
Enumeration and Random Generation of
Concurrent Computations

O. Bodini1 A. Genitrini2 F. Peschanski2

1Université Paris 13 – LIPN

2UPMC Paris – LIP6

Aléa – March, 2012

Outline

1 Motivations
Concurrent computations
Related works

2 Shuffle trees and their typical shape
Recursive construction
Quantitative analysis

3 Algorithms
Probability of a concurrent run prefix
Uniform random generation of a run

Motivations Shuffle trees and their typical shape Algorithms

Outline

1 Motivations

2 Shuffle trees and their typical shape

3 Algorithms

When analyzing concurrent processes, the shuffle operator is the
main source of combinatorial explosion. [Mi80], [ClGrPe99]

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Concurrency theory and combinatorics

In concurrency theory, one manipulates:
syntactic objects ⇒ Process trees
their semantic interpretation ⇒ Shuffle trees

Ideas
to consider these objects as combinatorial structures
to use analytic combinatorics for quantitative studies

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Concurrency theory and combinatorics

In concurrency theory, one manipulates:
syntactic objects ⇒ Process trees
their semantic interpretation ⇒ Shuffle trees

Ideas
to consider these objects as combinatorial structures
to use analytic combinatorics for quantitative studies

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Process trees and shuffle trees

A process tree is a specification of events with precedence
constraints:

a

b c

d

The induced shuffle tree lists all admissible concurrent runs by
sharing prefixes, as in a trie:

a

b c

c

d

d

c

b

d

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Process trees and shuffle trees

A process tree is a specification of events with precedence
constraints:

a

b c

d

The induced shuffle tree lists all admissible concurrent runs by
sharing prefixes, as in a trie:

a

b c

c

d

d

c

b

d
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Related works

Poset Theory

linear extensions

Algebraic
Combinatorics

partly commutative algebras

Concurrency Theory

shuffle trees

[BrWi91]
[At90]

[DuHiNoTh11]
[BoFéLaRe11]

[Mi80] [ClGrPe99]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Related works

Poset Theory

linear extensions

Algebraic
Combinatorics

partly commutative algebras

Concurrency Theory

shuffle trees

[BrWi91]
[At90]

[DuHiNoTh11]
[BoFéLaRe11]

[Mi80] [ClGrPe99]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Related works

Poset Theory

linear extensions

Algebraic
Combinatorics

partly commutative algebras

Concurrency Theory

shuffle trees

[BrWi91]
[At90]

[DuHiNoTh11]
[BoFéLaRe11]

[Mi80] [ClGrPe99]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Outline

1 Motivations

2 Shuffle trees and their typical shape

3 Algorithms

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Building shuffle trees (1)
Definition: Child contraction
Let T be a tree with children T1, . . . ,Tr whose root-events are
`1, . . . , `r (r ∈ N∗). The i-contraction of T is the tree T C i with
root `i and children T1, . . . ,Ti−1,Ti1 , . . . ,Tim ,Ti+1, . . . ,Tr where
Ti1 , . . . ,Tim are the children of Ti .

Example

T = a

cb d

e f

⇒ T C 2 = c

e fb d

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Building shuffle trees (2)
Recursive definition
Let T be a tree. Its shuffle tree Shuf (T) is defined inductively as:

if T is a leaf, then Shuf (T) := T
if T has root-event ` and children T1, . . . ,Tr (r ∈ N∗)
then Shuf (T) is the tree with root-event `
and children Shuf (T C 1), . . . , Shuf (T C r)

Example (Shuffle / Contraction):
a

b

c

d
e f

f e

d

e
c

f

f

c

c
e

f

f

e

f
c

e

e

c

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Building shuffle trees (2)
Recursive definition
Let T be a tree. Its shuffle tree Shuf (T) is defined inductively as:

if T is a leaf, then Shuf (T) := T
if T has root-event ` and children T1, . . . ,Tr (r ∈ N∗)
then Shuf (T) is the tree with root-event `
and children Shuf (T C 1), . . . , Shuf (T C r)

Example (Shuffle / Contraction):
a

b
c d

e f

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Building shuffle trees (2)
Recursive definition
Let T be a tree. Its shuffle tree Shuf (T) is defined inductively as:

if T is a leaf, then Shuf (T) := T
if T has root-event ` and children T1, . . . ,Tr (r ∈ N∗)
then Shuf (T) is the tree with root-event `
and children Shuf (T C 1), . . . , Shuf (T C r)

