Comportement asymptotique de statistiques dans des permutations aléatoires

Valentin Féray

LaBRI, CNRS, Bordeaux

Journées ALÉA Luminy, 6 mars 2012

• S_n : set of permutations of nex: 4253716 $\in S_7$.

- S_n : set of permutations of n $ex: 4253716 \in S_7$.
- Choose your favorite statistics on permutations X : □_{n≥1} S_n → ℝ:
 ex: number of fixed points, number of cycles, number of occurrences of a given (generalized) pattern, ...

- S_n : set of permutations of n $ex: 4253716 \in S_7$.
- Choose your favorite statistics on permutations X : □_{n≥1} S_n → ℝ:
 ex: number of fixed points, number of cycles, number of occurrences of a given (generalized) pattern, ...
- Consider the uniform measure of S_n $\rightarrow X$ can be seen as a sequence of random variables $X_n : S_n \rightarrow \mathbb{R}$.

- S_n : set of permutations of n $ex: 4253716 \in S_7$.
- Choose your favorite statistics on permutations X : □_{n≥1} S_n → ℝ:
 ex: number of fixed points, number of cycles, number of occurrences of a given (generalized) pattern, ...
- Consider the uniform measure of S_n $\rightarrow X$ can be seen as a sequence of random variables $X_n : S_n \rightarrow \mathbb{R}$.
- Problem: Asymptotic behaviour of X_n??
 i.e. does X_n (after suitable renormalization) converge in distribution?

- S_n : set of permutations of n $ex: 4253716 \in S_7$.
- Choose your favorite statistics on permutations X : □_{n≥1} S_n → ℝ:
 ex: number of fixed points, number of cycles, number of occurrences of a given (generalized) pattern, ...
- Consider the uniform measure of S_n $\rightarrow X$ can be seen as a sequence of random variables $X_n : S_n \rightarrow \mathbb{R}$.
- Problem: Asymptotic behaviour of X_n??
 i.e. does X_n (after suitable renormalization) converge in distribution?
- Goal of the talk: give a quite general method to answer this question.

Outline of the talk

- Intuition on an example
- More general results

Description of the method

$$X(\sigma) = |\{i : \sigma(i) = i\}|$$

$$X(\sigma) = |\{i : \sigma(i) = i\}|$$

By inclusion-exclusion, the number of *derangements* (= permutations without fixed points) of n is:

$$D(n) = \sum_{0 \le i \le n} (-1)^i \binom{n}{i} (n-i)!$$

$$X(\sigma) = |\{i : \sigma(i) = i\}|$$

By inclusion-exclusion, the number of *derangements* (= permutations without fixed points) of n is:

$$D(n) = \sum_{0 \le i \le n} (-1)^i \binom{n}{i} (n-i)!$$

whence the probability of having no fixed points:

$$P(X_n=0)=\frac{D(n)}{n!}=\sum_{0\leq i\leq n}\frac{(-1)^i}{i!}\longrightarrow_{n\to\infty}e^{-1}$$

$$X(\sigma) = |\{i : \sigma(i) = i\}|$$

By inclusion-exclusion, the number of *derangements* (= permutations without fixed points) of n is:

$$D(n) = \sum_{0 \le i \le n} (-1)^i \binom{n}{i} (n-i)!$$

whence the probability of having no fixed points:

$$P(X_n=0)=\frac{D(n)}{n!}=\sum_{0\leq i\leq n}\frac{(-1)^i}{i!}\longrightarrow_{n\to\infty}e^{-1}$$

The probability of having k fixed points follows:

$$P(X_n = k) = \frac{1}{n!} \binom{n}{k} D(n-k) = \frac{1}{k!} \frac{D(n-k)}{(n-k)!} \longrightarrow_{n \to \infty} \frac{e^{-1}}{k!}$$

We have just proved:

Theorem

 $(X_n)_{n\geq 1}$ converges in distribution towards a Poisson law of parameter 1.

Remark. We could also have used generating series (see *Analytic combinatorics*, example IX.4).

Theorem

 $(X_n)_{n\geq 1}$ converges in distribution towards a Poisson law of parameter 1.

Remark. $X_n = \sum_{i=1}^n F_i$, where F_i is a Bernouilli variable of parameter 1/n, $(F_i \text{ takes value } 1 \text{ if } \sigma(i) = i)$.

Theorem

 $(X_n)_{n\geq 1}$ converges in distribution towards a Poisson law of parameter 1.

