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Generating Funtions For Kernels of Digraphs(Enumeration & Asymptotis for Nim Games)Cyril Banderier, Jean-Marie Le Bars, and Vlady RavelomananaAbstrat. In this artile, we study direted graphs (digraphs) with a oloring onstraint dueto Von Neumann and related to Nim-type games. This is equivalent to the notion of kernels ofdigraphs, whih appears in numerous �elds of researh suh as game theory, omplexity theory,arti�ial intelligene (default logi, argumentation in multi-agent systems), 0-1 laws in monadiseond order logi, ombinatoris (perfet graphs)... Kernels of digraphs lead to numerous diÆ-ult questions (in the sense of NP-ompleteness, #P-ompleteness). However, we show here thatit is possible to use a generating funtion approah to get new informations: we use tehniqueof symboli and analyti ombinatoris (generating funtions and their singularities) in order toget exat and asymptoti results, e.g. for the existene of a kernel in a iruit or in a uniiruitdigraph. This is a �rst step toward a generatingfuntionology treatment of kernels, while using,e.g., an approah \�a la Wright". Our method ould be applied to more general \loal oloringonstraints" in deomposable ombinatorial strutures.R�esum�e. Nous �etudions dans et artile les graphes dirig�es (digraphes) ave une ontrainte deoloriage introduite par Von Neumann et reli�ee aux jeux de type Nim. Elle �equivaut �a la no-tion de noyaux de digraphes, qui apparâ�t dans de nombreux domaines, tels la th�eorie des jeux,la th�eorie de la omplexit�e, l'intelligene arti�ielle (logique des d�efauts, argumentation dansles syst�emes multi-agents), les lois 0-1 en logique monadique du seond ordre, la ombinatoire(graphes parfaits)... Les noyaux des digraphes posent de nombreuses questions diÆiles (au sensde la NP-ompl�etude ou de la #P-ompl�etude). Cependant, nous montrons ii qu'il est possiblede reourir aux s�eries g�en�eratries a�n d'obtenir de nouvelles informations : nous utilisons lestehniques de la ombinatoire symbolique et analytique (�etude des singularit�es d'une s�erie) a�nd'obtenir des r�esultats exats ou asymptotiques, par exemple pour l'existene d'un noyau dansun digraphe uniiruit. Il s'agit l�a de la premi�ere �etape vers une s�erie g�en�eratrilogie des noyaux.Notre m�ethode peut être appliqu�ee plus g�en�eralement �a des \ontraintes loales" de oloriagedans des strutures ombinatoires d�eomposables.1. IntrodutionLet V and E be the set of verties and direted edges (also alled ars) of a direted graph Dwithout loops or multiars (we all suh graphs digraphs hereafter). A kernel of D is a nonemptysubset K of V , suh that for any a; b 2 K, the edge (a; b) does not belong to E, and for any vertexoutside the kernel (a 62 K), there is a vertex in the kernel (b 2 K), suh that the edge (a; b) belongsto E. In other words, K is a nonempty independent and dominating set of verties in D [2℄. Notevery digraph has a kernel and if a digraph has a kernel, this kernel is not neessarily unique. Thenotion of kernel allows elegant interpretations in various ontexts, sine it is related to other well-known onepts from graph theory and omplexity theory. In game theory the existene of a kernelorresponds to a winning strategy in two players for famous Nim-type games (f. [3, 16, 17, 31℄).Imagine that two players A and B play the following game on D in whih they move a tokeneah in turn: A starts the game by hoosing an initial vertex v0 2 V and then makes a move toa vertex v1. A move onsists in taking the token from the present position vi and plaing it on ahild of vi, i.e. a vertex vi+1 suh that (vi; vi+1) 2 E. B makes a move from v1 to v2 and givesthe hand to A, whih has now to play from v2, and so on. The �rst player unable to move losesKey words and phrases. generating funtions, analyti ombinatoris, kernels of graphs, Nim games.Corresponding author: Cyril.Banderier at lipn.univ-paris13.fr.1



