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When analyzing concurrent processes, the shuffle operator is the
main source of combinatorial explosion. [Mi80], [ClGrPe99]
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Concurrency theory and combinatorics

In concurrency theory, one manipulates:
syntactic objects ⇒ Process trees
their semantic interpretation ⇒ Shuffle trees

Ideas
to consider these objects as combinatorial structures
to use analytic combinatorics for quantitative studies

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Concurrency theory and combinatorics

In concurrency theory, one manipulates:
syntactic objects ⇒ Process trees
their semantic interpretation ⇒ Shuffle trees

Ideas
to consider these objects as combinatorial structures
to use analytic combinatorics for quantitative studies

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Process trees and shuffle trees

A process tree is a specification of events with precedence
constraints:
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The induced shuffle tree lists all admissible concurrent runs by
sharing prefixes, as in a trie:
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Related works

Poset Theory

linear extensions

Algebraic
Combinatorics

partly commutative algebras

Concurrency Theory

shuffle trees

[BrWi91]
[At90]

[DuHiNoTh11]
[BoFéLaRe11]

[Mi80] [ClGrPe99]
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Building shuffle trees (1)
Definition: Child contraction
Let T be a tree with children T1, . . . ,Tr whose root-events are
`1, . . . , `r (r ∈ N∗). The i-contraction of T is the tree T C i with
root `i and children T1, . . . ,Ti−1,Ti1 , . . . ,Tim ,Ti+1, . . . ,Tr where
Ti1 , . . . ,Tim are the children of Ti .

Example

T = a

cb d

e f

⇒ T C 2 = c

e fb d
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Building shuffle trees (2)
Recursive definition
Let T be a tree. Its shuffle tree Shuf (T ) is defined inductively as:

if T is a leaf, then Shuf (T ) := T
if T has root-event ` and children T1, . . . ,Tr (r ∈ N∗)
then Shuf (T ) is the tree with root-event `
and children Shuf (T C 1), . . . , Shuf (T C r)

Example (Shuffle / Contraction):
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Branches of shuffle trees

Observation
Information is extremely redundant in shuffle trees:
One can recover the process tree by traversing a single branch of
the shuffle tree.
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Goals

In order to analyze the combinatorial explosion of shuffle trees, we
want to answer the following questions:

What is the number of runs for a given process tree T ?
⇒ the number of leaves in Shuf (T )

What is the size of the shuffle tree induced by T ?
⇒ no correlation known with the number of runs (sharing)
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Main results

Theorem
The typical shape of a shuffle tree built on a process tree of size n:

tree
n

Θ(
√
n)

Θ(
√
n)

shuffle tree
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Concurrent runs and increasing trees (1)

Definition: Increasing tree
An increasing tree is a labelled plane tree such that the sequence of
labels along any branch starting at the root is increasing.

1

2

3 4

5 6

1

2

5 3

4 6
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Concurrent runs and increasing trees (2)

Lemma: Bijection
Let T be a process tree. The number of runs associated to T
corresponds to the number of increasing trees whose structure is
the unlabelled tree T .
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Number of concurrent runs

Theorem: Hook length in trees [Kn73]

Let T be a unlabelled tree.
The number of increasing trees built on T equals:

`T =
|T |!∏

R subtree of T

|R|
.

This corresponds equivalently to the number of runs induced by T .

a

b
c d

e f

6

5

1 3

1 1

`T =
6!

6 · 5 · 1 · 3 · 1 · 1
= 8.
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Mean number of runs and mean growth

Proposition
The arithmetic mean number of runs built on trees of size n is:

¯̀n ∼n→∞
n!

2n−1 ∼ 2
√
2πn

( n
2e

)n
.

Proposition
The geometric mean growth between trees of size n and their
number of runs is:

Γ̄n ∼n→∞
√
2πnn−1 exp

(
−(1 + 2L(1/4))n +

√
πn + L(1/4)

)
,

with L (1/4) =
∑

n>1 log n · Catn · 4−n ≈ 0.579043921± 5 · 10−9.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Mean number of runs and mean growth

Proposition
The arithmetic mean number of runs built on trees of size n is:

¯̀n ∼n→∞
n!