Remark. $X_n = \sum_{i=1}^n F_i$, where F_i is a Bernouilli variable of parameter 1/n, $(F_i \text{ takes value 1 if } \sigma(i) = i)$.

Reminder: law of small numbers

The sum of *n* independent Bernouilli variables of parameter 1/n converges toward a Poisson law of parameter 1.

Theorem

 $(X_n)_{n\geq 1}$ converges in distribution towards a Poisson law of parameter 1.

Remark. $X_n = \sum_{i=1}^n F_i$, where F_i is a Bernouilli variable of parameter 1/n, $(F_i \text{ takes value 1 if } \sigma(i) = i)$.

Reminder: law of small numbers

The sum of *n* independent Bernouilli variables of parameter 1/n converges toward a Poisson law of parameter 1.

But the F_i are not independent!

Theorem

 $(X_n)_{n\geq 1}$ converges in distribution towards a Poisson law of parameter 1.

Remark. $X_n = \sum_{i=1}^n F_i$, where F_i is a Bernouilli variable of parameter 1/n, $(F_i \text{ takes value 1 if } \sigma(i) = i)$.

Reminder: law of small numbers

The sum of *n* independent Bernouilli variables of parameter 1/n converges toward a Poisson law of parameter 1.

But the F_i are not independent! We will show that they are *almost independent* (in some sense!) and use it to reprove the theorem.

Theorem

Let X be the number of occurrences of a given dashed pattern (or a linear combination of those).

linear combination of occurrences dashed patterns include:

numbers of inversions, descents, double descents, peaks, increasing runs or subsequences of a given length,...

Theorem

Let X be the number of occurrences of a given dashed pattern (or a linear combination of those).

We consider a permutation σ_n of size n distributed with Ewens measure.

Ewens measure: a one-parameter deformation of uniform distribution

 $P(\{\sigma\}) \propto \theta^{\# \operatorname{cycles}(\sigma)}.$

Theorem

Let X be the number of occurrences of a given dashed pattern (or a linear combination of those).

We consider a permutation σ_n of size n distributed with Ewens measure.

Remark. The first-order asymptotic is easy: in probability,

 $X(\sigma_n) \sim c_1 n^{c_2},$

with some constants c_1 and c_2 depending on X.

Theorem

Let X be the number of occurrences of a given dashed pattern (or a linear combination of those).

We consider a permutation σ_n of size n distributed with Ewens measure.

Then the fluctuations of order $1/\sqrt{n}$ of $\frac{X(\sigma_n)}{n^{c_2}}$ are asymptotically Gaussian.

Fix $p \in [0; 1]$. Model of random graph G_n of size n:

- $V(G_n) = [n];$
- $E(G_n)$ is chosen uniformly among all sets of pairs of size $k = \lfloor p\binom{n}{2} \rfloor$.

Fix $p \in [0; 1]$. Model of random graph G_n of size n:

- $V(G_n) = [n];$
- $E(G_n)$ is chosen uniformly among all sets of pairs of size $k = \lfloor p\binom{n}{2} \rfloor$.

Theorem

The fluctuations of the number of triangles in G_n are asymptotically Gaussian.

Covariance of the F_i

Back to fixed points and uniform measure:

Easy computation: if $i \neq j$,

(

$$Cov(F_i, F_j) = \mathbb{E}(F_i F_j) - \mathbb{E}(F_i)\mathbb{E}(F_j)$$
$$= \frac{1}{n(n-1)} - \left(\frac{1}{n}\right)^2 = \frac{1}{n^2(n-1)}$$

Covariance of the F_i

Back to fixed points and uniform measure:

Easy computation: if $i \neq j$,

$$Cov(F_i, F_j) = \mathbb{E}(F_i F_j) - \mathbb{E}(F_i)\mathbb{E}(F_j)$$
$$= \frac{1}{n(n-1)} - \left(\frac{1}{n}\right)^2 = \frac{1}{n^2(n-1)}$$

Remark. Cov $(F_i, F_j) \ll \mathbb{E}(F_iF_j), \mathbb{E}(F_i)\mathbb{E}(F_j)$. Confirms the intuition of *almost independence*.

