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Abstract: We study pairs and m–tuples of compositions of a positive integer n
with parts restricted to a subset P of positive integers. We obtain some exact
enumeration results for the number of tuples of such compositions having the
same number of parts. Under the uniform probability model, we obtain the
asymptotics for the probability that two or, more generally, m randomly and
independently chosen compositions of n have the same number of parts. For
a large class of compositions, we show how a nice interplay between complex
analysis and probability theory allows to get full asymptotics for this probability.
Our results extend an earlier work of Bóna and Knopfmacher. While we restrict
our attention to compositions, our approach is also of interest for tuples of other
combinatorial structures having the same number of parts.
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1 Introduction

In this note, we study tuples of compositions of positive integers having the same
number of parts, and the asymptotics of related generating functions satisfying
some differential equations. Let us recall that a composition of a positive inte-
ger n is any k–tuple (κ1, . . . , κk), k ≥ 1, of positive integers that sum up to n.
The κj ’s are called the parts (or summands) of a composition. It is elementary
and well–known (see, e.g. [1]) that there are

(
n−1
k−1
)

compositions of n with k

parts, and thus there are 2n−1 compositions of n. By restricted compositions
we mean compositions whose parts are confined to be in a fixed subset P of N.
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The main motivation for this work is a recent paper [6] in which the authors
studied pairs of compositions with the same number of parts. Our extension of
this work is directly connected to the question of obtaining the asymptotics of
coefficients of functions satisfying a linear differential equation which, despite
the deep work by Fabry, Frobenius, Fuchs, Picard and other analysts more than
one century ago, remains open and is conjectured to be undecidable. We present
here a new way to use probability theory in addition to complex analysis in order
to solve this problem for a large class of functions.

In their paper [6], Bóna and Knopfmacher studied the asymptotic proba-
bility that two randomly and independently chosen compositions of n have the
same number of parts. Furthermore, relying on the generating function ap-
proach, for a few specific subsets P they addressed the same question for pairs
of restricted compositions. In each of these cases this probability is asymptotic
to C/

√
n with C depending on P. Our main aim here is to extend these results.

First, we show that this asymptotics is universal. That is, we show that for an
arbitrary subset P containing two relatively prime elements the probability that
two independently chosen random compositions of n with parts restricted to P
have the same number of parts is asymptotic to C/

√
n. The value of C depends,

generally, on P and is explicit. (See our Theorem 5.1 and subsequent remarks,
which include e.g. a correction of a constant appearing in [6].) Secondly, we
consider the same question for m > 2 and we show that in this case the sought
probability is asymptotic to C/

√
nm−1 for an explicitly given constant C whose

value depends on P and m only. (See our Theorem 5.3.)
Bóna and Knopfmacher’s approach relied on complex analysis; the univer-

sality of using a more probabilistic technique was then noticed by Bóna and
Flajolet [5], where certain types of random trees were studied. Our approach
is in one sense a mixture of complex analysis (which gives the full asymptotics
expansion, up to a multiplicative constant, and with the price of heavy compu-
tations), and probability theory (a local limit theorem which gives without any
heavy computation the first asymptotic term, and therefore gives access to the
multiplicative constant, but intrinsically no access to further asymptotic terms).
Bóna and Flajolet obtained, in particular, a general statement indicating how
local limit theorem can help in evaluating probabilities that two independently
chosen random structures of the same size have the same number of components
(this is their Lemma 6 in [5], which corresponds to our Lemma 5.2 for Gaussian
density with a slightly different proof. Our Lemma 5.2 was obtained indepen-
dently, but later). As we will see, these statements remain true if one considers
more than two random structures.

In Section 2, we present our model. We proceed in Section 3 with some
examples (and en passant, some nice questions in computer algebra) and argue
on the intrinsic limitations of an approach relying only on complex analysis. This
serves as a motivation for introducing the local limit law result in Section 4,
which finds application in Section 5, thus solving the initial problem of the
asymptotic evaluation of the probability that tuples of compositions have the
same number of parts. We conclude with some perspectives in Section 6.
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2 Generating functions for pairs of compositions
having the same number of parts

Let us consider compositions with parts in a set P (a fixed subset of N). To
avoid trivial complications caused by the fact that there may be no compositions
of a given n with all parts from P, we assume that P has at least two elements
that are relatively prime (except when explicitly stated otherwise).

We introduce the generating function of the parts p(z) =
∑
j∈P pjz

j , (pj is
not necessarily 0 or 1, it can then be seen as the possible colors or the weight
of part j). We thus assume that the pj ’s are non–negative real numbers such
that

∑
j∈P pj > 1. This last condition is to ensure supercriticality of our scheme

(see Section 4 below for more details). In the classical situation when pj is 0
or 1, this condition holds automatically. Denote by

P (z, u) =
∑

n≥0,k≥0

Pn,ku
kzn =

1

1− up(z)
(1)

the bivariate generating function of compositions of n where k encodes its num-
ber of parts, and where the “size” of the composition is n.

With a slight abuse of notation, the corresponding univariate generating
function is

P (z) =
∑
n≥0

Pnz
n =

1

1− p(z)
. (2)

This terminology is classical. For example, here are all the compositions of
5 with 3 parts from the set P = {1, 2, 3, 4, 10}: 5 = 1 + 1 + 3 = 1 + 3 + 1 =
3 + 1 + 1 = 1 + 2 + 2 = 2 + 1 + 2 = 2 + 2 + 1. Accordingly, P5,3 = 6.

Let XPn be the random variable giving the number of parts in a random
composition of n with parts belonging to P. Random means that we consider
the uniform distribution among all compositions of n with parts belonging to P.

