analytic around z = ρ, y = τ1 and v = 1,
then there exist functions ρ(v), p(z, v), q(z, v) which are analytic around z = ρ(v) and v = 1 such that
y(z, v) is analytic for |z| < ρ(v) and |v− 1| ≤ ǫ (for some ǫ > 0) and has a representation of the form

y(z, v) = p(z, v) − q(z, v)

√

1 − z

ρ(v)
, (10)

locally around z = ρ and v = 1. We have τ1(v) := p(ρ(v), v) = y(ρ(v), v) and

q(ρ(v), v) =

√

√

√

√

2ρ(v)fz(ρ(v), τ1(v), v)

fyy

(

ρ(v), τ1(v), v
) . (11)

Moreover, (11) provides a local analytic continuation of y(z, v) for arg(z − ρ(v)) 6= 0. Furthermore, if
yn(1) > 0, for all n > n0 with an arbitrary n0 ∈ N, then z = ρ(v) is the only dominant singularity of
y(z, v) for |v − 1| ≤ ǫ.

Remark 1. We have to assume that the function f(z, y, v) exists in a neighbourhood of z = ρ, y = τ1
and v = 1, in order ensure that y(z, v) is analytic for |z| < ρ(v) and |v − 1| ≤ ǫ. Without our new
assumptions one may construct pathological examples of the form f(z, y, v) = a(z, y) · b(v), satisfying
all other assumptions, where b(1) is finite and b(v) having i.e. a branching point at v = 1, which would
violate the analyticity of y(z, v) at v = 1. The extra assumption is usually fulfilled in the context of
combinatorial enumeration, and therefore not a severe restriction, since it can easily be checked for
concrete problems. Note that the assumption certainly implies the stated result, but we expect that
weaker assumptions may also be sufficient.

Remark 2. The proof of Theorem 3 is fully analogous to the original proof of Drmota [5], page
113, Proposition 1, except the fact, that we a priori assume that f(z, y, v) is analytic around z = ρ,
y = τ1 and v = 1, which justifies the argument of Drmota [5], page 115, regarding the Weierstrass
preperation theorem. Moreover, this also proves that the argument regarding the dominant singularity
in the proof of Lemma 1 of Drmota on page 116 is correct, when assuming the analyticity of f(z, y, v)
around z = ρ, y = τ1 and v = 1.

We will apply Theorem 3 to the functional equation (7), which is written now in the following form:

G = f(z,G, v) := z
(

ϕ
(

zvϕ(G) +G
)

− ϕ(G)
)

. (12)

We easily verify that f(0, G, v) = 0 and that

f(z, 0, v) = z
∑

k≥1

ϕkz
kvkϕk

0 6= 0, (13)

due to Assumption 1. We obtain by Taylor-series expansion,

f(z,G, v) = z
(

ϕ
(

zvϕ(G)+G
)

−ϕ(G)
)

= z
(

∑

j≥0

ϕ(j)(G)
(ϕ(G)zv)j

j!
−ϕ(G)

)

=
∑

j≥1

ϕ(j)(G)
ϕ(G)jvjzj+1

j!
.

(14)
Hence, the coefficients [znGm]f(z,G, 1) are real and non-negative, since ϕ(G) and thus also its j-th
derivatives ϕ(j)(G) have itself real and non-negative coefficients.
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Following (9) we consider the system of equations

G = f(z,G, 1) = z
(

ϕ
(

zϕ(G) +G
)

− ϕ(G)
)

(15a)

1 = fG(z,G, 1) = z
(

ϕ′(zϕ(G) +G
)(

zϕ′(G) + 1
)

− ϕ′(G)
)

. (15b)

We are searching for values z = ρ and G = τ1, which solve the system of equations (15). We set

H := G+ zϕ(G), τ := τ1 + ρϕ(τ1), (16)

and immediately obtain from (15a)

H = zϕ(H), τ = ρϕ(τ). (17)

Due to Assumption 1, condition (ii), there exist a minimal positive solution of (17) within the radius of
convergence of ϕ(t).We obtain exactly the constants τ and ρ described in Subsection 2.2 (in particular
z = ρ is the unique dominant singularity of the generating function T (z) also). Hence τ1 is given as
the minimal positive solution of equation(16), and it follows by our assumptions on ϕ(t) that τ1 exists
with 0 < τ1 < τ . By equation 14 f(z, y, v) clearly exists in a neighbourhood of z = ρ, G = τ1 and
v = 1.

Now the core statement of Theorem 3 guarantees that in a neighbourhood of v = 1, |v− 1| ≤ ǫ, there
exist analytic functions ρ(v), p(z, v) and q(z, v) such that G(z, v) is analytic for |z| < ρ(v) and it has
the following local representation around z = ρ(v):

G(z, v) = p(z, v) − q(z, v)

√

1 − z

ρ(v)
. (18)

For our purpose the following local expansion of G(z, v) around the dominant singularity z = ρ(v),
which holds uniformly for |v − 1| ≤ ǫ and is an immediate consequence of (18), is sufficient:

G(z, v) = τ1(v) − q(ρ(v), v)

√

1 − z

ρ(v)
+ κ(v)

(

1 − z

ρ(v)

)

+ O
(

(1 − z

ρ(v)
)

3

2

)

, (19)

where τ1(v) := p(ρ(v), v) = G(ρ(v), v) and, due to (11):

q(ρ(v), v) =

√

√

√

√

2ρ(v)fz(ρ(v), τ1(v), v)

fGG

(

ρ(v), τ1(v), v
) . (20)

The function κ(v) is not specified, since the actual function is of no importance here.

Since T (z, v) is obtained from G(z, v) via (8), we obtain that, in a neighbourhood of v = 1, T (z, v) is
analytic for |z| < ρ(v) and z = ρ(v) is a dominant singularity of T (z, v). Using (19) and a Taylor-series
expansion of ϕ(t) we obtain the following local expansion of T (z, v) around z = ρ(v), which holds
uniformly for |v − 1| ≤ ǫ:

T (z, v) = τ1(v)+vρ(v)ϕ(τ1(v))−q(ρ(v), v)(1+ϕ′(τ1(v)))

√

1 − z

ρ(v)
+κ̃(v)

(

1− z

ρ(v)

)

+O
(

(1− z

ρ(v)
)

3

2

)

,

(21)
with a certain function κ̃(v).

