Enumeration and Random Generation of Concurrent Computations

O. Bodini ${ }^{1}$ A. Genitrini ${ }^{2} \quad$ F. Peschanski ${ }^{2}$
${ }^{1}$ Université Paris 13 - LIPN
${ }^{2}$ UPMC Paris - LIP6

Aléa - March, 2012

Outline

(1) Motivations

- Concurrent computations
- Related works
(2) Shuffle trees and their typical shape
- Recursive construction
- Quantitative analysis
(3) Algorithms
- Probability of a concurrent run prefix
- Uniform random generation of a run

Outline

(1) Motivations
(2) Shuffle trees and their typical shape
(3) Algorithms

When analyzing concurrent processes, the shuffle operator is the main source of combinatorial explosion. [Mi80], [ClGrPe99]

Concurrency theory and combinatorics

In concurrency theory, one manipulates:

- syntactic objects \Rightarrow Process trees
- their semantic interpretation \Rightarrow Shuffle trees

Concurrency theory and combinatorics

In concurrency theory, one manipulates:

- syntactic objects \Rightarrow Process trees
- their semantic interpretation \Rightarrow Shuffle trees

Ideas

- to consider these objects as combinatorial structures
- to use analytic combinatorics for quantitative studies

Process trees and shuffle trees

A process tree is a specification of events with precedence constraints:

Process trees and shuffle trees

A process tree is a specification of events with precedence constraints:

The induced shuffle tree lists all admissible concurrent runs by sharing prefixes, as in a trie:

O. Bodini, A. Genitrini, F. Peschanski

Related works

Related works

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Related works

O. Bodini, A. Genitrini, F. Peschanski

Concurrent Computations

Outline

(1) Motivations
(2) Shuffle trees and their typical shape
(3) Algorithms

Building shuffle trees (1)

Definition: Child contraction

Let T be a tree with children T_{1}, \ldots, T_{r} whose root-events are $\ell_{1}, \ldots, \ell_{r}\left(r \in \mathbb{N}^{*}\right)$. The i-contraction of T is the tree $T \triangleleft i$ with root ℓ_{i} and children $T_{1}, \ldots, T_{i-1}, T_{i_{1}}, \ldots, T_{i_{m}}, T_{i+1}, \ldots, T_{r}$ where $T_{i_{1}}, \ldots, T_{i_{m}}$ are the children of T_{i}.

Example

$$
T=
$$

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree $\operatorname{Shuf}(T)$ is defined inductively as:

- if T is a leaf, then $\operatorname{Shuf}(T):=T$
- if T has root-event ℓ and children $T_{1}, \ldots, T_{r}\left(r \in \mathbb{N}^{*}\right)$ then $\operatorname{Shuf}(T)$ is the tree with root-event ℓ and children $\operatorname{Shuf}(T \triangleleft 1), \ldots, \operatorname{Shuf}(T \triangleleft r)$

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree $\operatorname{Shuf}(T)$ is defined inductively as:

- if T is a leaf, then $\operatorname{Shuf}(T):=T$
- if T has root-event ℓ and children $T_{1}, \ldots, T_{r}\left(r \in \mathbb{N}^{*}\right)$ then $\operatorname{Shuf}(T)$ is the tree with root-event ℓ and children $\operatorname{Shuf}(T \triangleleft 1), \ldots, \operatorname{Shuf}(T \triangleleft r)$

Example (Shuffle / Contraction):

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree $\operatorname{Shuf}(T)$ is defined inductively as:

- if T is a leaf, then $\operatorname{Shuf}(T):=T$
- if T has root-event ℓ and children $T_{1}, \ldots, T_{r}\left(r \in \mathbb{N}^{*}\right)$ then $\operatorname{Shuf}(T)$ is the tree with root-event ℓ and children $\operatorname{Shuf}(T \triangleleft 1), \ldots, \operatorname{Shuf}(T \triangleleft r)$

Example (Shuffle / Contraction):