Given two subsets P1 and P2 of N, we consider the probability πn :=
Pr(XP1

n = XP2
n ) that a random composition of n with parts in P1 has the

same number of parts as a random composition with parts in P2. We assume
throughout that, whenever two such compositions are chosen, they are chosen
independently and from now on we will not be explicitly mentioning it. We then
introduce the generating function D(z) of the number of pairs of compositions
(the first one with parts in P1, the second one with parts in P2) having the
same size and the same number of parts. (D stands for “double” or “diagonal”,
as D(z) can be obtained as a diagonal of multivariate function.)

That is, we consider all k-tuples of elements of P1 and all k-tuples of elements
of P2 such that their sum is n. For a fixed n, let Dn be the total number of
such configurations (i.e., we sum over all k).

In the next section, we deal with some interesting examples for which we get
explicit formulas.
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3 Some closed-form formulas

3.1 An example on tuples of domino tilings

Consider the classical combinatorial problem of tiling a 2×n strip by dominoes.
Any tiling is thus a sequence of either one horizontal domino or 2 vertical domi-
noes. The generating function of domino tilings is thus P (z) = Seq(z + z2) =

1
1−z−z2 , which is the generating function of Pn = Fn+1, where Fn is the Fi-
bonacci number Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1. (Equivalently, the Fi-
bonacci recurrence reflects the fact that removing a horizontal domino on the
top of an existing 2 × n tiling leads to a 2 × (n − 1) tiling, while removing 2
vertical dominoes on the top leads to a 2× (n− 2) tiling.) Let us now consider
a less trivial question, which is archetypal of the problem we consider in this
article (note that it has a closed-form solution but we will address later in this
article similar problems having no such nice closed-form solution):

Puzzle 3.1 Each of m children makes a tiling of a 2 × n strip. What is the
probability πn that these m tilings all have the same number of vertical dominoes,
when n gets large?

For m = 2, the number of pairs is given by D(z) = [t0]
∑
k≥0 p

k(zt)pk(1/t),

where p(z) = z + z2, and the Cauchy formula gives

D(z) =
1

2iπ

∮
1

1− p(zt)p(1/t)
dt

t
=

1

2iπ

∮
Num(z, t)

Den(z, t)
dt , (3)

where Num and Den are polynomials in z, t. Let Z(z) be any root of Den,
i.e. Den(z, Z) = 0, such that Z is inside the contour of integration for z ∼ 0.
Then, a residue computation gives:

D(z) =
∑
Z

Num(z, Z)

∂tDen(z, Z)
=

1√
z4 − 2z3 − z2 − 2z + 1

= 1 + z + 2z2 + 5z3 + 11z4 + 26z5 + 63z6 + 153z7 + 376z8 + 931z9 +O(z10) .

This is the sequence A051286 from [12] Dn =
∑n
k=0

(
n−k
k

)2
, Bóna and Knopf-

macher [6] gives a bijective proof that it is also the Whitney number of level n
of the lattice of the ideals of the fence of order 2n. The probability that 2
tilings of a 2 × n strip have the same number of vertical dominoes is therefore
(via singularity analysis, which can be done automatically with some computer
algebra systems, e.g. via the equivalent command of Bruno Salvy, in the Algolib
Maple package available at http://algo.inria.fr/libraries):

πn = Dn/P
2
n ∼

53/4

2
√
π
√
n

+
51/4( 11

32 −
√
5
4 )

√
πn3/2

+O(
1√
n5

) ≈ .9432407854√
n

. (4)

Note that this is consistent with the constant C given in Equation (2.10) in [6].
Our computations are available on-line in a Maple session1. Note that as Maple

1See http://www-lipn.univ-paris13.fr/∼banderier/Pawel/Maple/.
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does not always simplify algebraic numbers like humans would do (some den-
esting options are missing), we used here some of our own denesting recipes so
that these nested radicals become more readable for human eyes.

For m = 3, it is possible to compute the diagonal D(z) via creative tele-
scoping (as automated in Maple via the MGfun package of Frédéric Chyzak or
in Mathematica via the package HolonomicFunctions of Christoph Koutschan).
This leads to the following differential equation:

0 =
(
4z7 + 7z6 + 7z5 + 15z4 + 41z2 + z + 1

)
D (z)

+
(
5z8 + 12z7 + 7z6 + 62z5 + 88z3 + z2 + 6z − 1

) d
dz
D (z)

+z
(
z2 + 1

) (
z4 − z3 + 5z2 + z + 1

) (
z2 + 4z − 1

) d2
dz2

D (z) .

Here, the so-called Frobenius method gives the basis of the vector space of
solutions of this ODE, under the form of local formal solutions around any
singularity, by using the associated indicial polynomial (see [9, Chapter VII.9]).
In full generality, the dominating singularity of D(z) is z = ρm, where ρ is the
radius of convergence of 1/(1− P (z)); this can be proven via our Theorem 5.3.
In our case, the Frobenius method gives around the dominating singularity
ζ :=

√
5− 2:

D(z) = λ1

(
80 + 41

√
5

90
ln(z − ζ) +

8 + 5
√

5

9
ln(z − ζ) +O((z − ζ)2)

)

+ λ2

(
1− 8 + 5

√
5

9
(z − ζ) +

207 + 89
√

5

81
(z − ζ)2 +O((z − ζ)3)

)

for some unknown coefficients λ1, λ2 (related to the so-called Stokes constants
or connection constants)2. However, only the first summand contributes to
the asymptotics of Dn and a numerical scheme of our own allows to determine
(with the help of the heuristic LLL algorithm) the value of λ1. Using singularity
analysis then leads to

πn ∼
5
√

15

6

1

πn
+

5(10
√

3− 9
√

15)

54

1

πn2
+O(1/n3) ≈ 1.027340740

n
.

This asymptotics also proves that D(z) is not an algebraic function (the
local basis of the differential equation involves a logarithmic term).