Up to now, we did not consider, whether z = ρ(v) is the unique dominant singularity of T (z, v) for
|v − 1| ≤ ǫ. However, the last statement of Theorem 3 gives a condition, which guarantees that
z = ρ(v) is the unique dominant singularity of G(z, v), which implies due to (16) that this also holds
for T (z, v): we only have to show that Gn, i.e., the total weight of size-n trees of type II[N ], is positive
for trees large enough, n > n0. This is shown in Subsection 7.1 for families satisfying Assumption 1
and thus it is guaranteed for those simply generated tree families that z = ρ(v) is indeed the unique
dominant singularity of T (z, v).
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4.3. Extracting coefficients. The appearing local expansion (21) is amenable for singularity anal-
ysis and we will apply the transfer lemmata of Flajolet and Odlyzko [8], which allows to transfer the
local behaviour of a generating function around its dominant singularity to the asymptotic behaviour
of its coefficients. The asymptotic expansion for the coefficients [zn]T (z, v) =

∑

m≥0 TnP{Nn = m}vm

can be translated immediately into an expansion of the moment generating function (= Laplace trans-
form) E

(

eNns
)

of the random variable Nn considered via

E
(

eNns
)

=
∑

m≥0

P{Xn = m}esm =
[zn]T (z, es)

[zn]T (z, 1)
=

[zn]T (z, es)

Tn
. (22)

Then we can apply the continuity theorem of the Laplace transform to obtain the convergence in
distribution of Nn to a Gaussian distributed random variable. In the instances appearing here we can
apply directly the so called quasi-power theorem due to Hwang. It gives a powerful method not only
to prove the Gaussian limit law but also to determine the rate of convergence. The theorem as given
in [9] is stated below.

Theorem 4 (Quasi-power theorem, H. K. Hwang, [9]). Let (Xn)n≥1 by a sequence of integer random
variables. Assume that the moment generating functions Mn(s) := E(eXns) of Xn are analytic in a
disc |s| ≤ ρ, for some ρ > 0, and satisfy there an expansion of the form

Mn(s) = eφ(n)U(s)+V (s)
(

1 + O(κ−1
n )

)

, (23)

where φ(n), κn → ∞ and U(s), V (s) are independent of n and analytic for |s| ≤ ρ. Assume also the
variability condition U ′′(0) 6= 0. Under these assumptions, the mean and variance of Xn satisfy

E(Xn) = U ′(0)φ(n) + V ′(0) + O(κ−1
n ), V(Xn) = U ′′(0)φ(n) + V ′′(0) + O(κ−1

n ). (24)

The distribution of Xn is asymptotically Gaussian and the speed of convergence to the Gaussian limit
is O(κ−1

n + φ(n)−1/2):

sup
x∈R

∣

∣

∣

∣

∣

P

{

Xn − E(Xn)
√

V(Xn)
≤ x

}

− Φ(x)

∣

∣

∣

∣

∣

= O
( 1

κn
+

1
√

φ(n)

)

, (25)

where Φ(x) denotes the distribution function of the Gaussian normal distribution N (0, 1).

We will proceed now with showing Theorem 1 following the steps outlined above. Starting from the
local expansion (21) we obtain by an application of singularity analysis immediately

[zn]T (z, v) =
h(ρ(v), v)

(

1 + ϕ′(τ1(v))
)

2
√
π

· 1

ρ(v)nn
3

2

(

1 + O(
1

n
)
)

. (26)

Together with the asymptotic expansion (3) for Tn we get from (26) via (22) the following expansion
of the moment generating function of Nn uniformly in a complex neighbourhood of s = 0:

E
(

eNns
)

=
[zn]T (z, es)

Tn
= h(ρ(es), es)

(

1 + ϕ′(τ1(e
s))

)

√

ϕ′′(τ)

2ϕ(τ)

ρn

ρ(es)n

(

1 + O(
1

n
)
)

= exp
(

nU(s) + V (s)
)

(

1 + O(
1

n
)
)

.

(27)

The functions U(s) and V (s), which are analytic around s = 0, are given as follows:

U(s) = log
( ρ

ρ(es)

)

, (28)

and

V (s) = log
(

h(ρ(es), es)
)

+ log
(

1 + ϕ′(τ1(e
s))

)

+
1

2
log(ϕ′′(τ)) − log(ϕ(τ)). (29)

The corresponding part of Theorem 1 concerning the Gaussian limit distribution of Nn follows now by
an application of Theorem 4, provided that U ′′(0) 6= 0 holds. Furthermore we obtain from Theorem 4
the following asymptotic expansion of the expectation E(Nn) and V(Nn):

E(Nn) = µ
[N ]
T n+ O(1), V(Nn) = ν

[N ]
T n+ O(1), (30)
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with
µ

[N ]
T := U ′(0), ν

[N ]
T := U ′′(0). (31)

It remains to compute the leading constants µ
[N ]
T = U ′(0) and ν

[N ]
T = U ′′(0). Using (28) we obtain

U ′(0) = −ρ
′(1)

ρ
(32)

and

U ′′(0) =
ρ′(1)2

ρ2
− ρ′(1)

ρ
− ρ′′(1)

ρ
= U ′(0)2 + U ′(0) − ρ′′(1)

ρ
. (33)

To compute ρ′(v) and ρ′′(v) we use the fact that the solution of the following system of equations is
given by z = ρ(v) and G = τ1(v), which is a consequence of the implicit function theorem:

G = f(z,G, v), (34a)

1 = fG(z,G, v), (34b)

with f(z,G, v) given by (12). Implicit differentiation of (34) gives then the following result.