Example (Shuffle / Contraction):
a

a

b
c d

e f

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Building shuffle trees (2)
Recursive definition
Let T be a tree. Its shuffle tree Shuf (T) is defined inductively as:

if T is a leaf, then Shuf (T) := T
if T has root-event ` and children T1, . . . ,Tr (r ∈ N∗)
then Shuf (T) is the tree with root-event `
and children Shuf (T C 1), . . . , Shuf (T C r)

Example (Shuffle / Contraction):
a

b
c d

e f

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Building shuffle trees (2)
Recursive definition
Let T be a tree. Its shuffle tree Shuf (T) is defined inductively as:

if T is a leaf, then Shuf (T) := T
if T has root-event ` and children T1, . . . ,Tr (r ∈ N∗)
then Shuf (T) is the tree with root-event `
and children Shuf (T C 1), . . . , Shuf (T C r)

Example (Shuffle / Contraction):
a

b

b
c d

e f

b
c d

e f

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Building shuffle trees (2)
Recursive definition
Let T be a tree. Its shuffle tree Shuf (T) is defined inductively as:

if T is a leaf, then Shuf (T) := T
if T has root-event ` and children T1, . . . ,Tr (r ∈ N∗)
then Shuf (T) is the tree with root-event `
and children Shuf (T C 1), . . . , Shuf (T C r)

Example (Shuffle / Contraction):
a

b

c

d
e f

b
c d

e f

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Building shuffle trees (2)
Recursive definition
Let T be a tree. Its shuffle tree Shuf (T) is defined inductively as:

if T is a leaf, then Shuf (T) := T
if T has root-event ` and children T1, . . . ,Tr (r ∈ N∗)
then Shuf (T) is the tree with root-event `
and children Shuf (T C 1), . . . , Shuf (T C r)

Example (Shuffle / Contraction):
a

b

c

d
e f

d

ec f

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Building shuffle trees (2)
Recursive definition
Let T be a tree. Its shuffle tree Shuf (T) is defined inductively as:

if T is a leaf, then Shuf (T) := T
if T has root-event ` and children T1, . . . ,Tr (r ∈ N∗)
then Shuf (T) is the tree with root-event `
and children Shuf (T C 1), . . . , Shuf (T C r)

Example (Shuffle / Contraction):
a

b

c

d
e f

d

ec f

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Building shuffle trees (2)
Recursive definition
Let T be a tree. Its shuffle tree Shuf (T) is defined inductively as:

if T is a leaf, then Shuf (T) := T
if T has root-event ` and children T1, . . . ,Tr (r ∈ N∗)
then Shuf (T) is the tree with root-event `
and children Shuf (T C 1), . . . , Shuf (T C r)

Example (Shuffle / Contraction):
a

b

c

d
e f

f e

d

e
c

f

f

c

c
e

f

f

e

f
c

e

e

c
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Branches of shuffle trees

Observation
Information is extremely redundant in shuffle trees:
One can recover the process tree by traversing a single branch of
the shuffle tree.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Goals

In order to analyze the combinatorial explosion of shuffle trees, we
want to answer the following questions:

What is the number of runs for a given process tree T ?
⇒ the number of leaves in Shuf (T)

What is the size of the shuffle tree induced by T ?
⇒ no correlation known with the number of runs (sharing)

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Main results

Theorem
The typical shape of a shuffle tree built on a process tree of size n:

tree
n

Θ(
√
n)

Θ(
√
n)

shuffle tree

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Main results

Theorem
The typical shape of a shuffle tree built on a process tree of size n:

tree
n

Θ(
√
n)

Θ(
√
n)

shuffle tree n − 1

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Main results

Theorem
The typical shape of a shuffle tree built on a process tree of size n:

tree
n

Θ(
√
n)

Θ(
√
n)

shuffle tree n − 1

∼ n!
2n−1

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Main results

Theorem
The typical shape of a shuffle tree built on a process tree of size n:

tree
n

Θ(
√
n)

Θ(
√
n)

shuffle tree
∼ e n!

2n−1

n − 1

∼ n!
2n−1

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Concurrent runs and increasing trees (1)

Definition: Increasing tree
An increasing tree is a labelled plane tree such that the sequence of
labels along any branch starting at the root is increasing.