2Note that, as typical with the Frobenius method (or also with the Birkhoff-Tritjinski
method, see [14]), it is not always possible to decide the connection constant(s); in the next
sections, we give a rigorous probabilistic approach which allows to get this constant, and
therefore full asymptotics by coupling it with the Frobenius method!
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For m = 4, creative telescoping leads to the following differential equation:

2
(
132z

16 − 3563z
15

+ · · · + 110
)
D (z) + 2

(
209474z

14
+ · · · − 1581z

) d

dz
D (z)

+
(
704z

18
+ · · · − 10143z

2
) d2

dz2
D(z) + z

(
165z

18
+ · · · − 55

) d3

dz3
D (z)

+z
2

(z − 1) (z + 1)
(
z
2

+ z + 1
) (
z
2 − 7z + 1

) (
z
2 − z + 1

) (
z
4

+ · · · + 1
) (

11z
6

+ · · · + 11
) d4

dz4
D (z) .

Using the Frobenius method and a numerical scheme of ours, this leads to

πn ∼
25

8

51/4
√

2√
πn3

+
5

256

51/4
√

2(47
√

5− 240)√
π3n5

+O(
1√
n7

) ≈ 1.186814138√
n3

.

It is noteworthy that this asymptotics is compatible with the fact that D(z)
could be an algebraic function. However, a guess based on Padé approximants
fails to find any algebraic equation. What is more, the index of nilpotence
mod 2, 3, 5, 7, 11 of D(z) is 3 (i.e. the smallest i such that (d/dz)i = L mod p
is i = 3 for primes p = 2, 3, 5, 7, 11... and L is the above irreducible unreadable
linear differential operator cancelling D(z)). Therefore, according to a conjec-
ture of Grothendieck on the p-curvature (see [7]), the function is not algebraic.

For m = 5, D(z) is a non algebraic function satisfying a differential equation
of order 6 and of degree 38, which leads to

πn ∼
25
√

5

4

1

π2n2
≈ 1.416006588

n2
.

The closed form of the coefficients is Dn(m) =
∑n
k=0

(
n−k
k

)m
, as can also be

obtained via a bijective proof approach. It is possible to get their asymptotics
via the Laplace method or our Theorem 5.3, this leads to πn ∼ Cm/

√
(πn)m−1

with Cm = (53/4)m−1/
√

2m−1m. This allows us to give a proof of the following
claim (which was a conjecture by Paul D. Hanna, see [12, A181545]):

Proposition 3.1 Dn+1(m)/Dn(m) ∼ (Fm
√

5+Lm)/2, where Lm are the Lucas
numbers, defined by the same recurrence as the Fibonacci numbers Fm, but with
different initial conditions, namely L0 = 2 and L1 = 1.

Proof.

Dn+1(m)

Dn(m)
=
πn+1(m)Pmn+1

πn(m)Pmn
=
Cm/

√
(π(n+ 1))m−1Pmn+1

Cm/
√

(πn)m−1Pmn

=

(
n

n− 1

)m−1
2
(
Pn+1

Pn

)m
∼
(

1 + (1/2−m/2)
1

n
+O(

1

n2
)

)(
1

ρ
(1 +O(εn)

)m
∼ 1

ρm

where ρ = p−1(1) and the asymptotics for Pn is explained in details in the next
section (Equation 6). In the case of p(z) = z + z2, the claim then follows from
ρ = 1/φ and the exact formula φm = (Fm

√
5 + Lm)/2. �
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Note that for all odd values of m > 2, the presence of an integer power of π
in the asymptotics of Dn(m) implies that the function D(z) can not be alge-
braic, whereas for all even values of m > 2, the asymptotics match the patterns
appearing in the asymptotics of coefficients of algebraic functions. However, we
expect the following conjectures to be true.

Conjecture 3.1 For any rational function p(z) ∈ N(z) (with p(1) > 1), the
generating function D(z) is not algebraic for m > 2.

It includes the specific case D(z) =
∑
n≥0Dnz

n with Dn =
∑n
k=0

(
n−k
k

)m
(non algebraicity of our initial puzzle) or Dn =

∑n
k=0

(
n
k

)m
(non algebraicity of

Franel numbers of order m). Nota bene: We gave here several ways to prove the
non-algebraicity for some value of m, and we proved it for all odd m > 2, we are
however unaware of any way of proving this for all even m > 2 at once, except,
in some cases, an evaluation at some z leading to a transcendental number, or
the Christol–Kamae–Mendès-France–Rauzy theorem on automatic sequences.

Definition 3.2 (Closed-form sequence) A sequence of integers Dn is said
to have a closed-form expression if it can be expressed as nested sums of hyper-
geometric terms, with natural boundaries (i.e. the intervals of summation are 0
and n). N.b: the number of nested sums has to be independent of n.

Typical examples of closed-form expression are nested sums of binomials;
without loss (or win!) of generality, it is possible to allow more general intervals
of summation or internal summands.

Conjecture 3.2 Let D(z) be like in equation 5 below (for any rational functions
pi(z) ∈ N(z)), then its coefficients Dn can be expressed in closed form.

An effective way of finding this nested sum could be called a ”reverse Zeil-
berger algorithm”. It then makes sense to give the following broader conjecture:

Conjecture 3.3 The coefficients of any D-finite function (i.e. a solution of
a linear differential equation with polynomial coefficients) can be expressed in
closed form.

Note that it follows from the theory of G-series that this does not hold for
closed-forms of the type ”one sum of hypergeometric terms” [10]. The formulas
we will give in the rest of this section are somehow illustrating these conjectures.

3.2 Other nice explicit formulas

It is clear from the previous subsection that we could play the same game for
any m-tuple of compositions with parts restricted to m different sets, encoded
by p1(z), . . . , pm(z).