Lemma 4. The constants µ
[N ]
T and ν

[N ]
T appearing in Theorem 1 are given as follows:

µ
[N ]
T = −ρ

′(1)

ρ
, ν

[N ]
T =

ρ′(1)2

ρ2
− ρ′(1)

ρ
− ρ′′(1)

ρ
,

where ρ, ρ′(1) and ρ′′(1) are specified below and the constants τ and τ1 appearing there are given by
the minimal positive real solutions of the functional equations stated. It holds then with

f(z,G, v) = z
(

ϕ
(

zvϕ(G) +G
)

− ϕ(G)
)

the following:

τϕ′(τ) = ϕ(τ), ρ =
τ

ϕ(τ)
, τ1 + ρϕ(τ1) = τ,

ρ′(1) = −fv

fz
, τ ′1(1) =

−fzG · ρ′(1) − fvG

fGG
,

ρ′′(1) = − 1

fz

(

fzz · ρ′(1)2 + 2fzG · ρ′(1)r′(1) + fGG · r′(1)2 + 2fvz · ρ′(1) + 2fvG · r′(1) + fvv

)

,

where we use the abbreviations fd := fd(ρ, τ1, 1) and fde := fde(ρ, τ1, 1), for d, e ∈ {z,G, v}.
The results of Theorem 2 concerning the node-independence number Nn follow by establishing the
computations of Lemma 4 for ϕ(t) = (1 + t)2: binary trees, ϕ(t) = 1

1−t : planted plane trees and

ϕ(t) = et: rooted labelled trees.

5. Proof of Theorem 1 for the path node-covering number

The study of the random variable Pn, which counts the path-node covering number of a random tree
of size n in a simply generated tree family T that satisfies Assumption 1, can be carried out completely
analogous to Nn, the corresponding random variable for the node-independence number, as done in
Section 4. Thus we will be more brief and carry out the main steps only.

Here we denote by F the subfamily of type I[P ] trees and by G the subfamily of type II[P ] trees in a
simply generated tree family T . We also denote by Fn the total weight of size-n trees of type I[P ], Fn :=
∑

|T |=n,T∈F w(T ), and by Gn the total weight of size-n trees of type II[P ], Gn :=
∑

|T |=n,T∈G w(T ).

Thus Fn +Gn = Tn, where Tn gives the total weight of size-n trees in T .

We will introduce the bivariate generating function

T (z, v) :=
∑

n≥1

∑

m≥0

TnP{Pn = m}znvm,

and the auxiliary generating functions for the type I[P ] and type II[P ] trees:

F (z, v) =
∑

n≥1

∑

m≥0

FnP{Pn = m | T ∈ F}znvm,
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G(z, v) =
∑

n≥1

∑

m≥0

GnP{Pn = m | T ∈ G}znvm,

which satisfy T (z, v) = F (z, v) +G(z, v).

The recursive description of type I[P ] and type II[P ] trees given in Subsection 2.1 can be described by
the following formal equations:

G = ©×
(

ϕ0 · {ǫ} ∪̇ ϕ1 · F ∪̇ ϕ2 · F × F ∪̇ ϕ3 · F × F × F ∪̇ · · ·
)

(35a)

∪̇ © ×
(

ϕ1 · G ∪̇ 2ϕ2 · G × F ∪̇ 3ϕ3 · G × F × F ∪̇ · · ·
)

= ©× ϕ(F) ∪̇ © × G × ϕ′(F),

F = ©×
(

ϕ2 ·
(

(F ∪̇ G)2 \ (F2 ∪̇ 2 · G × F)
)

∪̇ ϕ3 ·
(

(F ∪̇ G)3 \ (F3 ∪̇ 3 · G × F2)
)

∪̇ · · ·
)

(35b)

= ©×
(

ϕ(F ∪̇ G) \ (ϕ(F ) ∪̇ G × ϕ′(F))
)

.

The formal recursive equation (35) together with the recursive description of P (T ) leads then to the
following system of functional equations for F (z, v) and G(z, v):

G(z, v) = zvϕ(F (z, v)) + zG(z, v)ϕ′(F (z, v)), (36a)

F (z, v) =
z

v

(

ϕ
(

F (z, v) +G(z, v)
)

− ϕ(F (z, v)) −G(z, v)ϕ′(F (z, v))
)

. (36b)

We can express G(z, v) as function of F (z, v):

G(z, v) =
zvϕ(F (z, v))

1 − zϕ′(F (z, v))
,

which leads to the following single functional equation for F (z, v):

F (z, v) =
z

v

[

ϕ

(

F (z, v) +
zvϕ(F (z, v))

1 − zϕ′(F (z, v))

)

− ϕ(F (z, v)) − zvϕ(F (z, v))ϕ′(F (z, v))

1 − zϕ′(F (z, v))

]

. (37)

T (z, v) can be expressed as follows:

T (z, v) = F (z, v) +
zvϕ(F (z, v))

1 − zϕ′(F (z, v))
. (38)

In order to show a local expansion of F (z, v) (and as a consequence of T (z, v)) around the dominant
singularity z = ρ(v) we will apply Theorem 3 to the functional equation

F = f(z, F, v) =
z

v

[

ϕ

(

F +
zvϕ(F )

1 − zϕ′(F )

)

− ϕ(F ) − zvϕ(F )ϕ′(F )

1 − zϕ′(F )

]

. (39)

One can easily verify that the assumptions on f(z, F, v) required in Theorem 3 are satisfied. Now we
turn to the system of equations

F = f(z, F, 1) = z

[

ϕ

(

F +
zϕ(F )

1 − zϕ′(F )

)

− ϕ(F ) − zϕ(F )ϕ′(F )

1 − zϕ′(F )

]

, (40a)

1 = fF (z, F, 1) = z

[

ϕ′
(

F +
zϕ(F )

1 − zϕ′(F )

)

·
(

1 +
zϕ′(F )

1 − zϕ′(F )
+
z2ϕ(F )ϕ′′(F )

1 − zϕ′(F )

)

− ϕ′(F ) − z(ϕ′2(F ) + ϕ(F )ϕ′′(F ))(1 − zϕ′(F )) + z2ϕ(F )ϕ′(F )ϕ′′(F )

(1 − zϕ′(F ))2

]

, (40b)

and search for z = ρ and F = τ1 satisfying the system (40). If we set

H := F +
zϕ(F )

