Comportement asymptotique de statistiques dans des permutations aléatoires

Valentin Féray
LaBRI, CNRS, Bordeaux
Journées ALÉA
Luminy, 6 mars 2012
6

What is this talk about?

- S_{n} : set of permutations of n ex: $4253716 \in S_{7}$.

What is this talk about?

- S_{n} : set of permutations of n ex: $4253716 \in S_{7}$.
- Choose your favorite statistics on permutations $X: \bigsqcup_{n \geq 1} S_{n} \rightarrow \mathbb{R}$: ex: number of fixed points, number of cycles, number of occurrences of a given (generalized) pattern, ...

What is this talk about?

- S_{n} : set of permutations of n ex: $4253716 \in S_{7}$.
- Choose your favorite statistics on permutations $X: \bigsqcup_{n \geq 1} S_{n} \rightarrow \mathbb{R}$: ex: number of fixed points, number of cycles, number of occurrences of a given (generalized) pattern, ...
- Consider the uniform measure of S_{n}
$\rightarrow X$ can be seen as a sequence of random variables $X_{n}: S_{n} \rightarrow \mathbb{R}$.

What is this talk about?

- S_{n} : set of permutations of n ex: $4253716 \in S_{7}$.
- Choose your favorite statistics on permutations $X: \bigsqcup_{n \geq 1} S_{n} \rightarrow \mathbb{R}$: ex: number of fixed points, number of cycles, number of occurrences of a given (generalized) pattern, ...
- Consider the uniform measure of S_{n}
$\rightarrow X$ can be seen as a sequence of random variables $X_{n}: S_{n} \rightarrow \mathbb{R}$.
- Problem: Asymptotic behaviour of X_{n} ?? i.e. does X_{n} (after suitable renormalization) converge in distribution?

What is this talk about?

- S_{n} : set of permutations of n ex: $4253716 \in S_{7}$.
- Choose your favorite statistics on permutations $X: \bigsqcup_{n \geq 1} S_{n} \rightarrow \mathbb{R}$: ex: number of fixed points, number of cycles, number of occurrences of a given (generalized) pattern, ...
- Consider the uniform measure of S_{n}
$\rightarrow X$ can be seen as a sequence of random variables $X_{n}: S_{n} \rightarrow \mathbb{R}$.
- Problem: Asymptotic behaviour of X_{n} ?? i.e. does X_{n} (after suitable renormalization) converge in distribution?
- Goal of the talk: give a quite general method to answer this question.

Outline of the talk

(1) Introduction

- Intuition on an example
- More general results
(2) Description of the method

Example: number of fixed points

$$
X(\sigma)=|\{i: \sigma(i)=i\}|
$$

Example: number of fixed points

$$
X(\sigma)=|\{i: \sigma(i)=i\}|
$$

By inclusion-exclusion, the number of derangements ($=$ permutations without fixed points) of n is:

$$
D(n)=\sum_{0 \leq i \leq n}(-1)^{i}\binom{n}{i}(n-i)!
$$

Example: number of fixed points

$$
X(\sigma)=|\{i: \sigma(i)=i\}|
$$

By inclusion-exclusion, the number of derangements ($=$ permutations without fixed points) of n is:

$$
D(n)=\sum_{0 \leq i \leq n}(-1)^{i}\binom{n}{i}(n-i)!
$$

whence the probability of having no fixed points:

$$
P\left(X_{n}=0\right)=\frac{D(n)}{n!}=\sum_{0 \leq i \leq n} \frac{(-1)^{i}}{i!} \longrightarrow_{n \rightarrow \infty} e^{-1}
$$

Example: number of fixed points

$$
X(\sigma)=|\{i: \sigma(i)=i\}|
$$

By inclusion-exclusion, the number of derangements ($=$ permutations without fixed points) of n is:

$$
D(n)=\sum_{0 \leq i \leq n}(-1)^{i}\binom{n}{i}(n-i)!
$$

whence the probability of having no fixed points:

$$
P\left(X_{n}=0\right)=\frac{D(n)}{n!}=\sum_{0 \leq i \leq n} \frac{(-1)^{i}}{i!} \longrightarrow_{n \rightarrow \infty} e^{-1}
$$

