Enumeration and Random Generation of Concurrent Computations

O. Bodini¹ A. Genitrini² F. Peschanski²

¹Université Paris 13 – LIPN

²UPMC Paris – LIP6

Aléa – March, 2012

Outline

1 Motivations

- Concurrent computations
- Related works

2 Shuffle trees and their typical shape

- Recursive construction
- Quantitative analysis

3 Algorithms

- Probability of a concurrent run prefix
- Uniform random generation of a run

Outline

2 Shuffle trees and their typical shape

3 Algorithms

When analyzing concurrent processes, the shuffle operator is the main source of **combinatorial explosion**. [Mi80], [CIGrPe99]

Concurrency theory and combinatorics

In concurrency theory, one manipulates:

- syntactic objects \Rightarrow Process trees
- their semantic interpretation \Rightarrow Shuffle trees

Concurrency theory and combinatorics

In concurrency theory, one manipulates:

- syntactic objects \Rightarrow Process trees
- their semantic interpretation \Rightarrow Shuffle trees

Ideas

- to consider these objects as combinatorial structures
- to use analytic combinatorics for quantitative studies

Process trees and shuffle trees

A process tree is a specification of events with precedence constraints:

Process trees and shuffle trees

A **process tree** is a specification of events with precedence constraints:

The induced **shuffle tree** lists all admissible concurrent runs by sharing prefixes, as in a trie:

Motivations ○○●

Shuffle trees and their typical shape

Algorithms

Related works

Motivations ○○●

Shuffle trees and their typical shape

Algorithms

Related works

Motivations ○○●

Shuffle trees and their typical shape

Algorithms

Related works

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Outline

Motivations

2 Shuffle trees and their typical shape

3 Algorithms

Building shuffle trees (1)

Definition: Child contraction

Let *T* be a tree with children T_1, \ldots, T_r whose root-events are ℓ_1, \ldots, ℓ_r ($r \in \mathbb{N}^*$). The *i*-contraction of *T* is the tree $T \triangleleft i$ with root ℓ_i and children $T_1, \ldots, T_{i-1}, T_{i_1}, \ldots, T_{i_m}, T_{i+1}, \ldots, T_r$ where T_{i_1}, \ldots, T_{i_m} are the children of T_i .

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree Shuf(T) is defined inductively as:
if T is a leaf, then Shuf(T) := T

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its **shuffle tree** Shuf(T) is defined inductively as: • if T is a leaf, then Shuf(T) := T

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree Shuf(T) is defined inductively as:
if T is a leaf, then Shuf(T) := T

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree Shuf(T) is defined inductively as: • if T is a leaf, then Shuf(T) := T

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree Shuf(T) is defined inductively as: • if T is a leaf, then Shuf(T) := T

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree Shuf(T) is defined inductively as: • if T is a leaf, then Shuf(T) := T

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its **shuffle tree** Shuf(T) is defined inductively as: • if T is a leaf, then Shuf(T) := T

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its **shuffle tree** Shuf(T) is defined inductively as: • if T is a leaf, then Shuf(T) := T

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree Shuf(T) is defined inductively as:
if T is a leaf, then Shuf(T) := T

 if T has root-event l and children T₁,..., T_r (r ∈ N*) then Shuf(T) is the tree with root-event l and children Shuf(T ⊲ 1),..., Shuf(T ⊲ r)

Branches of shuffle trees

Observation

Information is extremely redundant in shuffle trees: One can recover the process tree by traversing a single branch of the shuffle tree.

In order to analyze the combinatorial explosion of shuffle trees, we want to answer the following questions:

- What is the number of runs for a given process tree T ?
 ⇒ the number of leaves in Shuf(T)
- What is the size of the shuffle tree induced by *T* ?
 ⇒ no correlation known with the number of runs (sharing)

Theorem

Theorem

Theorem

Theorem

Definition: Increasing tree

An *increasing tree* is a labelled plane tree such that the sequence of labels along any branch starting at the root is increasing.

Lemma: Bijection

Lemma: Bijection

Number of concurrent runs

Theorem: Hook length in trees [Kn73]

Let T be a unlabelled tree.

The number of increasing trees built on T equals:

$$\ell_T = \frac{|T|!}{\prod\limits_{R \text{ subtree of } T} |R|}.$$

This corresponds equivalently to the number of runs induced by T.