1 − zϕ′(F )
, τ := τ1 +

ρϕ(τ1)

1 − ρϕ′(τ1)
, (41)

then we obtain the functional equation

H = zϕ(H), τ = ρϕ(τ),

Thus τ and ρ are again the values appearing in Subsection 2.2 and τ1, with 0 < τ1 < τ , is given as
the solution of equation (41).
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Theorem 3 guarantees then the following local expansion of F (z, v) around the dominant singularity
z = ρ(v), uniformly for |v − 1| ≤ ǫ:

F (z, v) = τ1(v) − q(ρ(v), v)

√

1 − z

ρ(v)
+ κ(v)

(

1 − z

ρ(v)

)

+ O
(

(1 − z

ρ(v)
)

3

2

)

, (42)

where κ(v) is a certain function, τ1(v) = F (ρ(v), v) and q(ρ(v), v) is given as follows:

q(ρ(v), v) =

√

√

√

√

2ρ(v)fz(ρ(v), τ1(v), v)

fFF

(

ρ(v), τ1(v).v
) .

Equation (42) together with (38) leads then to the following local expansion of T (z, v) around its
dominant singularity z = ρ(v):

T (z, v) = α(v) − β(v)

√

1 − z

ρ(v)
+ κ̃(v)

(

1 − z

ρ(v)

)

+ O
(

(

1 − z

ρ(v)

)
3

2

)

, (43)

where α(v), β(v) and κ̃(v) are certain functions analytic around v = 1, which are not specified here
since the actual functions are not required in the sequel.

Again we can prove that z = ρ(v) is the unique dominant singularity of F (z, v) and T (z, v) for
|v − 1| ≤ ǫ, by showing that Fn, i.e., the total weight of size-n trees of type I[P ], is positive for trees
large enough, n > n0. This is carried out in Subsection 7.2 for families satisfying Assumption 1.

An application of singularity analysis shows then the following expansion of the moment generating
function of Pn uniformly in a complex neighbourhood of s = 0:

E
(

ePns
)

=
[zn]T (z, es)

Tn
= β(es)

√

ϕ′′(τ)

2ϕ(τ)

ρn

ρ(es)n

(

1 + O(
1

n
)
)

= exp
(

nU(s) + V (s)
)

(

1 + O(
1

n
)
)

,

(44)

where the functions U(s) and V (s) are analytic around s = 0 and U(s) is given as follows (V (s) will
not be required in the sequel):

U(s) = log
( ρ

ρ(es)

)

. (45)

The corresponding part of Theorem 1 concerning the Gaussian limit distribution of Pn follows now
by an application of Theorem 4, provided that U ′′(0) 6= 0 holds.

The leading constants µ
[P ]
T = U ′(0) of the expectation and ν

[P ]
T = U ′′(0) of the variance of Pn are

specified as follows:

Lemma 5. The constants µ
[P ]
T and ν

[P ]
T appearing in Theorem 1 are given as follows:

µ
[P ]
T = −ρ

′(1)

ρ
, ν

[P ]
T =

ρ′(1)2

ρ2
− ρ′(1)

ρ
− ρ′′(1)

ρ
,

where ρ, ρ′(1) and ρ′′(1) are specified below and the constants τ and τ1 appearing there are given by
the minimal positive real solutions of the functional equations stated. It holds then with

f(z, F, v) =
z

v

[

ϕ

(

F +
zvϕ(F )

1 − zϕ′(F )

)

− ϕ(F ) − zvϕ(F )ϕ′(F )

1 − zϕ′(F )

]

the following:

τϕ′(τ) = ϕ(τ), ρ =
τ

ϕ(τ)
, τ1 +

ρϕ(τ1)

1 − ρϕ′(τ1)
= τ,

ρ′(1) = −fv

fz
, τ ′1(1) =

−fzF · ρ′(1) − fvF

fFF
,

ρ′′(1) = − 1

fz

(

fzz · ρ′(1)2 + 2fzF · ρ′(1)r′(1) + fFF · r′(1)2 + 2fvz · ρ′(1) + 2fvF · r′(1) + fvv

)

,

where we use the abbreviations fd := fd(ρ, τ1, 1) and fde := fde(ρ, τ1, 1), for d, e ∈ {z, F, v}.
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The results of Theorem 2 concerning the path node-covering number Pn follow again by establishing
the computations of Lemma 5 for ϕ(t) = (1 + t)2: binary trees, ϕ(t) = 1

1−t : planted plane trees and

ϕ(t) = et: rooted labelled trees.

6. Proof of Theorem 1 for the size of the kernel

Now we study the random variable Kn, which counts the size of the kernel of a random tree of size
n in a directed simply generated tree family T̃ that satisfies Assumption 1. In principle one uses
the same steps as in Section 4 and Section 5, but things are slightly more involved, since, unlike the
corresponding computations for Nn and Pn, one cannot reduce the system of functional equations
appearing to a single equation in an easy way.

Given a directed simply generated tree family T̃ we denote by F the subfamily of type I[K] trees and
by G the subfamily of type II[K] trees in T̃ . Furthermore we denote by Fn the total weight of size-n
trees of type I[K], Fn :=

∑

|T̃ |=n,T̃∈F w(T̃ ), and by Gn the total weight of size-n trees of type II[K],

Gn :=
∑

|T̃ |=n,T̃∈G w(T̃ ). Of course it holds Fn +Gn = T̃n, where T̃n gives the total weight of size-n

trees in T̃ , see Subsection 2.2.

We introduce now the bivariate generating function of the probability that Kn has value m,

T (z, v) :=
∑

n≥1

∑

m≥0

T̃nP{Kn = m}znvm,

and the following auxiliary generating functions:

F (z, v) =
∑

n≥1

∑

m≥0

FnP{Kn = m | T̃ ∈ F}znvm,

G(z, v) =
∑

n≥1

∑

m≥0

GnP{Kn = m | T̃ ∈ G}znvm,

H(z, v) =
∑

n≥1

∑

m≥0

FnP{K̂n = m | T̃ ∈ F}znvm.