Proposition 3.3 The generating function for the number of m-tuples of com-
positions having the same number of parts is given by

D(z) =
1

(2iπ)m−1

∮
1

1− p1(zt2 . . . tm)p2(1/t2) . . . pm(1/tm)

dt2
t2

. . .
dtm
tm

. (5)
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Therefore, one should not expect any nice closed-form solution for D(z)
whenever m > 2; while for m = 2, whenever all the pi(z)’s are polynomials or
rational functions, D(z) will be an algebraic function whose coefficients can be
expressed by nested sums of binomial coefficients (using Lagrange inversion).

For example, if p1(z) = p2(z) = 2z + z2 (which can be considered as tilings

with bicolored horizontal dominoes), one gets Dn+1(2) =
∑n
k=0

∑k
j=0

(
k
j

)(
k+j
j

)
.

If pi(z) = z
1−z (i.e., we consider compositions with any parts), then Dn is the

sequence of Franel numbers of order m: Dn+1(m) =
∑n
k=0

(
n
k

)m
, and we will see

in a next section that the probability that m unrestricted compositions of n have
the same number of parts is thus πn ∼ Cm/

√
(πn)m−1 , with Cm =

√
2m−1/m.

Note that if we replace pi(z) (for i > 1) by (1+pi(z)) in the integral formula of
Proposition 3.3, then this gives the generating function of tuples of compositions
such that the number of parts is in decreasing order.

Let us add few examples for which parts are in two different sets P1 and P2.
If p1(z) = z + z2 and p2(z) = z + 2z2, then one gets an interesting case as we
have here

πn ∼
√

72 + 42
√

3(
√

5− 5)(
√

2− 2)

12
√
πn

(
1−
√

2−
√

5 +
√

10

2(2−
√

3)

)n
≈ 1.62

.95n√
πn

,

which is therefore exponentially smaller that the order of magnitude of our
previous examples. We will comment later on this fact.

Going to a slightly more general case pi(z) = αiz+ βiz
2, one has for m = 2:

D(z) =
1√

1− 2α1α2z + (α2
1α

2
2 − 2β1β2)z2 − 2α1α2β1β2z3 + β2

1β
2
2z

4
.

Therefore the generating function only depends on the products α1α2 and
β1β2. This implies e.g. that p1(z) = 2z + 3z2 and p2(z) = 3z + 5z2 will lead to
the same D(z) as p1(z) = 6z + z2 and p2(z) = z + 15z2.

Note that D(z) factors nicely when β1 = β2 = 1:

D(z) = 1/
√

(α1α2z − 1− 2z − z2)(α1α2z − 1 + 2z − z2) .

If, additionally, α1α2 = ±4 this gives the sum of central Delannoy numbers [4]:

D(z) = 1/(1− z)× 1/
√

1 + (2 + |α1α2|)z + z2 .

When the allowed parts are only a and b, i.e. Pi(z) = αiz
a + βiz

b, then all
the compositions in the constrained tuples have necessarily the same number of
parts ”a” (this also holds for the number of parts ”b”). Choosing the order of
the n1 parts ”a” and the n2 parts ”b” leads to the formula

Dn(m) =
∑

n1a+n2b=n

(
n1 + n2
n1

)m
(α1 . . . αm)n1(β1 . . . βm)n2 .

There is no more such a simple formula as soon as one has more than two allowed
parts, because the parts can then compensate each other in many ways. E.g.,
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assume that the allowed parts contain 3 integers 0 < a < b < c, then one can
always create a composition P1 having n1 ”a”, n2 ”b”, n3 ”c” and a composition
P2 having m1 ”a”, m2 ”b” and m3 ”c” such they have the same number of parts
n1 +n2 +n3 = m1 +m2 +m3, but (n1, n2, n3) 6= (m1,m2,m3). To achieve this,
consider n1 = c−b, n3 = b−a, n2 = n1+n3, m2 = 0, m1 = 2n1, m3 = 2n3, thus
one gets two different compositions of n: n = n1a+n2b+n3c = m1a+m2b+m3c.

If p1(z) = αz+βz2 and p2(z) = z2/(1−z2), then D2n = βn, while if p1(z) =
αz + βz2 and p2(z) = z/(1− z), then

D(z) =
1

2
+

1

2

1 + αz√
1− 2αz + z2(α2 − 4β)

.

So, a nice surprise is given by p1(z) = z + z2 and p2(z) = z/(1 − z) , for

which we get D(z) = 1/2 + 1/2
√

1+z
1−3z , which is known to be the generating

function of directed animals ([12, A005773]). This sequence also counts numer-
ous other combinatorial structures: variants of Dyck paths, pattern avoiding
permutations, base 3 n-digit numbers with digit sum n, . . . It also counts pre-
fixes of Motzkin paths and this leads to an alternative formula Dn+1 = Mn =
3n −

∑n−1
k=0 3n−k−1Ek, where Mn and En stand for meanders and excursions of

length n, following the definitions and notations from [2].
We leave to the reader the pleasure of finding a bijective proof of all of this.

(Some of them go via a bijection with lattice paths, as done in [6], and then via
the bijection between heaps of pieces and directed animals.) Note that some of
the bijections can lead to efficient uniform random generation algorithms.

Figure 1: Pairs of compositions
having the same number of parts
(e.g. (1,2,2,1,2,1,2,2,2,2,2) and
(3,1,1,1,3,2,1,1,4,1,1)) are in bijection
with several combinatorial objects,
e.g. lattice paths (left) and directed
animals (right).

In summary, it may seem possible to compute everything in all cases; how-
ever, for a generic P, in order to compute the constant Cm involved in πn ∼
Cm

1√
(πn)m−1

, we need heavier computations if the degrees of the pi(z)’s get large

or if m is large. Current state of the art algorithms will take more than one day
for m = 6, and gigabytes of memory, so this “computer algebra” approach (may
it be via guessing or via holonomy theory) has some intrinsic limitations. What
is more, for a given P, it remains a nice challenge to get a rigorous (Zeilbergerian
computer algebra) proof for all m at once.