1

2

3 4

5 6

1

2

5 3

4 6

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Concurrent runs and increasing trees (2)

Lemma: Bijection
Let T be a process tree. The number of runs associated to T
corresponds to the number of increasing trees whose structure is
the unlabelled tree T .

a

b

c d

e f

a

b

c

d
e f

f e

d

e

c

f

f

c

c

e

f

f

e

f
c

e

e

c

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Concurrent runs and increasing trees (2)

Lemma: Bijection
Let T be a process tree. The number of runs associated to T
corresponds to the number of increasing trees whose structure is
the unlabelled tree T .

a1

b

c d

e f

a

b

c

d
e f

f e

d

e

c

f

f

c

c

e

f

f

e

f
c

e

e

c

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Concurrent runs and increasing trees (2)

Lemma: Bijection
Let T be a process tree. The number of runs associated to T
corresponds to the number of increasing trees whose structure is
the unlabelled tree T .

a1

b2

c d

e f

a

b

c

d
e f

f e

d

e

c

f

f

c

c

e

f

f

e

f
c

e

e

c

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Concurrent runs and increasing trees (2)

Lemma: Bijection
Let T be a process tree. The number of runs associated to T
corresponds to the number of increasing trees whose structure is
the unlabelled tree T .

a1

b2

c3 d

e f

a

b

c

d
e f

f e

d

e

c

f

f

c

c

e

f

f

e

f
c

e

e

c

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Concurrent runs and increasing trees (2)

Lemma: Bijection
Let T be a process tree. The number of runs associated to T
corresponds to the number of increasing trees whose structure is
the unlabelled tree T .

a1

b2

c3 d4

e f

a

b

c

d
e f

f e

d

e

c

f

f

c

c

e

f

f

e

f
c

e

e

c

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Concurrent runs and increasing trees (2)

Lemma: Bijection
Let T be a process tree. The number of runs associated to T
corresponds to the number of increasing trees whose structure is
the unlabelled tree T .

a1

b2

c3 d4

e5 f

a

b

c

d
e f

f e

d

e

c

f

f

c

c

e

f

f

e

f
c

e

e

c

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Concurrent runs and increasing trees (2)

Lemma: Bijection
Let T be a process tree. The number of runs associated to T
corresponds to the number of increasing trees whose structure is
the unlabelled tree T .

a1

b2

c3 d4

e5 f 6

a

b

c

d
e f

f e

d

e

c

f

f

c

c

e

f

f

e

f
c

e

e

c

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Concurrent runs and increasing trees (2)

Lemma: Bijection
Let T be a process tree. The number of runs associated to T
corresponds to the number of increasing trees whose structure is
the unlabelled tree T .

a1

b2
c5 d3

e4 f6

a

b

c

d
e f

f e

d

e

c

f

f

c

c

e

f

f

e

f
c

e

e

c

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Number of concurrent runs

Theorem: Hook length in trees [Kn73]

Let T be a unlabelled tree.
The number of increasing trees built on T equals:

`T =
|T |!∏

R subtree of T

|R|
.

This corresponds equivalently to the number of runs induced by T .

a

b
c d

e f

6

5

1 3

1 1

`T =
6!

6 · 5 · 1 · 3 · 1 · 1
= 8.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Mean number of runs and mean growth

Proposition
The arithmetic mean number of runs built on trees of size n is:

¯̀n ∼n→∞
n!

2n−1 ∼ 2
√
2πn

(n
2e

)n
.

Proposition
The geometric mean growth between trees of size n and their
number of runs is:

Γ̄n ∼n→∞
√
2πnn−1 exp

(
−(1 + 2L(1/4))n +

√
πn + L(1/4)

)
,

with L (1/4) =
∑

n>1 log n · Catn · 4−n ≈ 0.579043921± 5 · 10−9.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Mean number of runs and mean growth

Proposition
The arithmetic mean number of runs built on trees of size n is:

¯̀n ∼n→∞
n!

2n−1 ∼ 2
√
2πn

(n
2e

)n
.

Proposition
The geometric mean growth between trees of size n and their
number of runs is:

Γ̄n ∼n→∞
√
2πnn−1 exp

(
−(1 + 2L(1/4))n +

√
πn + L(1/4)

)
,

with L (1/4) =
∑

n>1 log n · Catn · 4−n ≈ 0.579043921± 5 · 10−9.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of shuffle trees: substructures

Definition
Let T be a process tree. We define a substructure of T a tree
obtained by removing some subtrees of T .

Example

a

b

c d

e f

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of shuffle trees: substructures

Definition
Let T be a process tree. We define a substructure of T a tree
obtained by removing some subtrees of T .

Example

a

b

c d

e f

a

b

c d

e

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of shuffle trees: substructures

Definition
Let T be a process tree. We define a substructure of T a tree
obtained by removing some subtrees of T .

Example

a

b

c d

e f

a

b

c d

f

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of shuffle trees: substructures

Definition
Let T be a process tree. We define a substructure of T a tree
obtained by removing some subtrees of T .