Here the random variable K̂n is given by subtracting 1 from the size of the kernel of a tree T̂ , which
is obtained from a randomly chosen size-n tree in T̃ by attaching the root of T̃ to an additional node
w 6∈ T̃ by a directed edge e = (w, root(T̃ )).

Of course, the following equation holds by definition:

T (z, v) = F (z, v) +G(z, v).

The recursive description of type I[K] and type II[K] trees given in Subsection 2.1 can be described by
the following formal equations:

G = ©×
(

ϕ
(

F↑ ∪̇ F↓ ∪̇ G↑ ∪̇ G↓) \ ϕ
(

F↑ ∪̇ G↑ ∪̇ G↓)
)

, (46a)

F = ©× ϕ
(

F↑ ∪̇ G↑ ∪̇ G↓). (46b)

Here F↓ denotes that F is attached to © by a directed edge (©, root(F)) and F↑ denotes that F is
attached to © by a directed edge (root(F),©), etc.

The formal recursive equation (46) together with the recursive description of K(T ) leads then to the
following system of functional equations for F (z, v), G(z, v) and H(z, v):

F (z, v) = zvϕ
(

2G(z, v) +H(z, v)
)

, (47a)

G(z, v) = z
(

ϕ
(

2G(z, v) + 2F (z, v)
)

− ϕ
(

2G(z, v) + F (z, v)
)

)

, (47b)

H(z, v) = zϕ
(

2G(z, v) + F (z, v)
)

. (47c)

To treat the system of functional equations (47) we will apply an extension of Theorem 3, which
follows from [5] and deals with the situation appearing here. Before stating this theorem we introduce
some notation. The theorem deals with systems of functional equations

y1 = f1(z, y1, . . . , yN , v), . . . , yN = fN (z, y1, . . . , yN , v)
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for the unknown functions y1(z, v), . . . , yN (z, v). The system will be annotated in vectorial form as

follows: ~y = ~f(z, ~y, v) with ~y = (y1, . . . , yN ) and ~f = (f1, . . . , fN ). The identity matrix of size N is

denoted by EN . Furthermore ~f~y denotes the N ×N -matrix of partial derivatives of ~f w.r.t. ~y:

~f~y =

(

∂
∂y1

f1 ... ∂
∂yN

f1

...
...

∂
∂y1

fN ... ∂
∂yN

fN

)

.

We also define the notion of the dependency graph G~f = (V,E) of a system of functional equations

~y = ~f(z, ~y, v): the set of vertices V = {y1, . . . , yN} is given by the set of unknown functions and an
ordered pair (yi, yj) is contained in the edge set E if and only if fi(z, ~y, v) really depends on yj .

Theorem 5 (see Drmota, [5]). Suppose that ~f(z, ~y, v) = (f1(z, ~y, v), . . . , fN (z, ~y, v)), with ~y =

(y1, . . . , yN ) are analytic functions around z = 0, ~y = (y1, . . . , yN ) = ~0 and v = 0, such that all

Taylor coefficients of f1(z, y, 1), . . . , fN (z, y, 1) are real and non-negative, that ~f(0, ~y, v) = ~0, that
~f(z,~0, v) 6= ~0, ~fz(z, ~y, v) 6= ~0, and that there exists j with ~fyjyj

(z, ~y, v) 6= ~0. Furthermore we assume

that the region of convergence of ~f(z, ~y, v) is large enough such that there exist non-negative solutions
z = ρ and ~y = (τ1, . . . , τN ) of the system of equations

~y = ~f(z, ~y, 1), (48a)

0 = det
(

EN − ~f~y(z, ~y, 1)
)

, (48b)

inside it. Let

~y = ~y(z, v) = (y1(z, v), . . . , yN (z, v))

denote the analytic solutions of the system

~y = ~f(z, ~y, v), (49)

with ~y(0, v) = ~0. If the dependency graph G~f = (V,E) of the system (49) in the unknown functions

y1(z, v), . . . , yN (z, v) is strongly connected, and ~f(z, ~y, 1) is analytic around z = ρ and ~y = (τ1, . . . , τN )
and v = 1, then there exist functions ρ(v), p1(z, v), . . . , pN (z, v), q1(z, v), . . . , qN (z, v) which are an-
alytic around z = ρ(v) and v = 1 such that y1(z, v), . . . , yN (z, v) are analytic for |z| < ρ(v) and
|v − 1| ≤ ǫ (for some ǫ > 0) and have a representation of the form

y1(z, v) = p1(z, v) − q1(z, v)

√

1 − z

ρ(v)
, . . . , yN (z, v) = pN (z, v) − qN (z, v)

√

1 − z

ρ(v)
(50)

locally around z = ρ(v) and v = 1. Moreover, (50) provides a local analytic continuation of y1(z, v),
. . . , yN (z, v) for arg(z−ρ(v)) 6= 0. Furthermore, if the coefficients [zn]yj(z, 1) > 0 (for all 1 ≤ j ≤ N),
for all n > n0 with an arbitrary n0 ∈ N, then z = ρ(v) is the only dominant singularity of the functions
y1(z, v), . . . , yn(z, v) for |v − 1| ≤ ǫ.

It further holds that z = ρ(v) and (y1, . . . , yN ) = (τ1(v), . . . , τN (v)) with τj(v) := yj(ρ(v), v), for
1 ≤ j ≤ N are the solutions of the extended system

~y = ~f(z, ~y, v), (51a)

0 = det
(

EN − ~f~y(z, ~y, v)
)

. (51b)

Remark 3. As in the proof of Theorem 3 we need to ensure that the functions yj(z, v) exist locally

around v = 1. The extra condition of ~f(z, ~y, 1) being analytic around z = ρ and ~y = (τ1, . . . , τN ) and
v = 1 is sufficient to ensure this. We refer the reader again to the work of Drmota [5].