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree $\operatorname{Shuf}(T)$ is defined inductively as:

- if T is a leaf, then $\operatorname{Shuf}(T):=T$
- if T has root-event ℓ and children $T_{1}, \ldots, T_{r}\left(r \in \mathbb{N}^{*}\right)$ then $\operatorname{Shuf}(T)$ is the tree with root-event ℓ and children $\operatorname{Shuf}(T \triangleleft 1), \ldots, \operatorname{Shuf}(T \triangleleft r)$

Example (Shuffle / Contraction):

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree $\operatorname{Shuf}(T)$ is defined inductively as:

- if T is a leaf, then $\operatorname{Shuf}(T):=T$
- if T has root-event ℓ and children $T_{1}, \ldots, T_{r}\left(r \in \mathbb{N}^{*}\right)$ then $\operatorname{Shuf}(T)$ is the tree with root-event ℓ and children $\operatorname{Shuf}(T \triangleleft 1), \ldots, \operatorname{Shuf}(T \triangleleft r)$

Example (Shuffle / Contraction):

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree $\operatorname{Shuf}(T)$ is defined inductively as:

- if T is a leaf, then $\operatorname{Shuf}(T):=T$
- if T has root-event ℓ and children $T_{1}, \ldots, T_{r}\left(r \in \mathbb{N}^{*}\right)$ then $\operatorname{Shuf}(T)$ is the tree with root-event ℓ and children $\operatorname{Shuf}(T \triangleleft 1), \ldots, \operatorname{Shuf}(T \triangleleft r)$

Example (Shuffle / Contraction):

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree $\operatorname{Shuf}(T)$ is defined inductively as:

- if T is a leaf, then $\operatorname{Shuf}(T):=T$
- if T has root-event ℓ and children $T_{1}, \ldots, T_{r}\left(r \in \mathbb{N}^{*}\right)$ then $\operatorname{Shuf}(T)$ is the tree with root-event ℓ and children $\operatorname{Shuf}(T \triangleleft 1), \ldots, \operatorname{Shuf}(T \triangleleft r)$

Example (Shuffle / Contraction):

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree $\operatorname{Shuf}(T)$ is defined inductively as:

- if T is a leaf, then $\operatorname{Shuf}(T):=T$
- if T has root-event ℓ and children $T_{1}, \ldots, T_{r}\left(r \in \mathbb{N}^{*}\right)$ then $\operatorname{Shuf}(T)$ is the tree with root-event ℓ and children $\operatorname{Shuf}(T \triangleleft 1), \ldots, \operatorname{Shuf}(T \triangleleft r)$

Example (Shuffle / Contraction):

Building shuffle trees (2)

Recursive definition

Let T be a tree. Its shuffle tree $\operatorname{Shuf}(T)$ is defined inductively as:

- if T is a leaf, then $\operatorname{Shuf}(T):=T$
- if T has root-event ℓ and children $T_{1}, \ldots, T_{r}\left(r \in \mathbb{N}^{*}\right)$ then $\operatorname{Shuf}(T)$ is the tree with root-event ℓ and children $\operatorname{Shuf}(T \triangleleft 1), \ldots, \operatorname{Shuf}(T \triangleleft r)$

Example (Shuffle / Contraction):

O. Bodini, A. Genitrini, F. Peschanski

Concurrent Computations

Branches of shuffle trees

Observation

Information is extremely redundant in shuffle trees:
One can recover the process tree by traversing a single branch of the shuffle tree.