Example

a

b

c d

e f

a

b

d

e f

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of shuffle trees: substructures

Definition
Let T be a process tree. We define a substructure of T a tree
obtained by removing some subtrees of T .

Example

a

b

c d

e f

a

b

c d

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of shuffle trees: substructures

Definition
Let T be a process tree. We define a substructure of T a tree
obtained by removing some subtrees of T .

Example

a

b

c d

e f

a

b

d

e

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of shuffle trees: substructures

Definition
Let T be a process tree. We define a substructure of T a tree
obtained by removing some subtrees of T .

Example

a

b

c d

e f

a

b

d

f

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of shuffle trees: substructures

Definition
Let T be a process tree. We define a substructure of T a tree
obtained by removing some subtrees of T .

Example

a

b

c d

e f

a

b

d

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of shuffle trees: substructures

Definition
Let T be a process tree. We define a substructure of T a tree
obtained by removing some subtrees of T .

Example

a

b

c d

e f

a

b

c

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of shuffle trees: substructures

Definition
Let T be a process tree. We define a substructure of T a tree
obtained by removing some subtrees of T .

Example

a

b

c d

e f

a

b

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of shuffle trees: substructures

Definition
Let T be a process tree. We define a substructure of T a tree
obtained by removing some subtrees of T .

Example

a

b

c d

e f

a

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of a shuffle tree

Proposition
The size of the shuffle tree built on T satisfies:

nT =
∑

R substructure of T

`R .

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of a shuffle tree

Proposition
The size of the shuffle tree built on T satisfies:

nT =
∑

R substructure of T

`R .

Example

a

b

c

d
e f

f e

d

e
c

f

f

c

c
e

f

f

e

f
c

e

e

c

a

b

c d

e f

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of a shuffle tree

Proposition
The size of the shuffle tree built on T satisfies:

nT =
∑

R substructure of T

`R .

Example

a

b

c

d
e f

f e

d

e
c

f

f

c

c
e

f

f

e

f
c

e

e

c

a

b

c d

e f

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Size of a shuffle tree

Proposition
The size of the shuffle tree built on T satisfies:

nT =
∑

R substructure of T

`R .

Example

a

b

c

d
e f

f e

d

e
c

f

f

c

c
e

f

f

e

f
c

e

e

c

a

b

c d

e f

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Mean size of shuffle trees

Theorem
The mean size s̄n of a shuffle tree induced by a tree of size n
follows a P-recurrence and satisfies:

s̄n ∼n→∞ e
n!

2n−1 ∼ 2e
√
2πn

(n
2e

)n
.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Outline of the proof (1)

First step:
The generating function of the cumulative size of shuffle trees.

S = U�U ? Z × Seq(S ∪ C)

S(z , u) =

∞∫
v=0

z
1− S(z , v)− C (z)

dv =
∑

n,k∈N
Sn,k · zn · u

k

k!

where Sn,k is
∑

T
|T | = n

∑
S substructure of size k of T

`S .

By substituting uk by k! (Gamma transformation) we obtain
the generating function S(z) for the size of the shuffle trees.

S(z) =

∞∫
u=0

S(z , u) exp(−u)du.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Outline of the proof (1)

First step:
The generating function of the cumulative size of shuffle trees.

C = Z × Seq C M = U × Z × Seq(M∪ C)

S(z , u) =

∞∫
v=0

z
1− S(z , v)− C (z)

dv =
∑

n,k∈N
Sn,k · zn · u

k

k!

where Sn,k is
∑

T
|T | = n

∑
S substructure of size k of T

`S .

By substituting uk by k! (Gamma transformation) we obtain
the generating function S(z) for the size of the shuffle trees.

S(z) =

∞∫
u=0

S(z , u) exp(−u)du.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Outline of the proof (1)

First step:
The generating function of the cumulative size of shuffle trees.

S = U�U ? Z × Seq(S ∪ C)

S(z , u) =

∞∫
v=0

z
1− S(z , v)− C (z)

dv =
∑

n,k∈N
Sn,k · zn · u

k

k!

where Sn,k is
∑

T
|T | = n

∑
S substructure of size k of T

`S .

By substituting uk by k! (Gamma transformation) we obtain
the generating function S(z) for the size of the shuffle trees.

S(z) =

∞∫
u=0

S(z , u) exp(−u)du.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Outline of the proof (1)

First step:
The generating function of the cumulative size of shuffle trees.

S = U�U ? Z × Seq(S ∪ C)

S(z , u) =

∞∫
v=0

z
1− S(z , v)− C (z)

dv =
∑

n,k∈N
Sn,k · zn · u

k

k!

where Sn,k is
∑

T
|T | = n

∑
S substructure of size k of T

`S .