Mean number of runs and mean growth

Proposition

The *arithmetic* mean number of runs built on trees of size *n* is:

$$\bar{\ell}_n \sim_{n \to \infty} \frac{n!}{2^{n-1}} \sim 2\sqrt{2\pi n} \left(\frac{n}{2e}\right)^n$$

Mean number of runs and mean growth

Proposition

The *arithmetic* mean number of runs built on trees of size *n* is:

$$\bar{\ell}_n \sim_{n \to \infty} \frac{n!}{2^{n-1}} \sim 2\sqrt{2\pi n} \left(\frac{n}{2e}\right)^n$$

Proposition

The *geometric* mean growth between trees of size *n* and their number of runs is:

$$\bar{\Gamma}_n \sim_{n \to \infty} \sqrt{2\pi} n^{n-1} \exp\left(-(1+2L(1/4))n + \sqrt{\pi n} + L(1/4)\right),$$

with $L(1/4) = \sum_{n>1} \log n \cdot Cat_n \cdot 4^{-n} \approx 0.579043921 \pm 5 \cdot 10^{-9}$.

Definition

Proposition

The size of the shuffle tree built on T satisfies:

$$n_T = \sum_{R \text{ substructure of } T} \ell_R.$$

Proposition

The size of the shuffle tree built on T satisfies:

$$n_T = \sum_{R \text{ substructure of } T} \ell_R.$$

Proposition

The size of the shuffle tree built on T satisfies:

$$n_T = \sum_{R \text{ substructure of } T} \ell_R.$$

Proposition

The size of the shuffle tree built on T satisfies:

$$n_T = \sum_{R \text{ substructure of } T} \ell_R.$$

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Mean size of shuffle trees

Theorem

The mean size \bar{s}_n of a shuffle tree induced by a tree of size n follows a *P*-recurrence and satisfies:

$$\bar{s}_n \sim_{n \to \infty} e rac{n!}{2^{n-1}} \sim 2e \sqrt{2\pi n} \left(rac{n}{2e}
ight)^n.$$

Outline of the proof (1)

First step:

Outline of the proof (1)

First step:

•
$$\mathcal{C} = \mathcal{Z} imes \mathsf{Seq}\,\mathcal{C}$$
 $\mathcal{M} = \mathcal{U} imes \mathcal{Z} imes \mathsf{Seq}(\mathcal{M} \cup \mathcal{C})$

Outline of the proof (1)

First step:

•
$$\mathcal{S} = \mathcal{U}^{\Box_{\mathcal{U}}} \star \mathcal{Z} imes \mathsf{Seq}(\mathcal{S} \cup \mathcal{C})$$

Algorithms

Outline of the proof (1)

First step:

٥

$$\mathcal{S} = \mathcal{U}^{\Box_\mathcal{U}} \star \mathcal{Z} imes \mathsf{Seq}(\mathcal{S} \cup \mathcal{C})$$

•
$$S(z, u) = \int_{v=0}^{\infty} \frac{z}{1 - S(z, v) - C(z)} dv = \sum_{n,k \in \mathbb{N}} S_{n,k} \cdot z^n \cdot \frac{u^k}{k!}$$

where $S_{n,k}$ is $\sum_{\substack{T \ |T| = n}} \sum_{\substack{S \text{ substructure of size } k \text{ of } T} \ell_S.$

Algorithms

Outline of the proof (1)

First step:

٥

The generating function of the cumulative size of shuffle trees.

$$\mathcal{S} = \mathcal{U}^{\Box_\mathcal{U}} \star \mathcal{Z} imes \mathsf{Seq}(\mathcal{S} \cup \mathcal{C})$$

•
$$S(z, u) = \int_{v=0}^{\infty} \frac{z}{1 - S(z, v) - C(z)} dv = \sum_{n,k \in \mathbb{N}} S_{n,k} \cdot z^n \cdot \frac{u^k}{k!}$$

where $S_{n,k}$ is $\sum_{\substack{T \ |T| = n}} \sum_{S \text{ substructure of size } k \text{ of } T} \ell_S.$

• By substituting u^k by k! (Gamma transformation) we obtain the generating function S(z) for the size of the shuffle trees.

$$S(z) = \int_{u=0}^{\infty} S(z, u) \exp(-u) du.$$

Outline of the proof (2)

Second step: Assisted proof using gfun.

Algorithms

Outline of the proof (2)

Second step: Assisted proof using gfun.