Goals

In order to analyze the combinatorial explosion of shuffle trees, we want to answer the following questions:

- What is the number of runs for a given process tree T ? \Rightarrow the number of leaves in Shuf (T)
- What is the size of the shuffle tree induced by T ? \Rightarrow no correlation known with the number of runs (sharing)

Main results

Theorem

The typical shape of a shuffle tree built on a process tree of size n :

O. Bodini, A. Genitrini, F. Peschanski

Main results

Theorem

The typical shape of a shuffle tree built on a process tree of size n :

Main results

Theorem

The typical shape of a shuffle tree built on a process tree of size n :

O. Bodini, A. Genitrini, F. Peschanski

Main results

Theorem

The typical shape of a shuffle tree built on a process tree of size n :

O. Bodini, A. Genitrini, F. Peschanski

Concurrent runs and increasing trees (1)

Definition: Increasing tree

An increasing tree is a labelled plane tree such that the sequence of labels along any branch starting at the root is increasing.

Concurrent runs and increasing trees (2)

Lemma: Bijection

Let T be a process tree. The number of runs associated to T corresponds to the number of increasing trees whose structure is the unlabelled tree T.

Concurrent runs and increasing trees (2)

Lemma: Bijection

Let T be a process tree. The number of runs associated to T corresponds to the number of increasing trees whose structure is the unlabelled tree T.

Concurrent runs and increasing trees (2)

Lemma: Bijection

Let T be a process tree. The number of runs associated to T corresponds to the number of increasing trees whose structure is the unlabelled tree T.

Concurrent runs and increasing trees (2)

Lemma: Bijection

Let T be a process tree. The number of runs associated to T corresponds to the number of increasing trees whose structure is the unlabelled tree T.

Concurrent runs and increasing trees (2)

Lemma: Bijection

Let T be a process tree. The number of runs associated to T corresponds to the number of increasing trees whose structure is the unlabelled tree T.

Concurrent runs and increasing trees (2)

Lemma: Bijection

Let T be a process tree. The number of runs associated to T corresponds to the number of increasing trees whose structure is the unlabelled tree T.

Concurrent runs and increasing trees (2)

Lemma: Bijection

Let T be a process tree. The number of runs associated to T corresponds to the number of increasing trees whose structure is the unlabelled tree T.

Concurrent runs and increasing trees (2)

Lemma: Bijection

Let T be a process tree. The number of runs associated to T corresponds to the number of increasing trees whose structure is the unlabelled tree T.

Number of concurrent runs

Theorem: Hook length in trees [Kn 73]

Let T be a unlabelled tree.
The number of increasing trees built on T equals:

$$
\ell_{T}=\frac{|T|!}{\prod_{R \text { subtree of } T}|R|}
$$

This corresponds equivalently to the number of runs induced by T.

$$
\ell_{T}=\frac{6!}{6 \cdot 5 \cdot 1 \cdot 3 \cdot 1 \cdot 1}=8
$$

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Mean number of runs and mean growth

Proposition

The arithmetic mean number of runs built on trees of size n is:

$$
\bar{\ell}_{n} \sim_{n \rightarrow \infty} \frac{n!}{2^{n-1}} \sim 2 \sqrt{2 \pi n}\left(\frac{n}{2 e}\right)^{n} .
$$

Mean number of runs and mean growth

Proposition

The arithmetic mean number of runs built on trees of size n is:

$$
\bar{\ell}_{n} \sim_{n \rightarrow \infty} \frac{n!}{2^{n-1}} \sim 2 \sqrt{2 \pi n}\left(\frac{n}{2 e}\right)^{n} .
$$

Proposition

The geometric mean growth between trees of size n and their number of runs is:

$$
\bar{\Gamma}_{n} \sim_{n \rightarrow \infty} \sqrt{2 \pi} n^{n-1} \exp (-(1+2 L(1 / 4)) n+\sqrt{\pi n}+L(1 / 4)),
$$

with $L(1 / 4)=\sum_{n>1} \log n \cdot C a t_{n} \cdot 4^{-n} \approx 0.579043921 \pm 5 \cdot 10^{-9}$.

Size of shuffle trees: substructures

Definition

Let T be a process tree. We define a substructure of T a tree obtained by removing some subtrees of T.

Example

Size of shuffle trees: substructures

Definition

Let T be a process tree. We define a substructure of T a tree obtained by removing some subtrees of T.