Covariance of the F_i

Back to fixed points and uniform measure:

Easy computation: if $i \neq j$,

$$Cov(F_i, F_j) = \mathbb{E}(F_i F_j) - \mathbb{E}(F_i)\mathbb{E}(F_j)$$
$$= \frac{1}{n(n-1)} - \left(\frac{1}{n}\right)^2 = \frac{1}{n^2(n-1)}$$

Remark. Cov $(F_i, F_j) \ll \mathbb{E}(F_iF_j), \mathbb{E}(F_i)\mathbb{E}(F_j)$. Confirms the intuition of *almost independence*.

Not very convincing: some dependent variables have null covariance. \longrightarrow we will compute joint cumulants.

What are joint cumulants?

$$\begin{aligned} \kappa_1(X) &= \mathbb{E}(X), \quad \kappa_2(X,Y) = \mathsf{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) \\ \kappa_3(X,Y,Z) &= \mathbb{E}(XYZ) - \mathbb{E}(XY)\mathbb{E}(Z) - \mathbb{E}(XZ)\mathbb{E}(Y) \\ &- \mathbb{E}(YZ)\mathbb{E}(X) + 2\mathbb{E}(X)\mathbb{E}(Y)\mathbb{E}(Z). \end{aligned}$$

What are joint cumulants?

$$\kappa_1(X) = \mathbb{E}(X), \quad \kappa_2(X, Y) = \operatorname{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

$$\kappa_3(X, Y, Z) = \mathbb{E}(XYZ) - \mathbb{E}(XY)\mathbb{E}(Z) - \mathbb{E}(XZ)\mathbb{E}(Y)$$

$$- \mathbb{E}(YZ)\mathbb{E}(X) + 2\mathbb{E}(X)\mathbb{E}(Y)\mathbb{E}(Z).$$

In general, $\kappa_{\ell}(X_1, \ldots, X_{\ell}) = \mathbb{E}(X_1 \cdots X_{\ell}) + \text{homogeneous sum of products}$ of joint moments of smaller degree (explicit description in terms of set partitions).

What are joint cumulants?

$$\kappa_1(X) = \mathbb{E}(X), \quad \kappa_2(X, Y) = \operatorname{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

$$\kappa_3(X, Y, Z) = \mathbb{E}(XYZ) - \mathbb{E}(XY)\mathbb{E}(Z) - \mathbb{E}(XZ)\mathbb{E}(Y)$$

$$- \mathbb{E}(YZ)\mathbb{E}(X) + 2\mathbb{E}(X)\mathbb{E}(Y)\mathbb{E}(Z).$$

In general, $\kappa_{\ell}(X_1, \ldots, X_{\ell}) = \mathbb{E}(X_1 \cdots X_{\ell}) + \text{homogeneous sum of products}$ of joint moments of smaller degree (explicit description in terms of set partitions).

Nice behaviour with respect to independence*:

 A, B, C, \ldots are *independent* \Leftrightarrow

all joint cumulants $\kappa_{\ell}(A, \ldots, A, B, \ldots, B, C, \ldots, C, \ldots)$ vanish (as soon as they involve at least two different variables).

* if A, B, C, ... have joint moments of all orders and the joint law is determined by its joint moments (easy criterion on moments of marginal laws).

V. Féray

Permutations aléatoires

ALÉA, 2012–03 9 / 16

Cumulants of fixed points

Recall: F_i is the characteristic function of the event $\sigma(i) = i$. If h, i and j are pairwise distinct,

$$\kappa_3(F_h, F_i, F_j) = \frac{1}{n(n-1)(n-2)} - 3\frac{1}{n^2(n-1)} + 2\frac{1}{n^3}$$

Cumulants of fixed points

Recall: F_i is the characteristic function of the event $\sigma(i) = i$. If h, i and j are pairwise distinct,

$$\kappa_{3}(F_{h}, F_{i}, F_{j}) = \frac{1}{n(n-1)(n-2)} - 3\frac{1}{n^{2}(n-1)} + 2\frac{1}{n^{3}}$$
$$= \frac{4}{n^{3}(n-1)(n-2)} = O(n^{-5})$$

Cumulants of fixed points

Recall: F_i is the characteristic function of the event $\sigma(i) = i$. If h, i and j are pairwise distinct,

$$\kappa_3(F_h, F_i, F_j) = \frac{1}{n(n-1)(n-2)} - 3\frac{1}{n^2(n-1)} + 2\frac{1}{n^3}$$
$$= \frac{4}{n^3(n-1)(n-2)} = O(n^{-5})$$

In general,

$$\kappa_{\ell}(F_{i_1},\ldots,F_{i_{\ell}})=O(n^{-2t+1}),$$

where *t* is the number of distinct values in the list i_1, \ldots, i_ℓ .