2 CYRIL BANDERIER, JEAN-MARIE LE BARS, AND VLADY RAVELOMANANAthe game. One of the two players has a winning strategy (as this game is �nite in a digraph Dwithout iruit, for iruits one extends the rules by saying that the game is lost for the playerwho replays a position previously reahed). Von Neumann and Morgenstern [31℄ proved that anydireted ayli graph has a unique kernel, whih is the set of winning positions for A (A alwaysfores B to play outside the kernel, until B annot play anymore). Rihardson [27℄ proved laterthat every digraph without odd iruit has a kernel [7, 29℄. Berge wrote a hapter on kernelsin [2℄. Furthermore, there is a strong onnetion between perfet graphs and kernels (see the Bergeand Duhet survey [1℄). Some natural variants of this property are studied in various logi forIntelligene Arti�ial, some of them are de�nable in default logi [8℄ and used for argumentationin multi-agents systems, kernels appear there as sets of oherent arguments [6, 12℄.Fernandez de la Vega [13℄ and Tomesu [30℄ proved independently that dense random digraphswith n verties and m = �(n2) edges, have asymptotially almost surely a kernel. In addition,they get the few possible sizes of a kernel and a preise estimation of the numbers of kernels.Few years ago a new interest for these studies arises by their appliations in �nite modeltheory. Indeed variants of kernel are the best properties to provide ounterexamples of 0-1 laws infragments of monadi seond-order logi [21, 22℄. Goranko and Kapron showed in [19℄ that suha variant is expressible in modal logi over almost all �nite frames for frame satis�ability; reentlyLe Bars proved in [23℄ that the 0-1 law fails for this logi.The existene of a kernel in a digraph has been shown NP-omplete, even if one restrits thisquestion to planar graphs with in- and out-degree � 2 and degree � 3 [9, 11, 15℄. It is somehowrelated to �nding a maximum lique in graphs [4, 21℄, whih is known to be diÆult for randomdense graphs.In this artile, we use some generating funtion tehniques to give some new results on Nim-typegames played on direted graphs (or, equivalently, some new informations on kernel of digraphs).More preisely, we deal with a family of planar digraphs with at most one iruit or one yle and wegive enumerative (Theorems 4.1, 4.2, 4.3, 4.4 in Setion 4) and asymptotis results (Theorems 5.1,5.2, 5.3, 5.4 in Setion 5) on the size of the kernel, the probability of winning on trees for the �rstplayer... 2. De�nitionsWe give below more preise de�nitions, readers familiar with digraphs an skip them.Let D = (V;E) be a digraph. For eah v 2 V , let v+ = fw 2 V=(v; w) 2 Eg and v� = fw 2V=(w; v) 2 Eg, jv+j is the out degree of v and jv�j is the in degree of v.A vertex with an in degree of 0 is alled a soure (sine one an only leave it) and a vertexwith an out degree of 0 is alled a sink (sine one annot leave it). Let U � V , U+ = [v2Uv+ andU� = [v2Uv�, we denote by D(U) the subgraph indued by the verties of U .There is a path from vertex v to w means that there exists a sequene (v1; : : : ; vk) suh thatv1 = v, vk = w and vi 2 v+i+1 [ v�i+1, for i = 1 : : : k � 1. There is a direted path from vertex vto w means that there exists a sequene (v1; : : : ; vk) suh that v1 = v, vk = w and vi 2 v+i+1, fori = 1 : : : k � 1.A yle is a path (v1; : : : ; vk) suh that v1 = vk. A iruit is a direted path (v1; : : : ; vk) suhthat v1 = vk.IfD ontains a direted path from vertex v to w then v is an anestor of w and w is a desendantof v. If this direted path is of length 1, then the anestor v of w is also alled a parent of w, andv a hild of w.D is strongly onneted if for eah pair of verties, eah one is an anestor of the other. D(U)is a strongly onneted omponent of D if it is a maximal strongly onneted subgraph of D.U is an independent set when U \ U+ = ; and a dominating set when v+ \ U 6= ; for anyv 2 V n U . U is a kernel if it is an independent dominating set.D is a DAG if it is a direted digraph without iruit (the terminology \direted ayli graph"being popular, we use the aronym DAG although it should stands for \direted airuit graph",aording to the above de�nitions of yles and iruits).