Example

Size of shuffle trees: substructures

Definition

Let T be a process tree. We define a substructure of T a tree obtained by removing some subtrees of T.

Example

Size of shuffle trees: substructures

Definition

Let T be a process tree. We define a substructure of T a tree obtained by removing some subtrees of T.

Example

Size of shuffle trees: substructures

Definition

Let T be a process tree. We define a substructure of T a tree obtained by removing some subtrees of T.

Example

Size of shuffle trees: substructures

Definition

Let T be a process tree. We define a substructure of T a tree obtained by removing some subtrees of T.

Example

Size of shuffle trees: substructures

Definition

Let T be a process tree. We define a substructure of T a tree obtained by removing some subtrees of T.

Example

Size of shuffle trees: substructures

Definition

Let T be a process tree. We define a substructure of T a tree obtained by removing some subtrees of T.

Example

Size of shuffle trees: substructures

Definition

Let T be a process tree. We define a substructure of T a tree obtained by removing some subtrees of T.

Example

Size of shuffle trees: substructures

Definition

Let T be a process tree. We define a substructure of T a tree obtained by removing some subtrees of T.

Example

Size of shuffle trees: substructures

Definition

Let T be a process tree. We define a substructure of T a tree obtained by removing some subtrees of T.

Example

Size of a shuffle tree

Proposition

The size of the shuffle tree built on T satisfies:

$$
n_{T}=\sum_{R \text { substructure of } T} \ell_{R}
$$

Size of a shuffle tree

Proposition

The size of the shuffle tree built on T satisfies:

$$
n_{T}=\sum_{R \text { substructure of } T} \ell_{R} .
$$

Example

O. Bodini, A. Genitrini, F. Peschanski

Concurrent Computations

Size of a shuffle tree

Proposition

The size of the shuffle tree built on T satisfies:

$$
n_{T}=\sum_{R \text { substructure of } T} \ell_{R} .
$$

Example

O. Bodini, A. Genitrini, F. Peschanski

Size of a shuffle tree

Proposition

The size of the shuffle tree built on T satisfies:

$$
n_{T}=\sum_{R \text { substructure of } T} \ell_{R} .
$$

Example

O. Bodini, A. Genitrini, F. Peschanski

Concurrent Computations

Mean size of shuffle trees

Theorem

The mean size \bar{s}_{n} of a shuffle tree induced by a tree of size n follows a P-recurrence and satisfies:

$$
\bar{s}_{n} \sim_{n \rightarrow \infty} e \frac{n!}{2^{n-1}} \sim 2 e \sqrt{2 \pi n}\left(\frac{n}{2 e}\right)^{n}
$$

Outline of the proof (1)

First step:
The generating function of the cumulative size of shuffle trees.

Outline of the proof (1)

First step:
The generating function of the cumulative size of shuffle trees.

- $\mathcal{C}=\mathcal{Z} \times \operatorname{Seq} \mathcal{C}$
$\mathcal{M}=\mathcal{U} \times \mathcal{Z} \times \operatorname{Seq}(\mathcal{M} \cup \mathcal{C})$

Outline of the proof (1)

First step:
The generating function of the cumulative size of shuffle trees.
-

$$
\mathcal{S}=\mathcal{U}^{\square u} \star \mathcal{Z} \times \operatorname{Seq}(\mathcal{S} \cup \mathcal{C})
$$

Outline of the proof (1)

First step:

The generating function of the cumulative size of shuffle trees.

$$
\mathcal{S}=\mathcal{U}^{\square \mathcal{U}} \star \mathcal{Z} \times \operatorname{Seq}(\mathcal{S} \cup \mathcal{C})
$$

- $S(z, u)=\int_{v=0}^{\infty} \frac{z}{1-S(z, v)-C(z)} d v=\sum_{n, k \in \mathbb{N}} S_{n, k} \cdot z^{n} \cdot \frac{u^{k}}{k!}$
where $S_{n, k}$ is