In the next sections, we show that the technical conditions to get a local
limit law hold, and that this allows to get the constant C, for any P, for all m.

We conclude this section with two tables summarizing our main closed-form
formulas.
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4 Local limit theorem for the number of parts
in restricted compositions

The discussion in this section pretty much gathers what has been developed
in various parts of the compendium on Analytic Combinatorics by Flajolet &
Sedgewick [9].

Our main generating function (see Equation (1)) is a particular case of
a more general composition3 scheme considered in Flajolet and Sedgewick,
namely F (z, u) = g(uh(z)). In our case g(y) = 1/(1 − y) and h(z) = p(z).
According to terminology used in [9, Definition IX.2, p. 629, Sec. IX.3], un-
der our assumption that

∑
j∈P pj > 1 the scheme is supercritical (i.e., when z

increases, one meets the singularity y = 1 of g(y) before any other potential sin-
gularity of p(z)). As a consequence, the number of parts XPn is asymptotically
normal as n → ∞, with both the mean and the variance linear in n. We now
briefly recapitulate the statements from [9]. The equation p(z) = 1 has a unique
positive root ρ ∈ (0, 1). As a consequence, F (z, 1) has a dominant simple pole
as its singularity and thus the number Pn of compositions of n with all parts
in P is

[zn]F (z, 1) ∼ 1

ρp′(ρ)
ρ−n(1 +O(εn)) , (6)

where ε is a positive number less than 1, see [9, Theorem V.1, p. 294]. The
probability generating function of XPn is given by

fn(u) =
[zn]F (z, u)

[zn]F (z, 1)
.

In a sufficiently small neighborhood of u = 1, as a function of z, F (z, u) given
in (1) has a dominant singularity ρ(u) which is the unique positive solution of
the equation

up(ρ(u)) = 1.

Consequently,

fn(u) =
[zn]F (z, u)

[zn]F (z, 1)
∼ p′(ρ(1))

p′(ρ(u))
·
(
ρ(u)

ρ(1)

)−n−1
.

It follows from the analysis of supercritical sequences given in [9, Proposi-
tion IX.7, p. 652] that the number of parts XPn satisfies

XPn − EXPn√
var(XPn )

d−→ N(0, 1),

where N(0, 1) denotes a standard normal random variable whose distribution
function is given by

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt,

3We cannot escape this polysemy: Compositions are enumerated by a composition!
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and where the symbol “
d−→” denotes the convergence in distribution. The

asymptotic expressions for the expected value and the variance of XPn are given
by

EXPn =
n

ρp′(ρ)
+O(1) with ρ ∈ (0, 1) such that p(ρ) = 1, (7)

var(XPn ) = Kn+O(1) where K =
ρp′′(ρ) + p′(ρ)− ρ(p′(ρ))2

ρ2(p′(ρ))3
. (8)

[Note that the expression for the coefficient K of the variance given in
Proposition IX.7 in [9] is incorrect; the correct version is (ρh′′(ρ) + h′(ρ) −
ρh′(ρ)2)/(ρh′(ρ)3), as given in many other places in the book.]

We now note that the central limit theorem can actually be strengthened to
the local limit theorem, pretty much as discussed in [9, Theorem IX.14 and the
remarks following its proof on p. 697]. Let us recall the following notion.

Definition 4.1 Let (Xn) be a sequence of integer valued random variables with
EXn = µn and var(Xn) = σ2

n. Let (εn) be a sequence of positive numbers going
to 0. We say that (Xn) satisfies a local limit theorem (of Gaussian type) with
speed εn if

sup
x∈R

∣∣∣∣∣σn Pr(Xn = bµn + xσnc)−
e−x

2/2

√
2π

∣∣∣∣∣ ≤ εn.
As was discussed in [9, p. 697], to see that the local limit theorem holds for
restricted compositions, it suffices to check that ρ(u) when restricted to the
unit circle uniquely attains its minimum4 at u = 1. This is what we prove in
the following lemma.

Lemma 4.2 Let p be a power series with nonnegative coefficients, of radius of
convergence ρp > 0 (possibly ρp = +∞). Let ρ(u) be as above the positive root5

of up(ρ(u)) = 1. If p is aperiodic6, then for 0 < 1
R < ρp and t ∈]0, 2π[, we have

ρ(R) < |ρ(Reit)| ,

i.e. the minimum on each circle is on the positive real axis. In particular, if the
radius of convergence of p is larger than 1, then for |u| = 1 and u 6= 1 we have

ρ(1) < |ρ(u)|.
4There is a typo in [9] p.697: the inequality direction is wrong.
5p(z) has nonnegative real coefficients and is thus increasing in a neighborhood of 0, i.e.

on z ∈ [0,+ε]. p being analytic near 0, is continuous and for any x ∈ R small enough, p(z) = x
will therefore have a real positive root zx, and this root will be analytic in x. This is the root
that we call “real positive”.

6A power series p is said to be periodic if and only if there exists a power series q and an
integer g > 1 such that p(z) = q(zg). Equivalently, the gcd of the support (=the ranks of
nonzero coefficients) of the power series p is g 6= 1. If this gcd g equals 1, then p is said to be
aperiodic.
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Proof. First, p has nonnegative real coefficients, therefore the triangle inequal-
ity gives p(|ρ(u)|) ≥ |p(ρ(u))|. Equality can hold only if p(ρ(u)) has just non-
negative terms, but this is not possible if ρ(u) 6∈ R+ as p is aperiodic with
nonnegative coefficients. Hence one has a strict triangle inequality: p(|ρ(u)|) >
|p(ρ(u))| = |1/u| = 1/R (the middle equality is just the definition of ρ and the
last equality comes from the fact we are on the circle |u| = R). As p is increasing
on [0, 1/R], we can apply p−1 to p(|ρ(u)|) > 1/R which gives p−1(p(|ρ(u)|) >
p−1(1/R), that is |ρ(u)| > ρ(R). �

Note that the aperiodicity condition is important, e.g. for p(z) = z2 + z6

(i.e. ρ(u) is the radius of convergence of P (z, u) = 1/(1 − u(z2 + z6))), one
has ρ(−1) = iρ(1); however some periodic cases have a unique minimum on the
unit circle, e.g. p(z) = z2 + z4. Note also that (in either periodic or aperiodic
case), the uniqueness of the minimum on the circle |u| = 1 at u = 1 does not
hold in general for the other roots of up(ρ(u)) = 1.