- As S(z, u) is algebraic, it is holonomic.
- As S(z, u) is holonomic, its Laplace transform is holonomic:

$$\hat{S}(z,u) = \int_{v=0}^{\infty} S(z,uv) \exp(-v) dv.$$

- Using the holonomic stability under partial evaluation, S(z) is holonomic.
- As S(z) is holonomic, its coefficients s_n follows a P-reccurence.

Computer assisted ?

144*(diff(S(z, u), u, u, z))*u^4*z^3+12*(diff(S(z, u), u, u) z, z))*u^6*z+108*(diff(S(z, u), u, u, z, z))*u^5*z+648* (diff(S(z, u), u, u, z))*u^5*z^2+72*(diff(S(z, u), u, u, u,z))* $u^{6}z^{2}+576*(diff(S(z, u), u, z))*u^{3}z^{3}-756*(diff(S(z, u), u, z))*u^{3}-756*(diff(S(z, u), u,$ z))*z*u^4-96*(diff(S(z, u), u, u, u, z, z))*u^6*z^2+72*(diff(S(z, u), u, z))*u²*z³+3456*(diff(S(z, u), u, u, z, z))*u⁵*z⁴+96*(diff(S(z, u), u, u, u, z, z))*u^6*z^3+1728*(diff(S(z, u), u,z))*u^4*z^3-336*(diff(S(z, u) z))*u^4*z^2-60*(diff(S(z, u), u,z))*u^3*z+6*u^2*z+36*u^3*z-18*u^3-378*(diff(S(z) u), u, u, u, z))*u^6*z^3-42*(diff(S(z, u), u, u, z))*u^6*z-12*(diff(S(z, u), u, z, z))*u^3+ 384*(diff(S(z, u), u, u, u, z, z))*z^4*u^6-864*(diff(S(z, u), u, u, z,z))*u^5*z^2-15*(diff(S(z, u), u, u, z))*u^5*z^2-15*(diff(S(z, u), u, u, u, u, u, u, u))*u^5*z^2-15*(diff(S(z, u), u, u, u, u, u, u))*u^5*z^2-15*(diff(S(z, u), u, u, u, u, u))*u^5*z^2-15*(diff(S(z, u), u, u, u, u))*u^5*z^2-15*(diff(S(z, u), u, u, u, u, u))*u^5*z^2-15*(diff(S(z, u), u, u, u, u))*u^5*z^2-15*(diff(S(z, u), u, u, u, u))*u^5*z^2-15*(diff(S(z, u), u, u, u))*u^5*z^2-15*(diff(S(z, u), u, u))*u^5*z^2-15*(diff(S(z, u), u, u))*u^5*z^2-15*(diff(S(z, u), u, u))*u^5*z^2-15*(diff(S(z, u), u))*u^5*z^2-15*(diff(S(z, u), u, u))*u^5*z^2-15*(diff(S(z, u), u))*u^5*z^2-15*(diff(S(z, u), u))*u^5*z^2-15*(diff(S(z, u), u))*u^5*z^2-15*(diff(S(z, u), u))*u^5*z^2-15*(diff(S(z, u), u))*u^5*z^2-15*(diff(S(z, u), u))*u^5*z^2-15*(diff(S(z, z))*u²*z²+96*(diff(S(z, u), z, z, z))*u*z⁵+24*(diff(S(z, u), z, z, z))*u²*z³+384*(diff(S(z, u), z))*u²*z³+384*(diff(S(z, u), z))*u²*z³+384*(diff(S(z, u), z))*u²*z³+384*(diff(S(z, u), z))*u²*z³+384*(diff(S(z, u), z))*u³+2*z³+384*(diff(S(z, u), z)) z))*u^4*z^3+6*(diff(S(z, u), u, u, u))*u^6+27*(diff(S(z, u), u, u, z))*u^5-128*(diff(S(z, u), u, z, z, z)) u), z, z, z))*z⁴*u+2*(diff(S(z, u), u, z, z, z))*u²*z+54*(diff(S(z, u), u, z))*u⁴+192*(diff(S(z, u), z, z))*u⁴+192*(diff(S(z, u), z))*u⁴+192*(diff(S u, z, z))*u^2+24*(diff(S(z, u), z, z, z))*u^3*z^2+576*(diff(S(z, u), u, z, z))*u^4*z^4+16*(diff(S(z, u), u, z, z))*u^4*z^4+16*(diff(S(z, u), z, z, z))*u^4+16*(diff(S(z, u), z))*u^4+16*(diff(S(z, u), z, z))*u^4+16*(diff(S(z, u), z))*u^4+1 u, z, z, z))*u^4*z^2+3*(diff(S(z, u), z, z))*u+36*(diff(S(z, u), u, u, z, z, z))*u^5*z^2-144*(diff(S(z, u), z, z, z)) $*u^2*z+1152*(diff(S(z, u), z, z))*u^2*z^4+288*(diff(S(z, u), z, z))*z^4*u+30*(diff(S(z, u), u))$ u), u, u))*u^5*z-360*(diff(S(z, u), z, z))*u*z^3-672*(diff(S(z, u), z, z))*u^2*z^3+60*(diff(S(z, u), z))*u^2*z^3+20*(diff(S(z, u), z))*u^2*z^3+20*(diff(S(z, u), z))*u^2 z))*u²*z²+432*(diff(S(z, u), z))*u³*z²+72*(diff(S(z, u), z))*u*z³-84*(diff(S(z, u), z))*u*z²-30*(diff(S(z, u), z))*u*z²+30*(diff(S(z, u), z))*u* z))*u^2*z-252*(diff(S(z, u), z))*u^3*z+36*(diff(S(z, u), z))*u*z-72*S(z, u)*u^3*z-12*S(z, u)*u^2*z-216*(diff(S(z, u), z))*u*z-72*S(z, u)*u^3*z-12*S(z, u)*u^3*z-12*S(u))*z*u^4-24*(diff(S(z, u), u))*u^3*z+48*(diff(S(z, u), z,z))*z^4+2304*(diff(S(z, u), u, z, z))*u^3*z^4+1