2n−1 ∼ 2
√
2πn

( n
2e

)n
.

Proposition
The geometric mean growth between trees of size n and their
number of runs is:

Γ̄n ∼n→∞
√
2πnn−1 exp

(
−(1 + 2L(1/4))n +

√
πn + L(1/4)

)
,

with L (1/4) =
∑

n>1 log n · Catn · 4−n ≈ 0.579043921± 5 · 10−9.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Size of shuffle trees: substructures

Definition
Let T be a process tree. We define a substructure of T a tree
obtained by removing some subtrees of T .

Example
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Size of a shuffle tree

Proposition
The size of the shuffle tree built on T satisfies:

nT =
∑

R substructure of T

`R .
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Mean size of shuffle trees

Theorem
The mean size s̄n of a shuffle tree induced by a tree of size n
follows a P-recurrence and satisfies:

s̄n ∼n→∞ e
n!

2n−1 ∼ 2e
√
2πn

( n
2e

)n
.
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Outline of the proof (1)

First step:
The generating function of the cumulative size of shuffle trees.

S = U�U ? Z × Seq(S ∪ C)

S(z , u) =

∞∫
v=0

z
1− S(z , v)− C (z)

dv =
∑

n,k∈N
Sn,k · zn · u

k

k!

where Sn,k is
∑

T
|T | = n

∑
S substructure of size k of T

`S .

By substituting uk by k! (Gamma transformation) we obtain
the generating function S(z) for the size of the shuffle trees.

S(z) =

∞∫
u=0

S(z , u) exp(−u)du.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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First step:
The generating function of the cumulative size of shuffle trees.

S = U�U ? Z × Seq(S ∪ C)

S(z , u) =

∞∫
v=0

z
1− S(z , v)− C (z)

dv =
∑

n,k∈N
Sn,k · zn · u

k

k!

where Sn,k is
∑

T
|T | = n

∑
S substructure of size k of T

`S .

By substituting uk by k! (Gamma transformation) we obtain
the generating function S(z) for the size of the shuffle trees.

S(z) =

∞∫
u=0

S(z , u) exp(−u)du.
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The generating function of the cumulative size of shuffle trees.

S = U�U ? Z × Seq(S ∪ C)

S(z , u) =

∞∫
v=0

z
1− S(z , v)− C (z)

dv =
∑

n,k∈N
Sn,k · zn · u

k

k!

where Sn,k is
∑

T
|T | = n

∑
S substructure of size k of T

`S .

By substituting uk by k! (Gamma transformation) we obtain
the generating function S(z) for the size of the shuffle trees.
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Outline of the proof (1)

First step:
The generating function of the cumulative size of shuffle trees.

S = U�U ? Z × Seq(S ∪ C)

S(z , u) =

∞∫
v=0

z
1− S(z , v)− C (z)

dv =
∑

n,k∈N
Sn,k · zn · u

k

k!

where Sn,k is
∑

T
|T | = n

∑
S substructure of size k of T

`S .

By substituting uk by k! (Gamma transformation) we obtain
the generating function S(z) for the size of the shuffle trees.

S(z) =

∞∫
u=0

S(z , u) exp(−u)du.
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Motivations Shuffle trees and their typical shape Algorithms

Outline of the proof (2)

Second step: Assisted proof using gfun.

As S(z , u) is algebraic, it is holonomic.

As S(z , u) is holonomic, its Laplace transform is holonomic:

Ŝ(z , u) =

∞∫
v=0

S(z , uv) exp(−v)dv .

Using the holonomic stability under partial evaluation, S(z) is
holonomic.

As S(z) is holonomic, its coefficients sn follows a P-reccurence.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Outline of the proof (2)

Second step: Assisted proof using gfun.
As S(z , u) is algebraic, it is holonomic.