5 Asymptotic probability that restricted com-
positions have the same number of parts

Our motivation for including the results from [9] in the preceding section is
the following theorem which considerably extends the main results of [6]. We
single out the case m = 2 since in some cases it has been already studied in the
literature.

5.1 Pairs of compositions

Theorem 5.1 Let P ⊂ N. The probability that two random compositions with
parts in P have the same number of parts is, asymptotically as n→∞,

πn ∼
C√
π
√
n
,

where the value of C is related to the constant K from Equation 8, namely:

C =
1

2

√
K =

ρ(p′(ρ))3/2

2
√
ρp′′(ρ) + p′(ρ)− ρ(p′(ρ))2

. (9)

Before proving this theorem let us make some comments.
Remarks and examples:

(i) Some special cases were considered in [6]. They include unrestricted com-
positions (P = N), P = {1, 2}, or more generally P = {a, b} with a, b
relatively prime, compositions with all parts of size at least d (P = {n ∈
N : n ≥ d}), and compositions with all parts odd and at least d. The
arguments of [6] rely on the analysis of the asymptotics of the bivariate
generating functions, which is sometimes difficult and does not seem to
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be easily amenable to the analysis in the case of a general subset P of
positive integers. Our approach is much more probabilistic and relies on a
local limit theorem for the number of parts in a random composition with
parts in P. This turned out to be a much more universal tool.

(ii) To illustrate the principle behind our approach, consider the unrestricted
compositions. As was observed in [11], in that case XPn is distributed
like 1 + Bin(n− 1, 1/2) random variable. Therefore,

πn = Pr(Bin(n− 1, 1/2) = Bin′(n− 1, 1/2))

where Bin and Bin′ denote two independent binomial random variables
with specified parameters. Since the second parameter is 1/2 we have

Bin(n− 1, 1/2)
d
= n− 1− Bin(n− 1, 1/2).

Therefore, by independence we get

πn = Pr(Bin(n− 1, 1/2) + Bin′(n− 1, 1/2) = n− 1).

Finally, since

Bin(n− 1, 1/2) + Bin′(n− 1, 1/2)
d
= Bin(2(n− 1), 1/2),

we obtain by Stirling’s formula that

πn = Pr(Bin(2n− 2, 1/2) = n− 1) =

(
2n−2
n−1

)
22n−2

∼ 1√
πn

.

This is consistent with (9) (and with [6]) as for unrestricted composi-
tions p(z) =

∑
k≥1 z

k = z/(1 − z), so that ρ = 1/2, p′(z) = 1/(1 − z)2,

and p′′(z) = 2/(1− z)3 which gives C = 1.

(iii) Although the above argument may look very special and heavily reliant
on the properties of binomial random variables, our point here is that it
is actually quite general. The key feature is that the number of parts
(whether in unrestricted or arbitrarily restricted compositions) satisfies
the local limit theorem of Gaussian type, and this is enough to asymptot-
ically evaluate the probability in Theorem 5.1.

(iv) For another example, consider compositions of n into two parts, i.e. P =
{a, b} with a, b relatively prime. Then Theorem 5.1 holds with

C =
(aρa + bρb)3/2

2|a− b|
√
ρa+b

, (10)

where ρ is the unique root of za + zb = 1 in the interval (0, 1). In this
case p(z) = za + zb so that p′(z) = aza−1 + bzb−1 and p′′(z) = a(a −
1)za−2 + b(b− 1)zb−2. Thus, writing the numerator of (9) as

ρ(P ′(ρ))3/2 =
1
√
ρ

(ρP ′(ρ))3/2 =
1
√
ρ

(aρa + bρb)3/2,
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we only need to check that

ρP ′′(ρ) + P ′(ρ)− ρ(P ′(ρ))2 = (a− b)2ρa+b−1. (11)

But
ρP ′′(ρ) + P ′(ρ) = a2ρa−1 + b2ρb−1

so that the left–hand side of (11) is

a2ρa−1 + b2ρb−1 − a2ρ2a−1 − b2ρ2b−1 − 2abρa+b−1.

Factoring and using ρa + ρb = 1, we see that this is

a2ρa−1(1− ρa) + b2ρb−1(1− ρb)− 2abρa+b−1 = (a− b)2ρa+b−1,

as claimed.

When a = 1 and b = 2 we have the Fibonacci numbers relation so that ρ =
(
√

5− 1)/2 and (10) becomes

C =
(ρ+ 2ρ2)3/2

2ρ3/2
=

1

2
(1 + 2ρ)3/2 =

53/4

2
,

which agrees with (4) above and also with the expression (2.10) given
in [6]. However, in the case of general a and b, the value of C was given
in the last display of Section 3 in [6] as

ρ(aρa−1 + bρb−1)2√
4(a+ b)ρ2a+2b−2 + 2(1− ρ2a − ρ2b)(aρ2a−2 + bρ2b−2)

. (12)

This is incorrect as it is lacking a factor |a − b| in the denominator (so
that it gives the correct value of C when |a − b| = 1 but not otherwise).
To see this and also to reconcile (12) with (10) (up to a factor |a− b|) we
simplify (12) by noting that ρa + ρb = 1 implies

1−ρ2a−ρ2b = 1− (ρa)2−ρ2b = (1+ρa)ρb−ρ2b = ρb(1+ρa−ρb) = 2ρa+b

so that the expression under the square root sign in (12) becomes

4ρa+b−2((a+ b)ρa+b + aρ2a + bρ2b) = 4ρa+b−2(aρa + bρb)(ρa + ρb).