The probability of having k fixed points follows:

$$
P\left(X_{n}=k\right)=\frac{1}{n!}\binom{n}{k} D(n-k)=\frac{1}{k!} \frac{D(n-k)}{(n-k)!} \longrightarrow_{n \rightarrow \infty} \frac{e^{-1}}{k!}
$$

Example: number of fixed points

We have just proved:
Theorem
$\left(X_{n}\right)_{n \geq 1}$ converges in distribution towards a Poisson law of parameter 1.
Remark. We could also have used generating series (see Analytic combinatorics, example IX.4).

Example: number of fixed points

Theorem
$\left(X_{n}\right)_{n \geq 1}$ converges in distribution towards a Poisson law of parameter 1.
Remark. $X_{n}=\sum_{i=1}^{n} F_{i}$, where F_{i} is a Bernouilli variable of parameter $1 / n$, (F_{i} takes value 1 if $\sigma(i)=i$).

Example: number of fixed points

Theorem
$\left(X_{n}\right)_{n \geq 1}$ converges in distribution towards a Poisson law of parameter 1.
Remark. $X_{n}=\sum_{i=1}^{n} F_{i}$, where F_{i} is a Bernouilli variable of parameter $1 / n$, (F_{i} takes value 1 if $\sigma(i)=i$).

Reminder: law of small numbers
The sum of n independent Bernouilli variables of parameter $1 / n$ converges toward a Poisson law of parameter 1.

Example: number of fixed points

Theorem
$\left(X_{n}\right)_{n \geq 1}$ converges in distribution towards a Poisson law of parameter 1.
Remark. $X_{n}=\sum_{i=1}^{n} F_{i}$, where F_{i} is a Bernouilli variable of parameter $1 / n$, (F_{i} takes value 1 if $\sigma(i)=i$).

Reminder: law of small numbers
The sum of n independent Bernouilli variables of parameter $1 / n$ converges toward a Poisson law of parameter 1.

But the F_{i} are not independent!

Example: number of fixed points

Theorem
$\left(X_{n}\right)_{n \geq 1}$ converges in distribution towards a Poisson law of parameter 1.
Remark. $X_{n}=\sum_{i=1}^{n} F_{i}$, where F_{i} is a Bernouilli variable of parameter $1 / n$, (F_{i} takes value 1 if $\sigma(i)=i$).

Reminder: law of small numbers
The sum of n independent Bernouilli variables of parameter $1 / n$ converges toward a Poisson law of parameter 1.

But the F_{i} are not independent! We will show that they are almost independent (in some sense!) and use it to reprove the theorem.

The method is in fact much more general! (1/2)

Theorem
Let X be the number of occurrences of a given dashed pattern (or a linear combination of those).
linear combination of occurrences dashed patterns include: numbers of inversions, descents, double descents, peaks, increasing runs or subsequences of a given length,...

The method is in fact much more general! (1/2)

Theorem
Let X be the number of occurrences of a given dashed pattern (or a linear combination of those).
We consider a permutation σ_{n} of size n distributed with Ewens measure.

Ewens measure: a one-parameter deformation of uniform distribution

$$
P(\{\sigma\}) \propto \theta^{\# \operatorname{cycles}(\sigma)} .
$$

The method is in fact much more general! (1/2)

Theorem
Let X be the number of occurrences of a given dashed pattern (or a linear combination of those).
We consider a permutation σ_{n} of size n distributed with Ewens measure.

Remark. The first-order asymptotic is easy: in probability,

$$
X\left(\sigma_{n}\right) \sim c_{1} n^{c_{2}},
$$

with some constants c_{1} and c_{2} depending on X.

The method is in fact much more general! (1/2)

Theorem
Let X be the number of occurrences of a given dashed pattern (or a linear combination of those).
We consider a permutation σ_{n} of size n distributed with Ewens measure.
Then the fluctuations of order $1 / \sqrt{n}$ of $\frac{X\left(\sigma_{n}\right)}{n^{c_{2}}}$ are asymptotically Gaussian.