As S(z , u) is holonomic, its Laplace transform is holonomic:

Ŝ(z , u) =

∞∫
v=0

S(z , uv) exp(−v)dv .

Using the holonomic stability under partial evaluation, S(z) is
holonomic.

As S(z) is holonomic, its coefficients sn follows a P-reccurence.
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Motivations Shuffle trees and their typical shape Algorithms

Computer assisted ?

144*(diff(S(z, u), u, u, z))*u^4*z^3+12*(diff(S(z, u), u, u, u,
z, z))*u^6*z+108*(diff(S(z, u), u, u, z, z))*u^5*z+648*
(diff(S(z, u), u, u, z))*u^5*z^2+72*(diff(S(z, u), u, u, u,z))*
u^6*z^2+576*(diff(S(z, u), u, z))*u^3*z^3-756*(diff(S(z, u), u,
z))*z*u^4-96*(diff(S(z, u), u, u, u, z, z))*u^6*z^2+72*(diff(S(z, u),
u, z))*u^2*z^3+3456*(diff(S(z, u), u, u, z, z))*u^5*z^4+96*(diff(S(z,
u), u, u, u, z, z))*u^6*z^3+1728*(diff(S(z, u), u,z))*u^4*z^3-336*(diff(S(z, u), u, u, z, z))*u^4*z^3+1296*(diff(S(z,u), u,
z))*u^4*z^2-60*(diff(S(z, u), u,z))*u^3*z+6*u^2*z+36*u^3*z-18*u^3-378*(diff(S(z, u), u, u,z))*u^5*z+96*(diff(S(z,
u), u, u, u, z))*u^6*z^3-42*(diff(S(z, u), u,u, u, z))*u^6*z-12*(diff(S(z, u), u, z, z))*u^3+
384*(diff(S(z, u), u,u, u, z, z))*z^4*u^6-864*(diff(S(z, u), u, u, z,z))*u^5*z^2-15*(diff(S(z, u), u, u, z))*z*u^4+36*(diff(S(z, u),u,z))*u^2*z-84*(diff(S(z, u), u, z))*u^2*z^2-36*(diff(S(z, u), u, u,z))*u^4*z^2-144*(diff(S(z, u), u, z))*u^3*z^2+864*(diff(S(z, u), u, u,z))*u^5*z^3+288*(diff(S(z, u), u, z, z))*u^2*z^4+192*(diff(S(z, u), u,
z, z))*u^2*z^2+96*(diff(S(z, u), z, z, z))*u*z^5+24*(diff(S(z, u), z,z, z))*u^2*z^3+384*(diff(S(z, u), z, z, z))*u^2*z^5-1728*(diff(S(z,u), u, z, z))*u^4*z^2+48*(diff(S(z, u), u, z, z,z))*u^3*z^3-21*(diff(S(z, u), z, z, z))*u*z^2-84*(diff(S(z, u), z,z))*z^3-3*(diff(S(z, u), z, z))*z+216*(diff(S(z, u), u, z,z))*z*u^4-360*(diff(S(z, u), u, z, z))*u^2*z^3-3*(diff(S(z, u), u, u,z, z))*u^4-48*(diff(S(z, u), z, z))*u^2*z^2+1728*(diff(S(z, u), u, z,
z))*u^4*z^3+6*(diff(S(z, u), u, u, u))*u^6+27*(diff(S(z, u), u, u,z))*u^5-128*(diff(S(z, u), u, z, z, z))*u^2*z^4+48*(diff(S(z, u), u,z, z, z))*u^3*z^2-160*(diff(S(z, u), u, u, z, z,z))*u^4*z^4-640*(diff(S(z, u), u, z, z, z))*u^3*z^4+768*(diff(S(z, u),z, z, z))*u^3*z^5+2304*(diff(S(z, u), z, z))*u^3*z^4-128*(diff(S(z,
u), z, z, z))*z^4*u+2*(diff(S(z, u), u, z, z, z))*u^2*z+54*(diff(S(z,u), u, z))*u^4+192*(diff(S(z, u), z, z))*u*z^2+2*(diff(S(z, u), z, z,z))*u*z-24*(diff(S(z, u), u, u, u, z, z, z))*u^6*z^3+3*(diff(S(z, u),
u, z, z))*u^2+24*(diff(S(z, u), z, z, z))*u^3*z^2+576*(diff(S(z, u),u, u, z, z))*u^4*z^4+16*(diff(S(z, u), z, z, z))*z^5+9*(diff(S(z, u),z, z, z))*z^3+120*(diff(S(z, u), u, z, z))*u^3*z+72*(diff(S(z, u), u,