Using again ρa + ρb = 1 (12) is seen to be

ρ2(aρa−1 + bρb−1)2

2
√
ρa+b(aρa + bρb)

=
(aρa + bρb)3/2

2
√
ρa+b

,

which, except for the factor |a− b| in the denominator, agrees with (10).
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(v) Other examples from [6] can be rederived in the same fashion, but we once
again would like to stress universality of our approach. As an extreme
example, we can only repeat after [9]: even if we consider compositions
into twin primes, P = {3, 5, 7, 11, 13, 17, 19, 29, 31, . . . }, we know that the
probability of two such compositions having the same number of parts is
of order 1/

√
n. This is rather remarkable, considering the fact that it is

not even known whether this set P is finite or not.

Proof of Theorem 5.1. This will follow immediately from the following lemma
applied to Xn = XPn and formula (8) which gives the expression for σn. This
lemma should be compared with a more general Lemma 6 of [5]. We include
our proof to illustrate that seemingly very special arguments used in item (ii)
are actually quite general.

Lemma 5.2 Let (Xn) with EXn = µn and var(Xn) = σ2
n → ∞ as n → ∞,

be a sequence of integer valued random variables satisfying a local limit theorem
(of Gaussian type) with speed εn as described in Definition 4.1. Let (X ′n) be an
independent copy of (Xn) defined on the same probability space. Then

πn = Pr(Xn = X ′n) =
1

2
√
πσn

+O

(
εn
σn

+
1

σ2
n

)
.

Proof. For Xn and X ′n as in the statement we have

πn = Pr(Xn = X ′n) =
∑
k≥1

Pr(Xn = k = X ′n) =
∑
k≥1

Pr2(Xn = k)

=

∞∑
`=−∞

Pr(Xn = bµnc+ `) Pr(Xn = bµnc+ `). (13)

Now,

Pr(Xn = bµnc+`) = Pr(Xn = bµnc−`)+
{

Pr(Xn = bµnc+`)−Pr(Xn = bµnc−`)
}
.

To estimate the term in the curly brackets take x+ and x− such that

bµnc+ ` = bµn + x+σnc, and bµnc − ` = bµn − x−σnc.

By elementary considerations, −2{µn}/σn ≤ x+−x− ≤ 2(1−{µn})/σn (where {z}
is the fractional part of z), hence |x+ − x−| ≤ 2/σn. Then

Pr(Xn = bµnc+ `)− Pr(Xn = bµnc − `) =
1√

2πσn

(
e−

x2+
2 − e−

x2−
2

)

+

(
Pr(Xn = bµn + x+σnc)−

e−x
2
+/2

√
2πσn

)
−

(
Pr(Xn = bµn − x−σnc)−

e−x
2
−/2

√
2πσn

)
.

The absolute value of the second term is

1

σn

∣∣∣∣σn Pr(Xn = bµn + x+σnc)−
1√
2π
e−

x2+
2

∣∣∣∣ ≤ εn
σn
,
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and similarly with the third term. Applying the inequality |f(x) − f(y)| ≤

|x − y| sup |f ′(t)| to the first term gives e−
x2+
2 − e−

x2−
2 ≤ |x+ − x−| = O(1/σn)

and so, the first term is O(1/σ2
n). Therefore,∣∣∣Pr(Xn = bµnc+ `)− Pr(Xn = bµnc − `)

∣∣∣ = O

(
εn
σn

+
1

σ2
n

)
.

Coming back to equation (13), we see that

∞∑
`=−∞

Pr(Xn = bµnc+ `)

(
Pr(Xn = bµnc − `) +O

(
εn
σn

+
1

σ2
n

))

=

( ∞∑
`=−∞

Pr(Xn = bµnc+ `,X ′n = bµnc − `)

)
+ 1×O

(
εn
σn

+
1

σ2
n

)
= Pr(Xn +X ′n = 2bµnc) +O

(
εn
σn

+
1

σ2
n

)
.

Since Xn+X ′n is a sum of two i.i.d. random variables, it has mean 2µn and the
variance 2σ2

n. Furthermore, since each of the summands satisfies the local limit
theorem of Gaussian type, so does the sum (its probability generating function
is the square of fn(u) and thus falls into quasi-power category, just as fn(u)
does). Since 2bµnc = b2µn + x

√
2σnc for some x = O(1/σn), just as before we

have ∣∣∣∣√2σn Pr(Xn +X ′n = b2µnc)−
1√
2π

∣∣∣∣ = O

(
εn +

1

σn

)
.

Consequently,

πn = Pr(Xn = X ′n) = Pr(Xn +X ′n = b2µnc) =
1

2
√
πσn

+O

(
εn
σn

+
1

σ2
n

)
,

which completes the proof of Lemma 5.2 and of Theorem 5.1. �

5.2 Tuples of compositions

Here we sketch a proof of the following extension of Theorem 5.1.

Theorem 5.3 Let P ⊂ N and let m ≥ 2 be fixed. Then, the probability πn
that m randomly and independently chosen compositions with parts in P all have
the same number of parts is, asymptotically as n→∞,

πn ∼
Cm√

(πn)m−1
,

where Cm is related to the constant K from Equation 8, namely:

Cm =
1√

2m−1m

√
K
m−1

=
1√

2m−1m

(
ρ2(p′(ρ))3

ρp′′(ρ) + p′(ρ)− ρ(p′(ρ))2

)(m−1)/2

.
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Remark. For unrestricted compositions, the expression in the big parentheses
is 2 (see (i) in Remarks above). This gives Cm =

√
2m−1/m as stated in

Section 3.1.
Proof of Theorem 5.3. This follows immediately from the following statement
which itself is a straightforward extension of Lemma 6 of [5] with essentially the
same proof. We will be using it for Gaussian density in which case∫ ∞

−∞
gm(x)dx =

1√
(2π)m

∫ ∞
−∞

e−
mx2

2 dx =
1√

(2π)m−1
1√
m
.