Remark. A priori, it is a rational function of degree -t. It is quite technical to prove that it has in fact degree -2t + 1.

Cumulants and convergence in distribution

Our goal: show that $\sum_{i} F_{i}$ converges in distribution towards a Poisson law.

Concluding

Cumulants and convergence in distribution

Our goal: show that $\sum_i F_i$ converges in distribution towards a Poisson law.

Cumulants are a good tool to prove convergence in distribution

Theorem

Let X be a random variable^{*} and $(X_n)_{n>1}$ a sequence of random variables such that

for any
$$\ell \geq 1, \ \lim_{n \to \infty} \kappa_\ell(X_n, \dots, X_n) = \kappa_\ell(X, \dots, X),$$

then. in distribution.

$$X_n \longrightarrow X$$
.

 * We assume that X has moments of all orders and that its law is determined by its moments.

Asymptotic analysis of cumulants

Recall $X_n = \sum_{1 \le i \le n} F_i$. By multilinearity,

$$\kappa_{\ell}(X_n,\ldots,X_n) = \sum_{1 \leq i_1,\ldots,i_\ell \leq n} \kappa_{\ell}(F_{i_1},\ldots,F_{i_\ell})$$

Asymptotic analysis of cumulants

Recall $X_n = \sum_{1 \le i \le n} F_i$. By multilinearity,

$$\kappa_{\ell}(X_n,\ldots,X_n) = \sum_{1 \leq i_1,\ldots,i_\ell \leq n} \kappa_{\ell}(F_{i_1},\ldots,F_{i_\ell})$$

Fix some positive integer $t < \ell$.

• There are $S(\ell, t)n(n-1)\dots(n-t+1)$ lists (i_1,\dots,i_ℓ) with exactly t distinct values.

Notation: $S(\ell, t)$ is the number of set partitions of $[\ell]$ with t parts.

Asymptotic analysis of cumulants

Recall $X_n = \sum_{1 \le i \le n} F_i$. By multilinearity,

$$\kappa_{\ell}(X_n,\ldots,X_n) = \sum_{1 \leq i_1,\ldots,i_\ell \leq n} \kappa_{\ell}(F_{i_1},\ldots,F_{i_\ell})$$

Fix some positive integer $t \leq \ell$.

- There are $S(\ell, t)n(n-1)\dots(n-t+1)$ lists (i_1,\dots,i_ℓ) with exactly t distinct values.
- For each one of these sequences, $\kappa_{\ell}(F_{i_1}, \ldots, F_{i_{\ell}}) = O(n^{-2t+1})$.

See previous slide: moreover, the O is *uniform* (depends only on ℓ).

Asymptotic analysis of cumulants

Recall $X_n = \sum_{1 \le i \le n} F_i$. By multilinearity,

$$\kappa_{\ell}(X_n,\ldots,X_n) = \sum_{1 \leq i_1,\ldots,i_\ell \leq n} \kappa_{\ell}(F_{i_1},\ldots,F_{i_\ell})$$

Fix some positive integer $t < \ell$.

- There are $S(\ell, t)n(n-1)\dots(n-t+1)$ lists (i_1,\dots,i_ℓ) with exactly t distinct values.
- For each one of these sequences, $\kappa_{\ell}(F_{i_1}, \ldots, F_{i_{\ell}}) = O(n^{-2t+1})$.
- Hence, the *total* contribution of these lists is $O(n^{-t+1})$.

See previous slide: moreover, the O is *uniform* (depends only on ℓ).

Asymptotic analysis of cumulants

Recall
$$X_n = \sum_{1 \le i \le n} F_i$$
. By multilinearity,

$$\kappa_{\ell}(X_n,\ldots,X_n)=\sum_{1\leq i_1,\ldots,i_\ell\leq n}\kappa_{\ell}(F_{i_1},\ldots,F_{i_\ell})$$

Fix some positive integer $t < \ell$.

- There are $S(\ell, t)n(n-1)\dots(n-t+1)$ lists (i_1,\dots,i_ℓ) with exactly t distinct values.
- For each one of these sequences, $\kappa_{\ell}(F_{i_1}, \ldots, F_{i_{\ell}}) = O(n^{-2t+1})$.