z, z, z))*u^4*z^2+72*(diff(S(z, u), z, z))*u^3*z-1344*(diff(S(z, u),u, z, z))*u^3*z^3+54*(diff(S(z, u), u, u))*u^5+3*(diff(S(z, u), u, u,u, z))*u^6+6912*(diff(S(z, u), u, z, z))*u^4*z^4+12*(diff(S(z, u), u,
u, z, z, z))*u^4*z^2+3*(diff(S(z, u), z, z))*u+36*(diff(S(z, u), u, u,z, z, z))*u^5*z^2-144*(diff(S(z, u), z, z, z))*u^3*z^3+576*(diff(S(z,u), z, z))*u^3*z^3+96*(diff(S(z, u), u, z, z, z))*u^2*z^5-4*(diff(S(z,
u), z, z, z))*u^2*z+1152*(diff(S(z, u), z, z))*u^2*z^4+288*(diff(S(z,u), z, z))*z^4*u+30*(diff(S(z, u), u, u, z, z))*z*u^4+78*(diff(S(z,u), u, z, z, z))*u^2*z^3-96*(diff(S(z, u), u, z,z))*u^3*z^2+4*(diff(S(z, u), u, u, u, z, z, z))*u^6*z^2-320*(diff(S(z,u), z, z, z))*u^2*z^4-2*(diff(S(z, u), u, u, z, z,z))*z*u^4-6*(diff(S(z, u), z, z))*u^2-432*(diff(S(z, u), u, z, z,z))*u^4*z^3+2304*(diff(S(z, u), u, z, z, z))*u^4*z^5+768*(diff(S(z,u), u, z, z, z))*u^3*z^5-(diff(S(z, u), z, z, z))*z^2+30*(diff(S(z,u), z, z))*z^2-24*(diff(S(z, u), u, u, z, z))*u^4*z^2+864*(diff(S(z,
u), u, u, z, z))*u^5*z^3+24*(diff(S(z, u), u, z))*u^3-6*(diff(S(z, u),u, z))*u^2+6*(diff(S(z, u), u, u, z))*u^4+128*(diff(S(z, u), u, u, u,z, z, z))*z^5*u^6+24*(diff(S(z, u), z, z, z))*u^2*z^2-108*(diff(S(z,
u), u, u))*u^5*z-360*(diff(S(z, u), z, z))*u*z^3-672*(diff(S(z, u), z,z))*u^2*z^3+60*(diff(S(z, u), z, z))*u^2*z-6*(diff(S(z, u), u,u))*z*u^4-576*(diff(S(z, u), z, z))*u^3*z^2-12*(diff(S(z, u), u, u,u))*u^6*z+12*(diff(S(z, u), u, u, z, z, z))*u^4*z^3+288*(diff(S(z, u),z))*u^2*z^3+576*(diff(S(z, u), z))*u^3*z^3-72*(diff(S(z, u),
z))*u^2*z^2+432*(diff(S(z, u), z))*u^3*z^2+72*(diff(S(z, u),z))*u*z^3-84*(diff(S(z, u), z))*u*z^2-30*(diff(S(z, u),
z))*u^2*z-252*(diff(S(z, u), z))*u^3*z+36*(diff(S(z, u),z))*u*z-72*S(z, u)*u^3*z-12*S(z, u)*u^2*z-216*(diff(S(z, u),
u))*z*u^4-24*(diff(S(z, u), u))*u^3*z+48*(diff(S(z, u), z,z))*z^4+2304*(diff(S(z, u), u, z, z))*u^3*z^4+18*(diff(S(z, u),z))*u^3-24*(diff(S(z, u), z))*z^2+12*(diff(S(z, u),z))*z^3+12*(diff(S(z, u), z))*u^2+6*(diff(S(z, u), z))*z-6*(diff(S(z,u), z))*u+36*S(z, u)*u^3+108*(diff(S(z, u), u))*u^4-24*(diff(S(z, u),z, z, z))*z^4-216*(diff(S(z, u), u, u, z, z, z))*u^5*z^3-21*(diff(S(z,u), u, z, z, z))*u^2*z^2-8*(diff(S(z, u), u, z, z,z))*u^3*z+1152*(diff(S(z, u), u, u, z, z, z))*u^5*z^5+192*(diff(S(z,u), u, u, z, z, z))*u^4*z^5+78*(diff(S(z, u), z, z,z))*u*z^3-42*(diff(S(z, u), u, z, z))*u^2*z-42*(diff(S(z, u), z,z))*u*z
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Motivations Shuffle trees and their typical shape Algorithms