By substituting uk by k! (Gamma transformation) we obtain
the generating function S(z) for the size of the shuffle trees.

S(z) =

∞∫
u=0

S(z , u) exp(−u)du.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Outline of the proof (1)

First step:
The generating function of the cumulative size of shuffle trees.

S = U�U ? Z × Seq(S ∪ C)

S(z , u) =

∞∫
v=0

z
1− S(z , v)− C (z)

dv =
∑

n,k∈N
Sn,k · zn · u

k

k!

where Sn,k is
∑

T
|T | = n

∑
S substructure of size k of T

`S .

By substituting uk by k! (Gamma transformation) we obtain
the generating function S(z) for the size of the shuffle trees.

S(z) =

∞∫
u=0

S(z , u) exp(−u)du.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Outline of the proof (2)

Second step: Assisted proof using gfun.

As S(z , u) is algebraic, it is holonomic.

As S(z , u) is holonomic, its Laplace transform is holonomic:

Ŝ(z , u) =

∞∫
v=0

S(z , uv) exp(−v)dv .

Using the holonomic stability under partial evaluation, S(z) is
holonomic.

As S(z) is holonomic, its coefficients sn follows a P-reccurence.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Outline of the proof (2)

Second step: Assisted proof using gfun.
As S(z , u) is algebraic, it is holonomic.

As S(z , u) is holonomic, its Laplace transform is holonomic:

Ŝ(z , u) =

∞∫
v=0

S(z , uv) exp(−v)dv .

Using the holonomic stability under partial evaluation, S(z) is
holonomic.

As S(z) is holonomic, its coefficients sn follows a P-reccurence.

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Computer assisted ?