Outline of the proof (3)

Third step: Asymptotic behaviour of the coefficients of \bar{s}_n .

Outline of the proof (3)

Third step: Asymptotic behaviour of the coefficients of \bar{s}_n .

• Classical method gives:

$$\bar{s}_n\cdot\frac{2^{n-1}}{n!}=\theta(1).$$

- Some more work is necessary to obtain the constant.
- Finally,

$$\overline{s}_n \sim_{n \to \infty} e \frac{n!}{2^{n-1}}.$$

Outline

2 Shuffle trees and their typical shape

3 Algorithms

Algorithms ●○○

Probability of a run prefix

Data: *T*: a weighted process tree of size *n* **Data**: $\sigma := \langle \alpha_1, \ldots, \alpha_p \rangle$: a run prefix of length $p \le n$ **Result**: ρ_{σ} : the probability of σ in the shuffle of *T*

$$\rho_{\sigma} := 1$$

i := 1
for *i* from 1 to *p* - 1 do

$$\rho_{\sigma} := \rho_{\sigma} \times \frac{|T(\alpha_{i+1})|}{n-i}$$

i := *i* + 1

return ρ_{σ}

Directly deduced from the hook length formula.

Proposition

The number of runs of a process tree T of size n can be computed in O(n) operations.

[At90] gave a quadratic complexity algorithm.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations

Shuffle trees and their typical shape

Algorithms ○●○

Uniform random generation example

 $\{1..11\}$

run = []

Shuffle trees and their typical shape

Algorithms ○●○

Uniform random generation example

construct

 $\{1..11\}$

run = []

Motivations

Shuffle trees and their typical shape

Algorithms ○●○

Uniform random generation example

run = []

Shuffle trees and their typical shape

Algorithms ○●○

Uniform random generation example

run = [**a**]

Shuffle trees and their typical shape

Algorithms ○●○

Uniform random generation example

swap {1..10} b | 0, 10, 0 | L

run = [**a**]

Motivations

Shuffle trees and their typical shape

Algorithms ○●○

Uniform random generation example

run = [a]

Algorithms ○●○

Uniform random generation example

run = [a, b]

Algorithms ○●○

Uniform random generation example

run = [a, b]

Algorithms ○●○

Uniform random generation example

run = [a, b]