Outline of the proof (1)

First step:

The generating function of the cumulative size of shuffle trees.
-

$$
\mathcal{S}=\mathcal{U}^{\square u} \star \mathcal{Z} \times \operatorname{Seq}(\mathcal{S} \cup \mathcal{C})
$$

- $S(z, u)=\int_{v=0}^{\infty} \frac{z}{1-S(z, v)-C(z)} d v=\sum_{n, k \in \mathbb{N}} S_{n, k} \cdot z^{n} \cdot \frac{u^{k}}{k!}$ where $S_{n, k}$ is

- By substituting u^{k} by k ! (Gamma transformation) we obtain the generating function $S(z)$ for the size of the shuffle trees.

$$
S(z)=\int_{u=0}^{\infty} S(z, u) \exp (-u) d u .
$$

Outline of the proof (2)

Second step: Assisted proof using gfun.

Outline of the proof (2)

Second step: Assisted proof using gfun.

- As $S(z, u)$ is algebraic, it is holonomic.
- As $S(z, u)$ is holonomic, its Laplace transform is holonomic:

$$
\hat{S}(z, u)=\int_{v=0}^{\infty} S(z, u v) \exp (-v) d v
$$

- Using the holonomic stability under partial evaluation, $S(z)$ is holonomic.
- As $S(z)$ is holonomic, its coefficients s_{n} follows a P-reccurence.

Computer assisted ?

$144 *(\operatorname{diff}(S(z, u), u, u, z)) * u \wedge 4 * z^{\wedge} 3+12 *(\operatorname{diff}(S(z, u), u, u$ z, z)) *u^6*z+108*(diff(S(z, u), u, u, z, z))*u^5*z+648* (diff(S(z, u), u, u, z))*u^5*z^2+72*(diff(S(z, u), u, u, u,z))* u^6*z^2+576*(diff(S(z, u), u, z)) *u^3*z^3-756*(diff(S(z, u), u, z)) *z*u^4-96*(diff(S(z, u), u, u, u, z, z))*u^6*z^2+72*(diff(S(z, u), u, z)) $u^{\wedge} 2 * z^{\wedge} 3+3456 *(\operatorname{diff}(S(z, u), u, u, z, z)) * u^{\wedge} 5 * z^{\wedge} 4+96 *(\operatorname{diff}(S(z$, u), u, u, u, z, z)) *u $u^{-6} z^{\wedge} 3+1728 *(\operatorname{diff}(S(z, u), u, z)) * u^{\wedge} 4 * z^{\wedge} 3-336 *(\operatorname{diff}(S(z, u)$ $z)) * u \wedge 4 * z^{\wedge} 2-60 *(\operatorname{diff}(S(z, u), u, z)) * u \wedge 3 * z+6 * u \wedge 2 * z+36 * u \wedge 3 * z-18 * u \wedge 3-378 *(\operatorname{diff}(S(z$ u), u, u, u, z)) *u ${ }^{\wedge}\left(* z^{2}-3-42 *(\operatorname{diff}(S(z, u), u, u, u, z)) * u-6 * z-12 *(\operatorname{diff}(S(z, u), u, z, z)) * u^{-} 3+\right.$