GENERATING FUNCTIONS FOR KERNELS OF DIGRAPHS 33. How to �nd the kernel of a digraphConsider digraphs satisfying the following rules:� eah vertex is olored either in red or in green,� eah green vertex has at least a red hild,� no red vertex has a red hild.It is immediate to see that a digraph satisfying suh oloring onstraints possesses a kernel, whihis exatly the set of its red verties. It is now easy to see, e.g., that the iruit of length 3 has nokernel, that the iruit of length 4 has 2 kernels, that any DAG has exatly one kernel. For this lastpoint, assume that D is a DAG (direted airuit graph). Algorithm 1 (below) returns its uniquekernel. It begins to olor the sinks in red and then goes up toward soures, as it is deterministiand as it olors at least a new vertex at eah iteration, this proves that eah DAG has a singlekernel. Suh an algorithm was already onsidered by Zermelo while studying hessgame.Algorithm 1 The kernel of a DAGInput: a DAG D = (V;E), Nonolored= V (i.e. no vertex is olored for yet)Output: the DAG, with all its verties olored, the red verties being its kernelwhile it remains some non olored verties (Nonolored 6= ;) dofor all v 2 Nonolored doif v is a sink or if all the hildren of v are green thenolor v in redolor all the parents of v in greenremove the olored verties from Nonoloredend ifend forend whileFor sure, it is possible to improve this algorithm by using the poset struture of a DAG, andthus replaing the \for all v 2 Nonolored" line by something like \for all v 2 Toolornow" whereToolornow is a set of andidates muh smaller than Nonolored.More generally, in order to olor a digraph whih is not a DAG, simply split it in p omponentswhih are DAGs. Then, apply the above algorithm on eah of these DAGs (exepted the utpoints that you arbitrarily �x to be red or green). It �nally remains to hek the global ohereneof these olorings. As one has p utting points (whih an also be seen as p branhing points in abaktraking version of this algorithm), this leads to at most 2p kernels. This also suggests whythis problem is NP: for large (dense) graph, one should need to ut at least p � n points, whihleads to a 2n omplexity (lower bound).
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���Figure 1. The �rst digraph is a well-olored DAG (it has several yles, but noiruit). The seond digraph is a well-olored digraph (it is not a DAG, as itontains one iruit). The third digraph is a DAG, but is not well olored (thetop green vertex misses a red hild). [For people who are reading a blak & whiteversion of this artile, red verties are ful�lled and green verties are empty irles.℄



4 CYRIL BANDERIER, JEAN-MARIE LE BARS, AND VLADY RAVELOMANANA4. Generating funtions of well-olored uniiruit digraphsThere exists in the literature some noteworthy results on digraphs using generating funtions(related e.g. to EGF of ayli digraphs [18, 28℄, Cayley graphs [26℄, (0,1) matries [25℄, Erd}os{R�enyi random digraph model [24℄), but as fas as we know we give here the �rst example ofappliation to the kernel problem.The oloring onstraints mentioned in Setion 3 are \loal": they are de�ned only in funtionof eah vertex and its neighbors. One nie onsequene of this \loal" viewpoint of kernels is that itopens up a whole range of possibilities for a kind of ontext-free grammar approah. Indeed if oneonsiders rooted labeled direted trees that are well-olored (i.e. whih possesses a kernel), one andesribe/enumerate them with the help of the �ve following families of ombinatorial strutures(all of them being rooted labeled direted trees):� T : all the trees with the oloring onstraint� T "r : well-olored trees with a red root (with an additional out-edge)� T #r : well-olored trees with a red root (with an additional in-edge)� T "g : well-olored trees with a green root (with an additional out-edge)� T #g : well-olored trees with a green root (with an additional in-edge)� T "gr : well-olored trees with a green root (with an additional out-edge whih has to beattahed to a red vertex)Those families are related by the following rules:8>>>>>>>><>>>>>>>>:
T = T "g [ T "rT "g = g" � Set�1(T "r )� Set(T #r [ T #g [ T "g )T #g = g# � Set�1(T "r )� Set(T #r [ T #g [ T "g )T "r = r" � Set(T #g [ T "gr )T #r = r# � Set(T #g [ T "gr )T "gr = g" � Set(T "r [ T #r [ T #g [ T "g )The Set operator reets the fat that one onsiders non planar trees, i.e. the relative order of thesubtrees attahed to a given vertex does not matter. The notation Set�1 means one onsiders nonempty set only.