The method is in fact much more general! $(2 / 2)$

Fix $p \in[0 ; 1]$.
Model of random graph G_{n} of size n :

- $V\left(G_{n}\right)=[n]$;
- $E\left(G_{n}\right)$ is chosen uniformly among all sets of pairs of size $k=\left\lfloor p\binom{n}{2}\right\rfloor$.

The method is in fact much more general! $(2 / 2)$

Fix $p \in[0 ; 1]$.
Model of random graph G_{n} of size n :

- $V\left(G_{n}\right)=[n]$;
- $E\left(G_{n}\right)$ is chosen uniformly among all sets of pairs of size $k=\left\lfloor p\binom{n}{2}\right\rfloor$.

Theorem
The fluctuations of the number of triangles in G_{n} are asymptotically Gaussian.

Covariance of the F_{i}

Back to fixed points and uniform measure:
Easy computation: if $i \neq j$,

$$
\begin{aligned}
\operatorname{Cov}\left(F_{i}, F_{j}\right) & =\mathbb{E}\left(F_{i} F_{j}\right)-\mathbb{E}\left(F_{i}\right) \mathbb{E}\left(F_{j}\right) \\
& =\frac{1}{n(n-1)}-\left(\frac{1}{n}\right)^{2}=\frac{1}{n^{2}(n-1)}
\end{aligned}
$$

Covariance of the F_{i}

Back to fixed points and uniform measure:
Easy computation: if $i \neq j$,

$$
\begin{aligned}
\operatorname{Cov}\left(F_{i}, F_{j}\right) & =\mathbb{E}\left(F_{i} F_{j}\right)-\mathbb{E}\left(F_{i}\right) \mathbb{E}\left(F_{j}\right) \\
& =\frac{1}{n(n-1)}-\left(\frac{1}{n}\right)^{2}=\frac{1}{n^{2}(n-1)}
\end{aligned}
$$

Remark. $\operatorname{Cov}\left(F_{i}, F_{j}\right) \ll \mathbb{E}\left(F_{i} F_{j}\right), \mathbb{E}\left(F_{i}\right) \mathbb{E}\left(F_{j}\right)$.
Confirms the intuition of almost independence.

Covariance of the F_{i}

Back to fixed points and uniform measure:
Easy computation: if $i \neq j$,

$$
\begin{aligned}
\operatorname{Cov}\left(F_{i}, F_{j}\right) & =\mathbb{E}\left(F_{i} F_{j}\right)-\mathbb{E}\left(F_{i}\right) \mathbb{E}\left(F_{j}\right) \\
& =\frac{1}{n(n-1)}-\left(\frac{1}{n}\right)^{2}=\frac{1}{n^{2}(n-1)}
\end{aligned}
$$

Remark. $\operatorname{Cov}\left(F_{i}, F_{j}\right) \ll \mathbb{E}\left(F_{i} F_{j}\right), \mathbb{E}\left(F_{i}\right) \mathbb{E}\left(F_{j}\right)$.
Confirms the intuition of almost independence.
Not very convincing: some dependent variables have null covariance. \longrightarrow we will compute joint cumulants.

What are joint cumulants?

$$
\begin{aligned}
\kappa_{1}(X)= & \mathbb{E}(X), \quad \kappa_{2}(X, Y)=\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y) \\
\kappa_{3}(X, Y, Z)= & \mathbb{E}(X Y Z)-\mathbb{E}(X Y) \mathbb{E}(Z)-\mathbb{E}(X Z) \mathbb{E}(Y) \\
& -\mathbb{E}(Y Z) \mathbb{E}(X)+2 \mathbb{E}(X) \mathbb{E}(Y) \mathbb{E}(Z)
\end{aligned}
$$

What are joint cumulants?

$$
\begin{aligned}
\kappa_{1}(X)= & \mathbb{E}(X), \quad \kappa_{2}(X, Y)=\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y) \\
\kappa_{3}(X, Y, Z)= & \mathbb{E}(X Y Z)-\mathbb{E}(X Y) \mathbb{E}(Z)-\mathbb{E}(X Z) \mathbb{E}(Y) \\
& -\mathbb{E}(Y Z) \mathbb{E}(X)+2 \mathbb{E}(X) \mathbb{E}(Y) \mathbb{E}(Z) .
\end{aligned}
$$

In general, $\kappa_{\ell}\left(X_{1}, \ldots, X_{\ell}\right)=\mathbb{E}\left(X_{1} \cdots X_{\ell}\right)+$ homogeneous sum of products of joint moments of smaller degree (explicit description in terms of set partitions).