 $u), z, z, z)) * z^{\wedge} 4 * u+2 *(\operatorname{diff}(S(z, u), u, z, z, z)) * u \sim 2 * z+54 *(\operatorname{diff}(S(z, u), u, z)) * u _4+192 *(\operatorname{diff}(S(z, u), z$, $u, z, z)) * u \wedge 2+24 *(\operatorname{diff}(S(z, u), z, z, z)) * u \wedge 3 * z^{\wedge} 2+576 *(\operatorname{diff}(S(z, u), u, u, z, z)) * u \wedge 4 * z \wedge 4+16 *(\operatorname{diff}(S(z, u)$ $z, z, z)) * u \wedge 4 * z \sim 2+72 *(\operatorname{diff}(S(z, u), z, z)) * u \wedge 3 * z-1344 *(\operatorname{diff}(S(z, u), u, z, z)) * u \wedge 3 * z _3+54 *(\operatorname{diff}(S(z, u), u$ $u, z, z, z)) * u \wedge 4 * z^{\wedge} 2+3 *(\operatorname{diff}(S(z, u), z, z)) * u+36 *(\operatorname{diff}(S(z, u), u, u, z, z, z)) * u \wedge 5 * z^{\wedge} 2-144 *(\operatorname{diff}(S(z, u)$ $u), z, z, z)) * u \wedge 2 * z+1152 *(\operatorname{diff}(S(z, u), z, z)) * u^{\wedge} 2 * z^{\wedge} 4+288 *(\operatorname{diff}(S(z, u), z, z)) * z^{\wedge} 4 * u+30 *(\operatorname{diff}(S(z, u), u$ $u), u, u, z, z)) * u^{\wedge} 5 * z^{\wedge} 3+24 *(\operatorname{diff}(S(z, u), u, z)) * u^{\wedge} 3-6 *(\operatorname{diff}(S(z, u), u, z)) * u^{\wedge} 2+6 *(\operatorname{diff}(S(z, u), u, u, z$ $u), u, u)) * u \wedge 5 * z-360 *(\operatorname{diff}(S(z, u), z, z)) * u * z^{\wedge} 3-672 *(\operatorname{diff}(S(z, u), z, z)) * u^{\wedge} 2 * z^{\wedge} 3+60 *(\operatorname{diff}(S(z, u), z, z)$ z)) $* u^{\wedge} 2 * z^{\wedge} 2+432 *(\operatorname{diff}(S(z, u), z)) * u^{\wedge} 3 * z^{\wedge} 2+72 *(\operatorname{diff}(S(z, u), z)) * u * z^{\wedge} 3-84 *(\operatorname{diff}(S(z, u), z)) * u * z^{\wedge} 2-30 *(\operatorname{dif}$ z)) $* \mathrm{u} \sim 2 * z-252 *(\operatorname{diff}(S(z, u), z)) * u \wedge 3 * z+36 *(\operatorname{diff}(S(z, u), z)) * u * z-72 * S(z, u) * u \wedge 3 * z-12 * S(z, u) * u \wedge 2 * z-216 *(\operatorname{di}$ $u)) * z * u \wedge 4-24 *(\operatorname{diff}(S(z, u), u)) * u \wedge 3 * z+48 *(\operatorname{diff}(S(z, u), z, z)) * z^{\wedge} 4+2304 *(\operatorname{diff}(S(z, u), u, z, z)) * u \wedge 3 * z^{\wedge} 4+1$

Outline of the proof (3)

Third step: Asymptotic behaviour of the coefficients of \bar{s}_{n}.

Outline of the proof (3)

Third step: Asymptotic behaviour of the coefficients of \bar{s}_{n}.

- Classical method gives:

$$
\bar{s}_{n} \cdot \frac{2^{n-1}}{n!}=\theta(1)
$$

- Some more work is necessary to obtain the constant.
- Finally,

$$
\bar{s}_{n} \sim_{n \rightarrow \infty} e \frac{n!}{2^{n-1}}
$$

Outline

(1) Motivations
(2) Shuffle trees and their typical shape
(3) Algorithms

Probability of a run prefix

Data: T : a weighted process tree of size n
Data: $\sigma:=\left\langle\alpha_{1}, \ldots, \alpha_{p}\right\rangle$: a run prefix of length $p \leq n$ Result: ρ_{σ} : the probability of σ in the shuffle of T
$\rho_{\sigma}:=1$
$i:=1$
for i from 1 to $p-1$ do
$\rho_{\sigma}:=\rho_{\sigma} \times \frac{\left|T\left(\alpha_{i+1}\right)\right|}{n-i}$
$i:=i+1$
return ρ_{σ}
Directly deduced from the hook length formula.