• Hence, the *total* contribution of these lists is $O(n^{-t+1})$. Finally, we get:

$$\kappa_{\ell}(X_n,\ldots,X_n) = \sum_{1\leq i\leq n} \kappa_{\ell}(F_i,\ldots,F_i) + O(N^{-1}).$$

End of the proof

We proved

$$\kappa_{\ell}(X_n,\ldots,X_n) = \sum_{1\leq i\leq n} \kappa_{\ell}(F_i,\ldots,F_i) + O(N^{-1}).$$

End of the proof

We proved

$$\kappa_{\ell}(X_n,\ldots,X_n) = \sum_{1\leq i\leq n} \kappa_{\ell}(F_i,\ldots,F_i) + O(N^{-1}).$$

that is: X_n has asymptotically the same cumulant than a sum of n independent Bernouilli variables of parameter 1/n.

End of the proof

We proved

$$\kappa_{\ell}(X_n,\ldots,X_n) = \sum_{1\leq i\leq n} \kappa_{\ell}(F_i,\ldots,F_i) + O(N^{-1}).$$

that is: X_n has asymptotically the same cumulant than a sum of n independent Bernouilli variables of parameter 1/n.

 \Longrightarrow it converges in distribution towards a Poisson law of parameter 1 (law of small numbers).

Notation:
$$B_{i,s}(\sigma) = egin{cases} 1 & ext{if } \sigma(i) = s; \\ 0 & ext{else.} \end{cases}$$

Note: the number of occurrences of any dashed pattern writes as a sum of products of such variables.

Notation:
$$B_{i,s}(\sigma) = egin{cases} 1 & ext{if } \sigma(i) = s; \\ 0 & ext{else.} \end{cases}$$

Note: the number of occurrences of any dashed pattern writes as a sum of products of such variables.

Hence, its cumulants are *huge* sums of cumulants of product of $B_{i,s}$.

Notation:
$$B_{i,s}(\sigma) = \begin{cases} 1 & \text{if } \sigma(i) = s; \\ 0 & \text{else.} \end{cases}$$

Note: the number of occurrences of any dashed pattern writes as a sum of products of such variables.

Hence, its cumulants are *huge* sums of cumulants of product of $B_{i,s}$.

We need a bound for joint cumulants of products of $B_{i,s}$ (next slide).

Notation:
$$B_{i,s}(\sigma) = \begin{cases} 1 & \text{if } \sigma(i) = s; \\ 0 & \text{else.} \end{cases}$$

Note: the number of occurrences of any dashed pattern writes as a sum of products of such variables.

Hence, its cumulants are *huge* sums of cumulants of product of $B_{i,s}$.

We need a bound for joint cumulants of products of $B_{i,s}$ (next slide).

Then, one has to determine which summands have the biggest contribution to cumulants (not easy!)...

Consider $\kappa(B_{1,3}B_{2,7}, B_{2,5}, B_{1,3}B_{4,9}, B_{6,8})$.

Consider $\kappa(B_{1,3}B_{2,7}, B_{2,5}, B_{1,3}B_{4,9}, B_{6,8})$.

Denote:

• t the number of different couples (i, s), here 5.

Consider $\kappa(B_{1,3}B_{2,7}, B_{2,5}, B_{1,3}B_{4,9}, B_{6,8})$.

Denote:

- t the number of different couples (i, s), here 5.
- *m* the number of connected components of the following graph

Consider $\kappa(B_{1,3}B_{2,7}, B_{2,5}, B_{1,3}B_{4,9}, B_{6,8})$.

Denote:

- t the number of different couples (i, s), here 5.
- *m* the number of connected components of the following graph (here, m = 2)

Consider
$$\kappa(B_{1,3}B_{2,7}, B_{2,5}, B_{1,3}B_{4,9}, B_{6,8}).$$

Denote:

- t the number of different couples (i, s), here 5.
- *m* the number of connected components of the following graph (here, m = 2)

Then $\kappa(B_{1,3}B_{2,7}, B_{2,5}, B_{1,3}B_{4,9}, B_{6,8}) = O(n^{-t-m+1}) = O(n^{-5}).$

Future work

- More statistics: Generalized patterns (with some adjacencies in places and values) or even more general setting (where we can add equalities/inequalities between some places and values).
- More objects: random graphs, ...
- More precise results: speed of convergence, local limit laws, large deviation...