144*(diff(S(z, u), u, u, z))*u^4*z^3+12*(diff(S(z, u), u, u, u,
z, z))*u^6*z+108*(diff(S(z, u), u, u, z, z))*u^5*z+648*
(diff(S(z, u), u, u, z))*u^5*z^2+72*(diff(S(z, u), u, u, u,z))*
u^6*z^2+576*(diff(S(z, u), u, z))*u^3*z^3-756*(diff(S(z, u), u,
z))*z*u^4-96*(diff(S(z, u), u, u, u, z, z))*u^6*z^2+72*(diff(S(z, u),
u, z))*u^2*z^3+3456*(diff(S(z, u), u, u, z, z))*u^5*z^4+96*(diff(S(z,
u), u, u, u, z, z))*u^6*z^3+1728*(diff(S(z, u), u,z))*u^4*z^3-336*(diff(S(z, u), u, u, z, z))*u^4*z^3+1296*(diff(S(z,u), u,
z))*u^4*z^2-60*(diff(S(z, u), u,z))*u^3*z+6*u^2*z+36*u^3*z-18*u^3-378*(diff(S(z, u), u, u,z))*u^5*z+96*(diff(S(z,
u), u, u, u, z))*u^6*z^3-42*(diff(S(z, u), u,u, u, z))*u^6*z-12*(diff(S(z, u), u, z, z))*u^3+
384*(diff(S(z, u), u,u, u, z, z))*z^4*u^6-864*(diff(S(z, u), u, u, z,z))*u^5*z^2-15*(diff(S(z, u), u, u, z))*z*u^4+36*(diff(S(z, u),u,z))*u^2*z-84*(diff(S(z, u), u, z))*u^2*z^2-36*(diff(S(z, u), u, u,z))*u^4*z^2-144*(diff(S(z, u), u, z))*u^3*z^2+864*(diff(S(z, u), u, u,z))*u^5*z^3+288*(diff(S(z, u), u, z, z))*u^2*z^4+192*(diff(S(z, u), u,
z, z))*u^2*z^2+96*(diff(S(z, u), z, z, z))*u*z^5+24*(diff(S(z, u), z,z, z))*u^2*z^3+384*(diff(S(z, u), z, z, z))*u^2*z^5-1728*(diff(S(z,u), u, z, z))*u^4*z^2+48*(diff(S(z, u), u, z, z,z))*u^3*z^3-21*(diff(S(z, u), z, z, z))*u*z^2-84*(diff(S(z, u), z,z))*z^3-3*(diff(S(z, u), z, z))*z+216*(diff(S(z, u), u, z,z))*z*u^4-360*(diff(S(z, u), u, z, z))*u^2*z^3-3*(diff(S(z, u), u, u,z, z))*u^4-48*(diff(S(z, u), z, z))*u^2*z^2+1728*(diff(S(z, u), u, z,
z))*u^4*z^3+6*(diff(S(z, u), u, u, u))*u^6+27*(diff(S(z, u), u, u,z))*u^5-128*(diff(S(z, u), u, z, z, z))*u^2*z^4+48*(diff(S(z, u), u,z, z, z))*u^3*z^2-160*(diff(S(z, u), u, u, z, z,z))*u^4*z^4-640*(diff(S(z, u), u, z, z, z))*u^3*z^4+768*(diff(S(z, u),z, z, z))*u^3*z^5+2304*(diff(S(z, u), z, z))*u^3*z^4-128*(diff(S(z,
u), z, z, z))*z^4*u+2*(diff(S(z, u), u, z, z, z))*u^2*z+54*(diff(S(z,u), u, z))*u^4+192*(diff(S(z, u), z, z))*u*z^2+2*(diff(S(z, u), z, z,z))*u*z-24*(diff(S(z, u), u, u, u, z, z, z))*u^6*z^3+3*(diff(S(z, u),
u, z, z))*u^2+24*(diff(S(z, u), z, z, z))*u^3*z^2+576*(diff(S(z, u),u, u, z, z))*u^4*z^4+16*(diff(S(z, u), z, z, z))*z^5+9*(diff(S(z, u),z, z, z))*z^3+120*(diff(S(z, u), u, z, z))*u^3*z+72*(diff(S(z, u), u,
z, z, z))*u^4*z^2+72*(diff(S(z, u), z, z))*u^3*z-1344*(diff(S(z, u),u, z, z))*u^3*z^3+54*(diff(S(z, u), u, u))*u^5+3*(diff(S(z, u), u, u,u, z))*u^6+6912*(diff(S(z, u), u, z, z))*u^4*z^4+12*(diff(S(z, u), u,
u, z, z, z))*u^4*z^2+3*(diff(S(z, u), z, z))*u+36*(diff(S(z, u), u, u,z, z, z))*u^5*z^2-144*(diff(S(z, u), z, z, z))*u^3*z^3+576*(diff(S(z,u), z, z))*u^3*z^3+96*(diff(S(z, u), u, z, z, z))*u^2*z^5-4*(diff(S(z,
u), z, z, z))*u^2*z+1152*(diff(S(z, u), z, z))*u^2*z^4+288*(diff(S(z,u), z, z))*z^4*u+30*(diff(S(z, u), u, u, z, z))*z*u^4+78*(diff(S(z,u), u, z, z, z))*u^2*z^3-96*(diff(S(z, u), u, z,z))*u^3*z^2+4*(diff(S(z, u), u, u, u, z, z, z))*u^6*z^2-320*(diff(S(z,u), z, z, z))*u^2*z^4-2*(diff(S(z, u), u, u, z, z,z))*z*u^4-6*(diff(S(z, u), z, z))*u^2-432*(diff(S(z, u), u, z, z,z))*u^4*z^3+2304*(diff(S(z, u), u, z, z, z))*u^4*z^5+768*(diff(S(z,u), u, z, z, z))*u^3*z^5-(diff(S(z, u), z, z, z))*z^2+30*(diff(S(z,u), z, z))*z^2-24*(diff(S(z, u), u, u, z, z))*u^4*z^2+864*(diff(S(z,
u), u, u, z, z))*u^5*z^3+24*(diff(S(z, u), u, z))*u^3-6*(diff(S(z, u),u, z))*u^2+6*(diff(S(z, u), u, u, z))*u^4+128*(diff(S(z, u), u, u, u,z, z, z))*z^5*u^6+24*(diff(S(z, u), z, z, z))*u^2*z^2-108*(diff(S(z,
u), u, u))*u^5*z-360*(diff(S(z, u), z, z))*u*z^3-672*(diff(S(z, u), z,z))*u^2*z^3+60*(diff(S(z, u), z, z))*u^2*z-6*(diff(S(z, u), u,u))*z*u^4-576*(diff(S(z, u), z, z))*u^3*z^2-12*(diff(S(z, u), u, u,u))*u^6*z+12*(diff(S(z, u), u, u, z, z, z))*u^4*z^3+288*(diff(S(z, u),z))*u^2*z^3+576*(diff(S(z, u), z))*u^3*z^3-72*(diff(S(z, u),
z))*u^2*z^2+432*(diff(S(z, u), z))*u^3*z^2+72*(diff(S(z, u),z))*u*z^3-84*(diff(S(z, u), z))*u*z^2-30*(diff(S(z, u),
z))*u^2*z-252*(diff(S(z, u), z))*u^3*z+36*(diff(S(z, u),z))*u*z-72*S(z, u)*u^3*z-12*S(z, u)*u^2*z-216*(diff(S(z, u),
u))*z*u^4-24*(diff(S(z, u), u))*u^3*z+48*(diff(S(z, u), z,z))*z^4+2304*(diff(S(z, u), u, z, z))*u^3*z^4+18*(diff(S(z, u),z))*u^3-24*(diff(S(z, u), z))*z^2+12*(diff(S(z, u),z))*z^3+12*(diff(S(z, u), z))*u^2+6*(diff(S(z, u), z))*z-6*(diff(S(z,u), z))*u+36*S(z, u)*u^3+108*(diff(S(z, u), u))*u^4-24*(diff(S(z, u),z, z, z))*z^4-216*(diff(S(z, u), u, u, z, z, z))*u^5*z^3-21*(diff(S(z,u), u, z, z, z))*u^2*z^2-8*(diff(S(z, u), u, z, z,z))*u^3*z+1152*(diff(S(z, u), u, u, z, z, z))*u^5*z^5+192*(diff(S(z,u), u, u, z, z, z))*u^4*z^5+78*(diff(S(z, u), z, z,z))*u*z^3-42*(diff(S(z, u), u, z, z))*u^2*z-42*(diff(S(z, u), z,z))*u*z