Lemma 5.4 (Bóna–Flajolet). Let (Xn) be integer valued with µn = EXn, σ2
n =

var(Xn)→∞ as n→∞. Let g be the probability density function and suppose
that

lim
n→∞

sup
x
|Pr(Xn = bµn + xσnc)− g(x)| = 0.

Let further (X
(k)
n ), k = 1, . . . ,m be independent copies of the sequence (Xn)

defined on the same probability space. Then

σm−1n Pr(X(1)
n = X(2)

n = · · · = X(m)
n ) −→

∫ ∞
−∞

gm(x)dx, as n→∞.

To see this we just follow the argument in [5, Lemma 6] with obvious adjust-
ments: the left–hand side above is

σm−1n

∞∑
k=1

Prm(Xn = k) = σm−1n

∞∑
k=1

Prm(Xn = bµn + xkσnc),

with k−µn
σn
≤ xk < k+1−µn

σn
. This is further equal to

1

σn

∑
k

(σn Pr(Xn = bµn+xkσnc))m ∼
1

σn

∑
k

gm(xk) ∼ 1

σn

∫ ∞
−∞

gm(
x− µn
σn

)dx,

where the first approximation holds by the assumption of the lemma (after
having first restricted the range of xk’s to a large compact set) and the second
by the Riemann sum approximation of the integral. Since the expression on the
right is

∫∞
−∞ gm(x)dx, the result follows. �

6 Concluding remarks

1. In this article, we restricted our attention to compositions (giving first sev-
eral new closed-form formulas, and then going to the asymptotics), but it
is clear that Lemma 5.4 can be applied to many combinatorial structures,
e.g. the probability that m random permutations of size n have the same
number of cycles (see [13] for the case m = 2), or the probability that m
permutations have a longest increasing subsequence of the same length,
or the probability that m random planar maps have a largest component
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of same size. This leads to interesting analytic/computational consider-
ations, as it will involve evaluating the integral of gm(x) where g(x) will
be the Tracy–Widom distribution density (provided the local limit theo-
rem holds, which has not been proven yet), or the map-Airy distribution
density (for which a local limit theorem was established, see [3]).

2. A similar approach can be also applied to tuples of combinatorial struc-
tures following m different local limit laws (with m densities having fast
decreasing tails), as long as they have the same mean.

3. When the means are not the same, the probability of the same number
of parts is generally of much smaller order. This is because if Xn has
mean cn and X ′n has mean c′n and both have linear variances, then as-

suming w.l.o.g. c > c′ and choosing α < c−c′
2 we note that if |Xn−cn| < αn

and |X ′n − c′n| < αn then

Xn −X ′n > cn− αn− (c′n+ αn) = (c− c′ − 2α)n > 0,

so that Xn 6= X ′n. Therefore,

πn = Pr(Xn = X ′n) ≤ Pr(|Xn − cn| ≥ αn) + Pr(|X ′n − c′n| ≥ αn).

Since both Xn and X ′n converge to a Gaussian law and σn = σn, the first
probability is roughly (with β = α/

√
σ)

Pr

(
|Xn − cn|√

σn
≥ β
√
n

)
∼ 1√

2π

∫ ∞
β
√
n

e−t
2/2dt ∼ 1√

2πβ
√
n
e−

β2n
2 ,

by the well–known bound on the tails of Gaussian random variables (see,
e.g. [8, Chapter VII, Lemma 2]). This is consistent with an example
discussed in Section 3.1. The difficulty with making this argument rigor-
ous is that the error in the first approximation is usually of much bigger
(typically 1/

√
n) magnitude than the quantities that are approximated.

However, a slightly weaker bound, namely, e−βn (with a generally different
value of β) can be obtained by using Theorem IX.15 in [9] which asserts
that tail probabilities of random variables falling in the scheme of quasi-
powers are decaying exponentially fast. While this theorem is stated for
the logarithm of Pr(|Xn− cn| > αn), it is clear from its proof that one ac-
tually gets exponential bound on the tail probabilities (see Equation (88)
on p. 701 in [9] and a few sentences following it).

4. The Gaussian local limit law explains the universality of the 1/(πn)(m−1)/2

appearance for numerous combinatorial problems in which we would forcem
combinatorial structures of size n to have an extra parameter of the same
value. We also wish to point out yet another insight provided by the prob-
abilistic approach. As we mentioned in Section 3.1 (see Footnote 2), it
allows to solve the connection constant problem intrinsic to the Frobenius
method, and therefore, a combination of these two approaches (local limit
law plus Frobenius method) gives access to full asymptotics in numerous
cases.

20



Acknowledgements. Part of this work was done during Pawe l Hitczenko’s
sojourn at LIPN (Laboratoire d’Informatique de Paris Nord), thanks to the
invited professor position funded by the university of Paris 13 and the Institute
Galilée. He would like to thank the members of LIPN for their hospitality.

References

[1] George E. Andrews. The theory of partitions. Addison-Wesley, 1976. En-
cyclopedia of Mathematics and its Applications, Vol. 2.

[2] Cyril Banderier and Philippe Flajolet. Basic analytic combinatorics of
directed lattice paths. Theoretical Computer Science, 281(1-2):37–80, 2002.

[3] Cyril Banderier, Philippe Flajolet, Gilles Schaeffer, and Michèle Soria. Ran-
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