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2 1Figure 2. A tree 2 T #g of size 3 and all its possible labellings. T #g stands fordireted trees with a green root with an additional in-edge on this root.As we are dealing with labeled objets (we refer to Figure 2 for the di�erent labellings of arooted direted tree), it is more onvenient to use exponential generating funtions, the aboverules are then translated (see e.g. [20, 14℄ for a general presentation of this theory of \graphialenumeration/symboli ombinatoris" ) into the following set of funtional equations (where zmarks the verties):8><>:T (z) = T "g (z) + T "r (z) ;T "g (z) = T #g (z) = z(exp(T "r (z))� 1) exp(T #r (z) + T #g (z) + T "g (z)) ;T "r (z) = T #r (z) = z exp(T #g (z) + T "gr (z)) :Note that T "gr = T as one has the trivial bijetion \T "gr trees with a root without red hild"= \T "r trees" and \T "gr trees with a root with at least a red hild" = \T "g trees". De�ne nowTg(z) := T "g (z) and Tr(z) := T "r (z), the above system simpli�es to:



GENERATING FUNCTIONS FOR KERNELS OF DIGRAPHS 58><>:T (z) = Tg(z) + Tr(z) = T "gr(z) ;Tg(z) = z exp(2T (z))� z exp(T (z) + Tg(z)) ;Tr(z) = z exp(Tg(z) + T (z)) = T (z) exp(�Tr(z)) :This system has a unique solution, as the relations an be onsidered as �xed point equationsfor power series. Their Taylor expansions are:T (z) = z + 4z22! + 36z33! + 512z44! + 10000z55! + 248832z66! + 7529536z77! +O(z8) ;Tg(z) = 2z22! + 15z33! + 232z44! + 4535z55! + 114276z66! + 3478083z77! +O(z8) ;Tr(z) = z + 2z22! + 21z33! + 280z44! + 5465z55! + 134556z66! + 4051453z77! +O(z8) :For sure, the i-th oeÆients of these series are divisible by i, as we are dealing with rootedobjet. Here are the 3 generating funtions of the orresponding unrooted trees:T unr:(z) = z + 2z22! + 12z33! + 128z44! + 2000z55! + 41472z66! + 1075648z77! +O(z8) ;T unr:g (z) = z22! + 5z33! + 58z44! + 907z55! + 19046z66! + 496869z77! +O(z8) ;T unr:r (z) = z + z22! + 7z33! + 70z44! + 1093z55! + 22426z66! + 578779z77! +O(z8) :Of ourse, trees are DAG and therefore have a unique kernel. This implies that T (z) is exatlythe exponential generating funtion of direted rooted trees, i.e.T (z) = C(2z)=2 and Tn = (2n)n�1where C(z) is the Cayley funtion (see Figure 3 and referenes [5, 10℄), de�ned byC(z) = z exp(C(z)) =Xn�1nn�1 znn! :
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Figure 3. The Cayley tree funtion C(z) goes from �1 for z � �1 to 1 atz = 1e . It satis�es C(z) = z exp(C(z)).Solving the set of equations for T; Tg and Tr �nally leads to



6 CYRIL BANDERIER, JEAN-MARIE LE BARS, AND VLADY RAVELOMANANATheorem 4.1 (Enumeration of well-olored trees).By ditrees, we mean well-olored rooted labeled direted trees. By well-olored, we mean eah greenvertex has at least a red hild, eah red vertex has no red hild.The exponential generating funtion of ditrees is given by T (z) = C(2z)=2,the EGF of ditrees with a red root is given by Tr(z) = �C(�C(2z)=2),the EGF of ditrees with a green root is given by Tg(z) = C(2z)=2 + C(�C(2z)=2),where C(z) is the Cayley tree funtion C(z) = z exp(C(z)).The EGF for the unrooted equivalent objets an be expressed in terms of the rooted ones:T unr: = T � T 2 ; T unr:g = T unr: � T unr:r ; and T unr:r = 2T � 2TTr + Tr � 2T=Tr + T 2r =2 :Proof. The formulae for T; Tr and Tg an be heked using the de�nition of C(z) in the�x-point equations in the simpli�ed system above. The fat that the GF for unrooted trees an beexpressed in terms of the GF of rooted ones an be proven by integration of the Cayley funtion,or by a ombinatorial splitting argument on trees. �We an go on and enumerate the di�erent possibilities of iruits for a well-olored digraph.They an be desribed as Cy(g) [ Cy(r !fg !g+)This reets the fat that either a iruit is made up of green verties only, or it ontains somered verties, but they have to be followed by at least a green vertex. NB: Whether one ounts ornot the yles of length 1 (i.e. a single red or green vertex) will only modify the �rst term of thegenerating funtion. Symboli ombinatoris [14℄ translates the above yle deompositions in thefollowing funtion: ln� 11� g�+ ln 11� rg1�g !where r/g mark the number of red/green verties. This leads to the following Theorem:Theorem 4.2 (Enumeration of possible well-olored iruits).The exponential generating funtion of possible well-olored iruits is given byL(z) = � ln(1� z � z2) = z + 3z22! + 8z33! + 42z44! + 264z55! + 2160z66! + 20880z77! +O(z8) :Its oeÆients satisfy Ln = (n�1)! (�n + (1� �)n), where Ln are known as the n-th Luas number(usually de�ned by the reurrene Ln+2 = Ln+1 + Ln; L1 = 1; L2 = 3) and where � = (1 +p5)=2is the golden ratio.Note that a reverse engineering leture of this generating funtion leads to the simpler de-omposition Cy(g [ rg), whih also explains the reurrene! Now, the following deomposition ofpossible yles is trivially related to the deomposition of possible iruits:Cy(r � f !g [  gg+ � f ![  g) [ Cy(g ![ g  )leads to the EGF � ln(1� 2z � 4z2) whose oeÆients are, with no surprise, 2nLn.
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TgrFigure 4. Uniiruit digraphs onsist in a iruit with attahed trees on it. Theleft piture above is a uniiruit digraph, to the right, we give its \anonialdeomposition" as a iruit of atoms whih are trees. Any well-olored uniiruitdigraph has suh a \anonial deomposition".



GENERATING FUNCTIONS FOR KERNELS OF DIGRAPHS 7Using the deomposition given in Figure 4, one obtains the generating funtion for uniiruits:Theorem 4.3 (Enumeration of uniiruit well-olored digraphs).The EGF of uniiruit well-olored digraphs isU(z) = T unr: � Tg + ln� 11� (Tg + TgrTr)�= �C(2z)24 � C(�C(2z)2 )� ln�1� C(2z)2 � C(�C(2z)2 ) + C�� C(2z)2 �C(2z)2 �= z + 4z22! + 30z33! + 452z44! + 8840z55! + 224832z66! + 6909784z77! +O(z8) ;where C(z) is the Cayley tree funtion C(z) = z exp(C(z)).Now, onsider the larger lass of uniyle digraphs (digraphs whih have 0 or 1 yle). Reallthat a iruit is a yle, but a yle is not neessarily a iruit. In order to get a \anonialdeomposition" for uniyle digraphs (similar to the one given in Fig. 4 for uniiruit digraphs), oneonsiders 3 ases:� Either the graph has no yle, those graphs are ounted by T unr:.� Either it is a yle with only Tg trees branhed on it (i.e. no red nodes in the yle), thosegraphs are ounted by (ln� 11�2Tg �� 2Tg � 4Tg2=2)=2 + Tg2=2, where 2Tg orrespondsto Tg �f! [  g, one removes yles of length 1 and 2 from the logarithm (this explainsthe �2Tg � 4Tg2=2 term) and one divides the whole formula by 2 beause one has totake into aount the fat the yle an be read lokwise or not, and one adds the onlylegal yle of length 2.� Either the graph ontains a yle with some red nodes and then one onsiders the followingpossible \briks":8>>>>>>>><>>>>>>>>:
Tr  Tgr  Tr  Tgr ! (but not a yle of length 2, beause multiars are not allowed)Tr ! (Tgf! [  g)� Tg  (but not a yle of length 2)Tr ! (Tgf! [  g)� Tgr !Tr  Tgrf! [  g (Tgf! [  g)� Tg  Tr  Tgrf! [  g (Tgf! [  g)� Tgr !Theorem 4.4 (Enumeration of uniyle well-olored digraphs).The EGF of uniyle well-olored digraphs isV (z) = T unr: + 12 ln� 11� 2Tg�� Tg � Tg2=2� TrTg=2� TrT=2+12 ln0� 11� �2TrTgr + TrTg+TrTgr+2TrTgrTg+2TrT 2gr1�2Tg �1A= T unr: � T + Tr � T 2=2� ln(1 + Tr)� 12 ln(1� 2T )= z + 4z22! + 36z33! + 692z44! + 15920z55! + 458622z66! + 15559264z77! +O(z8) :where T , Tg, Tr, and T unr: are given in Theorem 4.1.Note that in the two theorems above, any given non-olored graph is ounted with multipliity0, 1 or 2 (if there are 0, 1 or 2 ways to olor it). We explained in Setion 3 that a multipliitylarger than 2 was not possible for uniyle digraphs. We enumerate in the following propositionthose with exatly 2 possible olorations.Proposition 4.5 (Enumeration of uniyle digraphs with two kernels).The EGF of uniyle digraphs with 2 kernels isD(z) = � lnp1 + C(�C(2z)=2)2 ;where C(z) is the Cayley tree funtion C(z) = z exp(C(z)).