Proposition

The number of runs of a process tree T of size n can be computed in $O(n)$ operations.
[At90] gave a quadratic complexity algorithm.

Uniform random generation example

empty

run $=[]$

Uniform random generation example

construct
\{1..11\}

$$
a|0,11,0| L
$$

$$
\text { run }=[]
$$

Uniform random generation example

random choice; search

$$
5 \in\{1 . .11\}
$$

$$
a|0,11,0| L
$$

empty
run $=[]$

Uniform random generation example

> take
> $5 \in\{1 . .11\}$
$a|0,11,0| L$

$$
\text { run }=[a]
$$

Uniform random generation example

$$
\frac{s^{\text {swap }}}{\{1 . .10\}}
$$

$$
\text { run }=[a]
$$

Uniform random generation example

random choice; search

$$
\frac{7 \in\{1 . .10\}}{b|0,10,0| L}
$$

empty

$$
\text { run }=[a]
$$

Uniform random generation example

$$
\begin{array}{r}
\text { take } \\
7 \in\{1 . .10\} \\
b|0,10,0| L
\end{array}
$$

Uniform random generation example

$$
c|0,3,0| L
$$

Uniform random generation example

construct; invert bit
\{1..9\}

empty

$$
\text { run }=[a, b]
$$

Uniform random generation example

Uniform random generation example

random choice; search

empty
run $=[a, b]$
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Uniform random generation example

Uniform random generation example

Uniform random generation example

construct; invert bit
\{1..8\}

empty

$$
\text { run }=[a, b, c]
$$

Uniform random generation example

Uniform random generation example

random choice; search

empty
run $=[a, b, c]$

Uniform random generation example

Uniform random generation example

random choice; search

empty
run $=[a, b, c, e]$
O. Bodini, A. Genitrini, F. Peschanski

Uniform random generation example

Uniform random generation example

random choice; search

empty
run $=[a, b, c, e, f]$

Uniform random generation example

Uniform random generation example

take

Uniform random generation example

Uniform random generation example

Uniform random generation example

random choice; search

Uniform random generation example

Uniform random generation example

empty
run $=[a, b, c, e, f, g, h]$

Uniform random generation example

Uniform random generation example

random choice; search

empty
run $=[a, b, c, e, f, g, h]$
O. Bodini, A. Genitrini, F. Peschanski

Uniform random generation example

empty
run $=[a, b, c, e, f, g, h]$

Uniform random generation example

Uniform random generation example

Uniform random generation example

Uniform random generation example

random choice; search

Uniform random generation example

Uniform random generation example

random choice; search

$\operatorname{run}=[a, b, c, e, f, \sigma, h, j, i]$
O. Bodini, A. Genitrini, F. Peschanski

Uniform random generation example

Uniform random generation example

Uniform random generation example

random choice; search

$\operatorname{run}=[a, b, c, e, f, g, h, j, i, d]$
O. Bodini, A. Genitrini, F. Peschanski

Uniform random generation example

run $=[a, b, C, e, f, b, h, j, i, d]$
O. Bodini, A. Genitrini, F. Peschanski

Uniform random generation example

$\operatorname{run}=[a, b, C, e, f, b, h, j, i, d]$
O. Bodini, A. Genitrini, F. Peschanski

Uniform random generation example

$\operatorname{run}=[a, b, c, e, f, g, h, j, i, d, k]$

Conclusion and perspectives

First step for the quantitative analysis of concurrent theory objects,...

Conclusion and perspectives

First step for the quantitative analysis of concurrent theory objects,...

Conclusion and perspectives

First step for the quantitative analysis of concurrent theory objects,...

O. Bodini, A. Genitrini, F. Peschanski

Conclusion and perspectives

First step for the quantitative analysis of concurrent theory objects,...

Conclusion and perspectives

First step for the quantitative analysis of concurrent theory objects,...

O. Bodini, A. Genitrini, F. Peschanski