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Outline of the proof (3)

Third step: Asymptotic behaviour of the coefficients of s̄n.

Classical method gives:

s̄n ·
2n−1

n!
= θ(1).

Some more work is necessary to obtain the constant.

Finally,

s̄n ∼n→∞ e
n!

2n−1 .

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Outline of the proof (3)

Third step: Asymptotic behaviour of the coefficients of s̄n.

Classical method gives:

s̄n ·
2n−1

n!
= θ(1).

Some more work is necessary to obtain the constant.

Finally,

s̄n ∼n→∞ e
n!

2n−1 .

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Outline

1 Motivations

2 Shuffle trees and their typical shape

3 Algorithms

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Probability of a run prefix

Data: T : a weighted process tree of size n
Data: σ := 〈α1, . . . , αp〉: a run prefix of length p ≤ n
Result: ρσ: the probability of σ in the shuffle of T

ρσ := 1
i := 1
for i from 1 to p − 1 do

ρσ := ρσ × |T (αi+1)|
n−i

i := i + 1
return ρσ
Directly deduced from the hook length formula.

Proposition
The number of runs of a process tree T of size n can be computed
in O(n) operations.

[At90] gave a quadratic complexity algorithm.
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

{1..11}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty
run = []

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

construct

{1..11}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

a | 0, 11, 0 | L

run = []
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

5 ∈ {1..11}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

a | 0, 11, 0 | L

run = []
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

5 ∈ {1..11}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

a | 0, 11, 0 | L

run = [a]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

swap

{1..10}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

b | 0, 10, 0 | L

run = [a]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

7 ∈ {1..10}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

b | 0, 10, 0 | L

run = [a]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

7 ∈ {1..10}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

b | 0, 10, 0 | L

run = [a, b]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

swap

{1..9}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

c | 0, 3, 0 | L

run = [a, b]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

construct; invert bit

{1..9}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

c | 0, 3, 0 | R

f | 0, 6, 0 | L

run = [a, b]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..9}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

c | 6, 3, 0 | R

f | 0, 6, 0 | L

run = [a, b]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

8 ∈ {1..9}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

c | 6, 3, 0 | R

f | 0, 6, 0 | L

run = [a, b]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

8 ∈ {1..9}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

c | 6, 3, 0 | R

f | 0, 6, 0 | L

run = [a, b, c]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

swap

{1..8}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 0 | R

f | 0, 6, 0 | L

run = [a, b, c]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

construct; invert bit

{1..8}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 0 | L

f | 0, 6, 0 | L e | 0, 1, 0 | L

run = [a, b, c]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..8}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 1 | L

f | 0, 6, 0 | L e | 0, 1, 0 | L

run = [a, b, c]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

8 ∈ {1..8}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 1 | L

f | 0, 6, 0 | L e | 0, 1, 0 | L

run = [a, b, c]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

search

8− (6 + 1) = 1 ∈ {1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 1 | L

f | 0, 6, 0 | L e | 0, 1, 0 | L

run = [a, b, c]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

{1..7}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 1 | L

f | 0, 6, 0 | L e | 0, 1, 0 | L

run = [a, b, c , e]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

empty

{1..7}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 1 | L

f | 0, 6, 0 | L ε | 0, 0, 0 | L

run = [a, b, c , e]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..7}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 0 | L