8 CYRIL BANDERIER, JEAN-MARIE LE BARS, AND VLADY RAVELOMANANARemark: From the de�nition of yle/iruit, D(z) is also the EGF of uniiruit digraphs with2 kernels.Proof. Let D be the set of uniyle digraphs with 2 kernels. First, it is easy to see thatCy(T 2r ) � D (with a sligth abuse of notation, as we �rst only onsider the shape, not the olorationof the Tr trees): simply olor the nodes in the yle alternatively in green and red, and swith theolors of a part of attahed trees, if needs be.We now prove the next step D � Cy(T 2r ): Take a uniyle graph in D, it means at least oneof its vertex an be olored both green and red. Suh a vertex v an be taken, without loss ofgenerality, in the iruit (from the above remark, the yle is in fat a iruit). [If it were not thease, all bi-olorabled verties would be in the tree omponents, but then one ould split our graphto get DAGs whih are known to be uniquely olorable℄. But when v is red, it implies it has onlyTg trees attahed to it, whih means than when it gets green, the next node in the iruit has bered (and was previously green!). This implies alternation red/green (and even length for parityreasons) for all the nodes in the iruit.This leads to a anonial deompositionCy(T 2r ) :If one divides by 2 for the (anti)lokwise readings, this leads to the Theorem. �Most of these results (and also the omputations of Setion 5 hereafter) were heked withthe omputer algebra system Maple. A worksheet orresponding to this artile is available athttp://algo.inria.fr/banderier/Paper/kernels.mws (or kernels.html), it uses the Algoliblibrairy, downloadable at http://algo.inria.fr/libraries/).5. AsymptotisIn this setion, we give asymptoti results for n! +1.Theorem 5.1 (Proportion of trees with a green/red root).Asymptotially 1��1+� � 47:95% of the trees have a green root, where the onstant � � 0:351733 isde�ned as the unique real root of 2� = exp(��).A more pleasant way to formulate this Theorem onsists in onsidering Nim-type games (�rstplayer who annot move loses) on direted trees where the tree and the starting position are hosenuniformly at random. The strategies of the two players being optimal, the �rst player has then aprobability of 47.95% (asymptotially) to win the game. (Reall that if the starting position an behosen by the �rst player, then he will always win.)Proof. The key step of this result and the following ones are the following expansions (derivedfrom the expansion of the Cayley funtion) for T , Tr and Tg:T (z) � 56 � 1p2p1� 2ez +O(1� 2ez)Tr(z) � �� �p21 + �p1� 2ez +O(1� 2ez)Tg(z) � 12 � �� 1p2 1� �1 + �p1� 2ez +O(1� 2ez) ;where the onstant � is de�ned as � := Tr( 12e ) � 0:351733.By Pringsheim theorem [14℄, as Tr(z) has nonnegative oeÆients, then Tr(z) has a positivesingularity. As oeÆients of Tr are smaller than oeÆients of T , its radius of onvergene belongsto [0; 1=(2e)℄. Now, �C(2z)=2 is negative on this interval, and thus C(�C(2z)=2) is analyti there,and 1=(2e) is therefore its only possible dominating singularity. The radius of Tg follows fromT = Tr + Tg. The theorem follows by onsidering [zn℄Tg(z)[zn℄T (z) = 1��1+� � �2(�+4)(1+�)5 1n +O( 1n2 ). �Theorem 5.2 (Proportion of red verties in possible iruits).Asymptotially 12 � 12p5 � 27:63% of the verties of a possible iruits are red.