We will now apply Theorem 5 to the system (47), which is written in the following form:

F = f(z, F,G,H, v) := vzϕ
(

2G+H
)

, (52a)

G = g(z, F,G,H, v) := z
(

ϕ
(

2G+ 2F
)

− ϕ
(

2G+ F
)

)

, (52b)

H = h(z, F,G,H, v) := zϕ
(

2G+ F
)

. (52c)
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It is easily verified that the dependency graph of the system (52) is strongly connected and that
Theorem 5 is applicable, since the assumptions made on f , g and h are satisfied. We only have to
guarantee that for v = 1 the system of equations corresponding to (48) has positive real solutions
z = ρ̃ and F = τ1, G = τ2, H = τ3 within the radius of convergence of f , g and h. Since we have by
definition F (z, 1) = H(z, 1), which implies τ1 = τ3, the task can be reduced to find a positive solution
z = ρ̃, F = τ1 and G = τ2 of the following system:

F = zϕ(2G+ F ), (53a)

G = z
(

ϕ(2G+ 2F ) − ϕ(2G+ F )
)

, (53b)

0 = det
(

1−zϕ′(2G+F ) −2zϕ′(2G+F )

−z
(

2ϕ′(2G+2F )−ϕ′(2G+F )
)

1−z
(

2ϕ′(2G+2F )−2ϕ′(2G+F )
)

)

(53c)

= −
(

1 − 2zϕ′(2G+ 2F )
)(

1 + zϕ′(2G+ F )
)

.

If we set τ̃ := τ1 + τ2 one easily obtains from (53) that τ̃ is given as minimal positive solution of the
following equation:

2τ̃ϕ′(2τ̃) = ϕ(2τ̃), (54)

and ρ̃ is given by

ρ̃ =
τ̃

ϕ(2τ̃)
=

1

2ϕ′(2τ̃)
. (55)

Thus we obtain that 2τ̃ = τ and 2ρ̃ = ρ, where the constants τ and ρ are defined in Subsection 2.2.
Thus by Assumption 1 it holds that τ̃ , and as a consequence ρ̃, exist. Furthermore we obtain from
(53) that τ1 and τ2 are given as follows, where τ1, with 0 < τ1 < τ̃ is the minimal positive solution of
the equation stated:

τ1 = ρ̃ϕ(2τ̃ − τ1), τ2 = τ̃ − τ1. (56)

Now Theorem 5 guarantees that in a neighbourhood of v = 1, |v−1| ≤ ǫ, there exist analytic functions
ρ̃(v), p1(z, v), p2(z, v), p3(z, v) and q1(z, v), q2(z, v), q3(z, v) such that F (z, v), G(z, v) and H(z, v)
are analytic for |z| < ρ̃(v) and they have the following local representations around z = ρ̃(v):

F (z, v) = p1(z, v) − q1(z, v)

√

1 − z

ρ̃(v)
, G(z, v) = p2(z, v) − q2(z, v)

√

1 − z

ρ̃(v)
,

H(z, v) = p3(z, v) − q3(z, v)

√

1 − z

ρ̃(v)
.

(57)

Since T (z, v) = F (z, v) + G(z, v) we obtain that in a neighbourhood of v = 1, T (z, v) is analytic for
|z| < ρ̃(v) and z = ρ̃(v) is a dominant singularity of T (z, v). Furthermore we obtain from (57) that
T (z, v) has the following local expansion around z = ρ̃(v), which holds uniformly for |v − 1| ≤ ǫ:

T (z, v) = α(v) − β(v)

√

1 − z

ρ̃(v)
+ κ(v)

(

1 − z

ρ̃(v)

)

+ O
(

(

1 − z

ρ̃(v)

)
3

2

)

, (58)

with certain analytic functions α(v), β(v) and κ(v), which are not specified, since the actual functions
are not required further.

In order to prove that z = ρ̃(v) is the unique dominant singularity of T (z, v) in a neighbourhood
of v = 1 we will show in Subsection 7.3 that, for tree families satisfying Assumption 1, Fn and Gn,
i.e., the total weight of size-n trees of type I[K] and of type II[K], are positive for trees large enough,
n > n0.

An application of singularity analysis to equation (58) shows then the following expansion of the
moment generating function of Kn uniformly in a complex neighbourhood of s = 0:

E
(

eKns
)

=
[zn]T (z, es)

T̃n

= β(es)

√

2ϕ′′(2τ̃)

ϕ(2τ̃)

ρ̃n

ρ̃(es)n

(

1 + O(
1

n
)
)

= exp
(

nU(s) + V (s)
)

(

1 + O(
1

n
)
)

,

(59)
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where the functions U(s) and V (s) are analytic around s = 0 and U(s) is given as follows (V (s) will
not be required in the sequel):

U(s) = log
( ρ̃

ρ̃(es)

)

. (60)

The corresponding part of Theorem 1 concerning the Gaussian limit distribution of Kn follows now
by an application of Theorem 4, provided that U ′′(0) 6= 0 holds.

In order to determine the leading constants µ
[K]
T = U ′(0) of the expectation and ν

[K]
T = U ′′(0) of the

variance of Kn we use the fact that z = ρ̃(v), F = τ1(v) := F (ρ̃(v), v), G = τ2(v) := G(ρ̃(v), v) and
H = τ3(v) := H(ρ̃(v), v) are solutions of the following system of equations:

F = f(z, F,G,H, v), (61a)

G = g(z, F,G,H, v), (61b)

H = h(z, F,G,H, v), (61c)

0 = W (z, F,G,H, v) := det
( 1−fF −fG −fH

−gF 1−gG −gH

−hF −hG 1−hH

)

, (61d)

where the functions f , g and h are given by equation (52). The required values ρ̃′(1) and ρ̃′′(1) can
then be obtained from (61) by implicit differentiation. For the sake of completeness we collect in the

following lemma these somewhat lengthy results concerning the constants µ
[K]
T and ν

[K]
T appearing in

Theorem 1 for arbitrary degree-weight generating functions ϕ(t) satisfying Assumption 1.