Algorithms

Uniform random generation example

$$run = [a, b]$$

Motivations

Shuffle trees and their typical shape

Algorithms ○●○

Uniform random generation example

Algorithms ○●○

Uniform random generation example

 $\mathsf{run} = [a, b, c]$

Algorithms

Uniform random generation example

$$\mathsf{run} = [a, b, c]$$

Algorithms ○●○

Uniform random generation example

empty

 $\mathsf{run} = [a, b, c]$

Algorithms ○●○

Uniform random generation example

$\mathsf{run} = [\underline{a}, \underline{b}, \underline{c}]$

O. Bodini, A. Genitrini, F. Peschanski Concurrent

Concurrent Computations

Motivations

Shuffle trees and their typical shape

Algorithms ○●○

Uniform random generation example

$\mathsf{run} = [a, b, c]$

 $d^1 e^1$

O. Bodini, A. Genitrini, F. Peschanski

 i^1

 k^1

 i^1

Motivations

Shuffle trees and their typical shape

Algorithms ○●○

Uniform random generation example

 $\mathsf{run} = [\underline{a}, \underline{b}, \underline{c}]$

Algorithms ○●○

Uniform random generation example

$$\mathsf{run} = [a, b, c, e]$$

Algorithms ○●○

Uniform random generation example

Algorithms ○●○

Uniform random generation example

Motivations

Shuffle trees and their typical shape

Algorithms ○●○

Uniform random generation example

Algorithms ○●○

Uniform random generation example

Algorithms ○●○

Uniform random generation example

$$\mathsf{run} = [a, b, c, e, f]$$

Algorithms ○●○

Uniform random generation example

$$\mathsf{run} = [a, b, c, e, f]$$

 d^1

Algorithms ○●○

Uniform random generation example

$$\mathsf{run} = [a, b, c, e, f]$$

Algorithms ○●○

Uniform random generation example

fill

$$\mathsf{run} = [a, b, c, e, f]$$

Algorithms ○●○

Uniform random generation example

$$\mathsf{run} = [a, b, c, e, f]$$

Motivations

Shuffle trees and their typical shape

Algorithms 000

Uniform random generation example

$$\mathsf{run} = [a, b, c, e, f]$$

Algorithms ○●○

Uniform random generation example

$$\mathsf{run} = [a, b, c, e, f]$$

Algorithms 000

Uniform random generation example

take (1 -)

$$\{1..5\}$$

$$d \mid 1, 1, 4 \mid L$$

$$g \mid 0, 1, 0 \mid L$$

$$h \mid 0, 4, 0 \mid L$$

$$\mathsf{run} = [a, b, c, e, f, g]$$

Algorithms

Uniform random generation example

Algorithms ○●○

Uniform random generation example

$$\mathsf{run} = [a, b, c, e, f, g]$$

Motivations

Shuffle trees and their typical shape

Algorithms ○●○

Uniform random generation example

Algorithms ○●○

Uniform random generation example

Algorithms ○●○

Uniform random generation example

$$\mathsf{run} = [a, b, c, e, f, g, h]$$

3

 $d^1 e^1$

Algorithms 000

<u>Uniform</u> random generation example

$$\mathsf{run} = [a, b, c, e, f, g, h]$$

3

 d^1

Algorithms

Uniform random generation example

$$\mathsf{run} = [a, b, c, e, f, g, h]$$

Algorithms ○●○

Uniform random generation example

fill

$$\mathsf{run} = [a, b, c, e, f, g, h]$$

Algorithms ○●○

Uniform random generation example

$$\mathsf{run} = [a, b, c, e, f, g, h]$$

Algorithms ○●○

Uniform random generation example

empty

$$\mathsf{run} = [a, b, c, e, f, g, h]$$

Algorithms ○●○

Uniform random generation example

empty

$$\mathsf{run} = [a, b, c, e, f, g, h]$$
Shuffle trees and their typical shape

Algorithms ○●○

Uniform random generation example

empty

$$\mathsf{run} = [a, b, c, e, f, g, h]$$

Algorithms ○●○

Uniform random generation example

empty

$$\mathsf{run} = [a, b, c, e, f, g, h]$$

Algorithms ○●○

Uniform random generation example

empty

$$\mathsf{run} = [a, b, c, e, f, g, h, j]$$

Algorithms ○●○

Uniform random generation example

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Algorithms ○●○

Uniform random generation example

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Shuffle trees and their typical shape

Algorithms

Uniform random generation example

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Algorithms ○●○

Uniform random generation example

Shuffle trees and their typical shape

Algorithms

Uniform random generation example

Algorithms ○●○

Uniform random generation example

Algorithms ○●○

Uniform random generation example

Algorithms

Uniform random generation example

Shuffle trees and their typical shape

Algorithms ○●○

Uniform random generation example

Shuffle trees and their typical shape

Algorithms ○●○

Uniform random generation example

Algorithms ○●○

Uniform random generation example

Conclusion and perspectives

Conclusion and perspectives

Conclusion and perspectives

Conclusion and perspectives

Conclusion and perspectives