Outline of the proof (3)

Third step: Asymptotic behaviour of the coefficients of s̄n.

Classical method gives:

s̄n ·
2n−1

n!
= θ(1).

Some more work is necessary to obtain the constant.

Finally,

s̄n ∼n→∞ e
n!

2n−1 .
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Motivations Shuffle trees and their typical shape Algorithms

Probability of a run prefix

Data: T : a weighted process tree of size n
Data: σ := 〈α1, . . . , αp〉: a run prefix of length p ≤ n
Result: ρσ: the probability of σ in the shuffle of T

ρσ := 1
i := 1
for i from 1 to p − 1 do

ρσ := ρσ × |T (αi+1)|
n−i

i := i + 1
return ρσ
Directly deduced from the hook length formula.

Proposition
The number of runs of a process tree T of size n can be computed
in O(n) operations.

[At90] gave a quadratic complexity algorithm.
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

{1..11}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty
run = []

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

construct

{1..11}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

a | 0, 11, 0 | L

run = []
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

5 ∈ {1..11}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

a | 0, 11, 0 | L

run = []
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

5 ∈ {1..11}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

a | 0, 11, 0 | L

run = [a]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

swap

{1..10}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

b | 0, 10, 0 | L

run = [a]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

7 ∈ {1..10}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

b | 0, 10, 0 | L

run = [a]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

7 ∈ {1..10}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

b | 0, 10, 0 | L

run = [a, b]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

swap

{1..9}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

c | 0, 3, 0 | L

run = [a, b]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

construct; invert bit

{1..9}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

c | 0, 3, 0 | R

f | 0, 6, 0 | L

run = [a, b]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..9}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

c | 6, 3, 0 | R

f | 0, 6, 0 | L

run = [a, b]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

8 ∈ {1..9}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

c | 6, 3, 0 | R

f | 0, 6, 0 | L

run = [a, b]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

8 ∈ {1..9}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

c | 6, 3, 0 | R

f | 0, 6, 0 | L

run = [a, b, c]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

swap

{1..8}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 0 | R

f | 0, 6, 0 | L

run = [a, b, c]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

construct; invert bit

{1..8}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 0 | L

f | 0, 6, 0 | L e | 0, 1, 0 | L

run = [a, b, c]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..8}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 1 | L