f | 0, 6, 0 | L ε | 0, 0, 0 | L

run = [a, b, c , e]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

2 ∈ {1..7}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 0 | L

f | 0, 6, 0 | L ε | 0, 0, 0 | L

run = [a, b, c , e]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

search

2 ∈ {1..6}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 0 | L

f | 0, 6, 0 | L ε | 0, 0, 0 | L

run = [a, b, c , e]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

{1..6}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 0 | L

f | 0, 6, 0 | L ε | 0, 0, 0 | L

run = [a, b, c , e, f]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

swap

{1..6}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 6, 1, 0 | L

g | 0, 1, 0 | L ε | 0, 0, 0 | L

run = [a, b, c , e, f]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..6}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 0 | L

g | 0, 1, 0 | L ε | 0, 0, 0 | L

run = [a, b, c , e, f]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

fill

{1..6}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 0 | L

g | 0, 1, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..6}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 4 | L

g | 0, 1, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

1 ∈ {1..6}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 4 | L

g | 0, 1, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

search

1 ∈ {1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 4 | L

g | 0, 1, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

{1..5}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 4 | L

g | 0, 1, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f , g]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

empty

{1..5}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 4 | L

ε | 0, 0, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f , g]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..5}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 0, 1, 4 | L

ε | 0, 0, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f , g]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

3 ∈ {1..5}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 0, 1, 4 | L

ε | 0, 0, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f , g]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

search

2 ∈ {1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 0, 1, 4 | L

ε | 0, 0, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f , g]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

{1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 0, 1, 4 | L

ε | 0, 0, 0 | L h | 0, 4, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

swap

{1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 0, 1, 4 | L

ε | 0, 0, 0 | L i | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 0, 1, 1 | L

ε | 0, 0, 0 | L i | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

fill

{1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 0, 1, 1 | L

j | 0, 1, 0 | L i | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 1 | L

j | 0, 1, 0 | L i | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

construct ; invert bits

{1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 1 | R

j | 0, 1, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 2, 1, 1 | R

j | 1, 1, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

2 ∈ {1..4}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 2, 1, 1 | R

j | 1, 1, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

search

2 ∈ {1..2}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 2, 1, 1 | R

j | 1, 1, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

{1..3}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 2, 1, 1 | R

j | 1, 1, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

empty

{1..3}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 2, 1, 1 | R

ε | 1, 0, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..3}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 1 | R

ε | 1, 0, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

3 ∈ {1..3}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 1 | R

ε | 1, 0, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

search

1 ∈ {1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 1 | R

ε | 1, 0, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

{1..2}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 1 | R

ε | 1, 0, 0 | R i | 0, 1, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

empty

{1..2}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 1 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

update

{1..2}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

2 ∈ {1..2}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

{1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

d | 1, 1, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i , d]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

empty

{1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

ε | 1, 0, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i , d]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

random choice; search

1 ∈ {1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

ε | 1, 0, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i , d]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

search

1 ∈ {1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

ε | 1, 0, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i , d]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

search

1 ∈ {1..1}

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

ε | 1, 0, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i , d]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Uniform random generation example

take

∅

a11

b10

c3

d1 e1

f 6

g1 h4

j1i1 k1

empty

ε | 1, 0, 0 | R

ε | 1, 0, 0 | R ε | 0, 0, 0 | L

k | 0, 1, 0 | L

run = [a, b, c , e, f , g , h, j , i , d , k]
O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Conclusion and perspectives

First step for the quantitative analysis of concurrent theory
objects,. . .

a

b

c d

e f

a

b
c d

e

f

f

e

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Conclusion and perspectives

First step for the quantitative analysis of concurrent theory
objects,. . .

a

b

c d

e f

a

b
c d

e

f

f

e

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Conclusion and perspectives

First step for the quantitative analysis of concurrent theory
objects,. . .

a

b

c d

e f

a

•

b

9

c d

9

e f

a

b
c d

e

f

f

e

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Conclusion and perspectives

First step for the quantitative analysis of concurrent theory
objects,. . .

a

b

c d

e f

a

•

b

+

c d

9
e f

a

b
c d

e

f

f

e

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

Motivations Shuffle trees and their typical shape Algorithms

Conclusion and perspectives

First step for the quantitative analysis of concurrent theory
objects,. . .

a

b

c d

e f

a

•

b

+

c d

9
e f

a

b
c d

e

f

f

e

O. Bodini, A. Genitrini, F. Peschanski Concurrent Computations

	Motivations
	Concurrent computations
	Related works

	Shuffle trees and their typical shape
	Recursive construction
	Quantitative analysis

	Algorithms
	Probability of a concurrent run prefix
	Uniform random generation of a run