Lemma 6. The constants µ
[K]
T and ν

[K]
T appearing in Theorem 1 are given as follows:

µ
[K]
T = − ρ̃

′(1)

ρ̃
, ν

[K]
T =

ρ̃′(1)2

ρ̃2
− ρ̃′(1)

ρ̃
− ρ̃′′(1)

ρ̃
,

where ρ̃, ρ̃′(1) and ρ̃′′(1) are specified below and the constants τ̃ and τ1 appearing there are given by
the minimal positive real solutions of the functional equations stated. It holds then with

f(z, F,G,H, v) = vzϕ
(

2G+H
)

,

g(z, F,G,H, v) = z
(

ϕ
(

2G+ 2F
)

− ϕ
(

2G+ F
)

)

,

h(z, F,G,H, v) = zϕ
(

2G+ F
)

,

W (z, F,G,H, v) = det
( 1−fF (z,F,G,H,v) −fG(z,F,G,H,v) −fH(z,F,G,H,v)

−gF (z,F,G,H,v) 1−gG(z,F,G,H,v) −gH(z,F,G,H,v)
−hF (z,F,G,H,v) −hG(z,F,G,H,v) 1−hH(z,F,G,H,v)

)

the following:

2τ̃ϕ′(2τ̃) = ϕ(2τ̃), ρ̃ =
τ̃

ϕ(2τ̃)
, τ1 = ρ̃ϕ(2τ̃ − τ1), τ2 = τ̃ − τ1, τ3 = τ1,

ρ̃′(1) = −det(~d1, ~d2, ~xv)

det(~d1, ~d2, ~xz)
, ρ̃′′(1) = − det(~d1, ~d2, ~s)

det(~d1, ~d2, ~xz)
,

where we use the abbreviations

~d1 =
( 1−fF

−gF

−hF

)

, ~d2 =
( fG

1−gG

−hG

)

, ~x =
(

f
g
h

)

, ~w1 =
( 1−fF

−gF

WF

)

, ~w2 =
( −fG

1−gG

WG

)

, ~w3 =
(−fH

−gH

WH

)

,

~r =
(

fz
gz

Wz

)

· ρ′(1) +
(

fv
gv

Wv

)

,

τ ′1(1) = − det(~r, ~w2, ~w3)

det(~w1, ~w2, ~w3)
, τ ′2(1) = − det(~w1, ~r, ~w3)

det(~w1, ~w2, ~w3)
, τ ′3(1) = − det(~w1, ~w2, ~r)

det(~w1, ~w2, ~w3)
,

~s = ~xzz(ρ
′(1))2 + ~xFF (τ ′1(1))2 + ~xGG(τ ′2(1))2 + ~xHH(τ ′3(1))2 + ~xvv + 2~xzF ρ

′(1)τ ′1(1)

+ 2~xzGρ
′(1)τ ′2(1) + 2~xzHρ

′(1)τ ′3(1) + 2~xzvρ
′(1) + 2~xFGτ

′
1(1)τ ′2(1) + 2~xFHτ

′
1(1)τ ′3(1)

+ 2~xFvτ
′
1(1) + 2~xGHτ

′
2(1)τ ′3(1) + 2~xGvτ

′
2(1) + 2~xHvτ

′
3(1),
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and where all functions and vectors of functions appearing, let us denote them by ψ = ψ(z, F,G,H, v)

and ~ψ = (ψ1(z, F,G,H, v), ψ2(z, F,G,H, v), ψ3(z, F,G,H, v)), are evaluated at z = ρ̃, F = τ1, G = τ2,
H = τ3 and v = 1.

The results of Theorem 2 concerning the size of the kernel Kn follow again by establishing the com-
putations of Lemma 6 for ϕ(t) = (1+ t)2: binary trees, ϕ(t) = 1

1−t : planted plane trees and ϕ(t) = et:
rooted labelled trees.

7. Proof of the existence of type I and type II trees

7.1. Node-independence number. We want to show that for every simply generated tree family
T satisfying Assumption 1 there exists a constant n0, such that the total weight of type I[N ] trees and
the total weight of type II[N ] trees are positive, Fn > 0 and Gn > 0, for all n > n0. We do this by
constructing for all n large enough a tree T ∈ T of size n, which has a positive weight w(T ).

Due to condition (iii) of Assumption 1 there exist positive integers 0 < a < b, with gcd(a, b) = 1, such
that the multiplicative weights of nodes of out-degree a and b: ϕa and ϕb, given by the degree-weight
sequence (ϕk)k∈N, satisfy ϕa > 0 and ϕb > 0. By definition it also holds that ϕ0 > 0. We are
considering from now on only trees T , whose nodes v ∈ T have out-degree d(v) ∈ {0, a, b}. When
counting the edges of such a tree T we obtain

|T | = n = 1 +
∑

v∈T

d(v) = 1 + ka+ ℓb,

where k gives the number of nodes of out-degree a and ℓ the number of nodes of out-degree b in T .
Of course, the remaining n− k − ℓ nodes have out-degree 0 and are thus the leaves of T . The weight
w(T ) is then given by w(T ) = ϕn−k−ℓ

0 ϕk
aϕ

ℓ
b > 0.

We consider now the equation

n− 1 = ka+ ℓb.

Since gcd(a, b) = 1 it follows that a is a generating element of the group 〈Zb,+〉, which implies that
for all integers n there exists a non-negative integer k, with 0 ≤ k ≤ b− 1, such that

n− 1 − ka ≡ 0 (mod b).

If n is large enough, n− 1 ≥ ab, then it follows further that there exists a positive integer ℓ ≥ 1 such
that

n− 1 = ka+ ℓb.

This leads now to the well-known fact that for n > n0 := ab the total weight Tn of trees is positive,
since we can construct a tree T with k ≥ 0 nodes of out-degree a, ℓ ≥ 1 nodes of out-degree b and
n− k − ℓ nodes of out-degree 0, which has a positive weight.

Moreover, if n− 1 ≥ 3ab and thus n− 1 − 2ab ≥ ab it follows that there exist k1 ≥ 0 and ℓ1 ≥ 1 such
that n− 1 − 2ab = k1a+ ℓ1b, which implies that

n− 1 = (k1 + b)a+ (ℓ1 + a)b,

and thus that for n > n0 := 3ab we can construct a tree T with k ≥ b nodes of out-degree a, ℓ ≥ a+1
nodes of out-degree b and n− k − ℓ nodes of out-degree 0.