f | 0, 6, 0 | L e | 0, 1, 0 | L

run = [a, b, c]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

8 ∈ {1..8}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 1 | L

f | 0, 6, 0 | L e | 0, 1, 0 | L

run = [a, b, c]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

search

8− (6 + 1) = 1 ∈ {1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 1 | L

f | 0, 6, 0 | L e | 0, 1, 0 | L

run = [a, b, c]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

{1..7}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 1 | L

f | 0, 6, 0 | L e | 0, 1, 0 | L

run = [a, b, c , e]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

empty

{1..7}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 1 | L

f | 0, 6, 0 | L ε | 0, 0, 0 | L

run = [a, b, c , e]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..7}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 0 | L

f | 0, 6, 0 | L ε | 0, 0, 0 | L

run = [a, b, c , e]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

2 ∈ {1..7}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 0 | L

f | 0, 6, 0 | L ε | 0, 0, 0 | L

run = [a, b, c , e]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

search

2 ∈ {1..6}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 0 | L

f | 0, 6, 0 | L ε | 0, 0, 0 | L

run = [a, b, c , e]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

{1..6}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 0 | L

f | 0, 6, 0 | L ε | 0, 0, 0 | L

run = [a, b, c , e, f ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

swap

{1..6}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 0 | L

g | 0, 1, 0 | L ε | 0, 0, 0 | L

run = [a, b, c , e, f ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..6}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 0 | L

g | 0, 1, 0 | L ε | 0, 0, 0 | L

run = [a, b, c , e, f ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

fill

{1..6}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 0 | L

g | 0, 1, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..6}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 4 | L

g | 0, 1, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

random choice; search

1 ∈ {1..6}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 4 | L

g | 0, 1, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

search

1 ∈ {1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 4 | L

g | 0, 1, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

take

{1..5}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 4 | L

g | 0, 1, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f , g ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

empty

{1..5}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 4 | L

ε | 0, 0, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f , g ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

update

{1..5}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 0, 1, 4 | L

ε | 0, 0, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f , g ]
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Uniform random generation example

random choice; search

3 ∈ {1..5}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 0, 1, 4 | L

ε | 0, 0, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f , g ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

search

2 ∈ {1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 0, 1, 4 | L

ε | 0, 0, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f , g ]
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Uniform random generation example

take

{1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 0, 1, 4 | L

ε | 0, 0, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

swap

{1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 0, 1, 4 | L

ε | 0, 0, 0 | L i | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

update

{1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 0, 1, 1 | L

ε | 0, 0, 0 | L i | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

fill

{1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 0, 1, 1 | L

j | 0, 1, 0 | L i | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 1 | L

j | 0, 1, 0 | L i | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

construct ; invert bits

{1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 1 | R

j | 0, 1, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

update

{1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 2, 1, 1 | R

j | 1, 1, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

2 ∈ {1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 2, 1, 1 | R

j | 1, 1, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

search

2 ∈ {1..2}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 2, 1, 1 | R

j | 1, 1, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

take

{1..3}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 2, 1, 1 | R

j | 1, 1, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

empty

{1..3}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 2, 1, 1 | R

ε | 1, 0, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

update

{1..3}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 1 | R

ε | 1, 0, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

3 ∈ {1..3}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 1 | R

ε | 1, 0, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

search

1 ∈ {1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 1 | R

ε | 1, 0, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

take

{1..2}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 1 | R

ε | 1, 0, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

empty

{1..2}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 1 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

update

{1..2}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

random choice; search

2 ∈ {1..2}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations



Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

{1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i , d ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

empty

{1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

ε | 1, 0, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i , d ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

random choice; search

1 ∈ {1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

ε | 1, 0, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i , d ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

search

1 ∈ {1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

ε | 1, 0, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i , d ]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Uniform random generation example

search

1 ∈ {1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

ε | 1, 0, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i , d ]
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Uniform random generation example

take

∅

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

ε | 1, 0, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i , d , k]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations
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Conclusion and perspectives

First step for the quantitative analysis of concurrent theory
objects,. . .
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Conclusion and perspectives

First step for the quantitative analysis of concurrent theory
objects,. . .
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