GENERATING FUNCTIONS FOR KERNELS OF DIGRAPHS 9Proof. One has to onsiderer the following bivariate generating funtion (exponential inz, ordinary in u): ln� 11�(z+uz2)�. The wanted proportion is then given by [zn℄�uF (z;1)[zn℄F (z;1) , where[zn℄�uF (z; 1) means the n-th oeÆient of \the derivative with respet to u of F (z; u), then eval-uated at u = 1". �Then, one an wonder if the asymptoti density of well-olored uniiruit graphs is more than50% or even if it is 100%? The following theorem gives the answer:Theorem 5.3 (Proportion of well-olored uniiruit digraphs).The proportion of well-olored graphs amongst uniiruit digraphs is asymptotially:3�3 + �2 � �� 1(1 + �)2(�� 1)) � 92:65%where � is the onstant de�ned in Theorem 5.1.Proof. Relies on a singularity analysis of the generating funtion of Theorem 4.3, with theexpansions given in Theorem 5.1. Note that some uniiruit digraphs an have 2 kernels, so onehas to perform the following asymptoti expansions:[zn℄U(z)�D(z)[zn℄F (z) � 92:65� 0:12n +O( 1n2 ) ;where F (z) = T unr(z) + ln( 11�T (z) )� T (z) is the EGF of (non-olored) uniiruit digraphs. �For sure, it one onsiders now the asymptoti density of well-olored uniiruit graphs, theproportion should be larger, as one only adds DAGs (whih are all well-olorable). The followingtheorem gives the noteworthy result that uniiruit graphs are in fat almost surely well-olored:Theorem 5.4 (Proportion of well-olored uniyle digraphs).There is asymptotially a proportion of 1 � 2�3p2(1+�)2(1��)p� 1pn � 1 � 0:05pn of well-olored graphsamongst uniyle digraphs of size n, where � is the onstant de�ned in Theorem 5.1.Proof. Relies on a singularity analysis of the generating funtion of Theorem 4.4, with theexpansions given in Theorem 5.1. Note that some uniyle digraphs an have 2 kernels, so one hasto onsider [zn℄V (z)�D(z)[zn℄G(z) ;where G(z) = T unr(z) + 12 ln( 11�2T (z) ) � T (z) � T (z)2=2 is the EGF of (non-olored) uniyledigraphs (one substrats T 2=2 beause amongst the 4 graphs with a yle of length 2 reated bythe ln( 11�2T (z) ) part, 3 are not legal: 1 was already ounted beause of symmetries, and the other2 have in fat a multiple ar, whereas it is forbidden for our digraphs). �Finally, if one onsiders graphs with at most k yles, it means one has more utting points,whih relaxes the onstraints for well-olarability (=existene of kernel). Aording to the aboveresults, this implies an asymptoti density of one. This gives as a orolary of our results, that allthese families have almost surely a kernel. A kind of \limit ase" is dense graphs, for whih someresults already mentionned by Fernandez de la Vega [13℄ and Tomesu [30℄ give that they haveindeed almost surely a kernel.
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