In order to prove that Fn and Gn are positive for n large enough we show how to construct a type I[N ]

tree and a type II[N ] tree of size n with k nodes of out-degree a, ℓ nodes of out-degree b and n− k− ℓ

nodes of out-degree 0. Since the given construction of type II[N ] trees requires ℓ ≥ 1 we can guarantee
the existence of such trees for n > n0 = ab, whereas the construction of type I[N ] trees requires ℓ ≥ 2
and k ≥ b− 1 and the existence of such trees is guaranteed for n > n0 = 3ab.

• A tree T of type II[N ] can be built by a root of out-degree b, which has b−1 branches B2, . . . , Bb

that are leaves, and one branch B1, which is a chain of ℓ − 1 nodes of out-degree b attached
to a chain of k nodes of out-degree a, which are filled up with leaves.
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• A tree T of type I[N ] can be built by a root of out-degree b, which has b−1 branches B2, . . . , Bb

that consist of a root of out-degree a with a children that are leaves, and one branch B1, which
is a type II[N ] tree constructed as described previously with ℓ − 1 ≥ 1 nodes of out-degree b
and k − b+ 1 ≥ 0 nodes of out-degree a, filled up with leaves.

These constructions are visualized in Figure 4-5.

b

a

00 0

Type II[N] a

00 0

a

00 0

Figure 4. A tree T of type I[N ].
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0 0 0b

0 0 0

a

b

0

0

0 0

0 0
a

00 0

Figure 5. A tree T of type II[N ].

7.2. Path node-covering number. We show now that for every simply generated tree family T
satisfying Assumption 1 there exists a constant n0, such that the total weight of type I[P ] trees and
the total weight of type II[P ] trees are positive, Fn > 0 and Gn > 0, for all n > n0 by constructing for
all n large enough a tree T ∈ T of size n, which has a positive weight w(T ).

To do this we follow the proof in Subsection 7.1 and choose 0 < a < b with gcd(a, b) = 1, such that
ϕa > 0 and ϕb > 0. First we treat the special case b = 2, which implies a = 1. Here, for n ≥ 1, we
can construct a type II[P ] tree T with k = n − 1 nodes of out-degree 1, 0 nodes of out-degree 2 and
exactly one node of out-degree 0 by building a chain of the k nodes of out-degree 1 and attaching the
leaf. Also, for n ≥ 3, we can construct a type I[P ] tree T with k = n − 3 nodes of out-degree 1, one
node of out-degree 2 and two nodes of out-degree 0 in the following way: the root of T consists of the
node with out-degree 2, one branch is given by a leaf and the other branch is a chain of k nodes of
out-degree 1 followed by a leaf.

For the general case b ≥ 3 we use the following construction, which leads to a type I[P ] tree and a
type II[P ] tree of size n with k nodes of out-degree a, ℓ nodes of out-degree b and n − k − ℓ nodes
of out-degree 0. Since the given construction of type I[P ] trees requires ℓ ≥ 1 we can guarantee the
existence of such trees for n > n0 = ab, whereas the construction of type II[P ] trees requires ℓ ≥ a and
k ≥ 1 and the existence of such trees is guaranteed for n > n0 = 3ab.

• A tree T of type I[P ] can be built by a root of out-degree b, which has b−1 branches B2, . . . , Bb

that are leaves, and one branch B1, which is a chain of ℓ − 1 nodes of out-degree b attached
to a chain of k nodes of out-degree a, which are filled up with leaves.

• A tree T of type II[P ] can be built by a root of out-degree a, which has a − 1 branches
B2, . . . , Ba that consist of a root of out-degree b with b children that are leaves, and one
branch B1, which is a type I[P ] tree constructed as described previously with ℓ − a + 1 ≥ 1
nodes of out-degree b and k − 1 ≥ 0 nodes of out-degree a, filled up with leaves.

These constructions are visualized in Figure 6-7.

7.3. Size of the kernel. We show here that for every directed simply generated tree family T̃
satisfying Assumption 1 there exists a constant n0, such that the total weight of type I[K] trees and
the total weight of type II[K] trees are positive, Fn > 0 and Gn > 0, for all n > n0 by constructing
for all n large enough a tree T̃ ∈ T̃ of size n, which has a positive weight w(T̃ ).

We follow the proof in Subsection 7.1 and choose 0 < a < b with gcd(a, b) = 1, such that ϕa > 0
and ϕb > 0. The following construction generates a type I[K] tree and a type II[K] tree of size n
with k nodes of out-degree a, ℓ nodes of out-degree b and n− k − ℓ nodes of out-degree 0. Since the
construction requires ℓ ≥ 1 we can guarantee the existence of such trees for n > n0 = ab.
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Figure 6. A tree T of type I[P ].
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Figure 7. A tree T of type II[P ].

• A directed tree T̃ of type II[K] can be built in the following way. First we construct an
undirected tree T by a root r of out-degree b, which has b − 1 branches B2, . . . , Bb that are
leaves, and one branch B1, which is a chain of ℓ− 1 nodes of out-degree b attached to a chain
of k nodes of out-degree a, which are filled up with leaves. Then T̃ is constructed from T by
orientating all edges, such that every edge leads away from the root r.

• A directed tree T̃ of type I[K] can be built in the following way. First we construct an
undirected tree T by a root r of out-degree b, which has b − 1 branches B2, . . . , Bb that are
leaves, and one branch B1, which is a chain of ℓ− 1 nodes of out-degree b attached to a chain
of k nodes of out-degree a, which are filled up with leaves. Then T̃ is constructed from T by
orientating all edges, such that every edge is directed to the root r.

These constructions are visualized in Figure 8-9.
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Figure 8. A tree T of type I[K].
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Figure 9. A tree T of type II[K].
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Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

E-mail address: Cyril.Banderier@lipn.univ-paris13.fr

Markus Kuba, Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner

Hauptstr. 8-10/104, 1040 Wien, Austria

E-mail address: markus.kuba+e104@tuwien.ac.at

Alois Panholzer, Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner
Hauptstr. 8-10/104, 1040 Wien, Austria

E-mail address: Alois.Panholzer@tuwien.ac.at