What are joint cumulants?

$$
\begin{aligned}
\kappa_{1}(X)= & \mathbb{E}(X), \quad \kappa_{2}(X, Y)=\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y) \\
\kappa_{3}(X, Y, Z)= & \mathbb{E}(X Y Z)-\mathbb{E}(X Y) \mathbb{E}(Z)-\mathbb{E}(X Z) \mathbb{E}(Y) \\
& -\mathbb{E}(Y Z) \mathbb{E}(X)+2 \mathbb{E}(X) \mathbb{E}(Y) \mathbb{E}(Z) .
\end{aligned}
$$

In general, $\kappa_{\ell}\left(X_{1}, \ldots, X_{\ell}\right)=\mathbb{E}\left(X_{1} \cdots X_{\ell}\right)+$ homogeneous sum of products of joint moments of smaller degree (explicit description in terms of set partitions).

Nice behaviour with respect to independence ${ }^{\star}$:
A, B, C, \ldots are independent \Leftrightarrow
> all joint cumulants $\kappa_{\ell}(A, \ldots, A, B, \ldots, B, C, \ldots, C, \ldots)$ vanish (as soon as they involve at least two different variables).

* if A, B, C, \ldots have joint moments of all orders and the joint law is determined by its joint moments (easy criterion on moments of marginal laws).

Cumulants of fixed points

Recall: F_{i} is the characteristic function of the event $\sigma(i)=i$. If h, i and j are pairwise distinct,

$$
\kappa_{3}\left(F_{h}, F_{i}, F_{j}\right)=\frac{1}{n(n-1)(n-2)}-3 \frac{1}{n^{2}(n-1)}+2 \frac{1}{n^{3}}
$$

Cumulants of fixed points

Recall: F_{i} is the characteristic function of the event $\sigma(i)=i$. If h, i and j are pairwise distinct,

$$
\begin{aligned}
\kappa_{3}\left(F_{h}, F_{i}, F_{j}\right) & =\frac{1}{n(n-1)(n-2)}-3 \frac{1}{n^{2}(n-1)}+2 \frac{1}{n^{3}} \\
& =\frac{4}{n^{3}(n-1)(n-2)}=O\left(n^{-5}\right)
\end{aligned}
$$

Cumulants of fixed points

Recall: F_{i} is the characteristic function of the event $\sigma(i)=i$.
If h, i and j are pairwise distinct,

$$
\begin{aligned}
\kappa_{3}\left(F_{h}, F_{i}, F_{j}\right) & =\frac{1}{n(n-1)(n-2)}-3 \frac{1}{n^{2}(n-1)}+2 \frac{1}{n^{3}} \\
& =\frac{4}{n^{3}(n-1)(n-2)}=O\left(n^{-5}\right)
\end{aligned}
$$

In general,

$$
\kappa_{\ell}\left(F_{i_{1}}, \ldots, F_{i_{\ell}}\right)=O\left(n^{-2 t+1}\right),
$$

where t is the number of distinct values in the list i_{1}, \ldots, i_{ℓ}.
Remark. A priori, it is a rational function of degree $-t$. It is quite technical to prove that it has in fact degree $-2 t+1$.

Cumulants and convergence in distribution

Our goal: show that $\sum_{i} F_{i}$ converges in distribution towards a Poisson law.

Cumulants and convergence in distribution

Our goal: show that $\sum_{i} F_{i}$ converges in distribution towards a Poisson law.
Cumulants are a good tool to prove convergence in distribution
Theorem
Let X be a random variable* and $\left(X_{n}\right)_{n \geq 1}$ a sequence of random variables such that

$$
\text { for any } \ell \geq 1, \quad \lim _{n \rightarrow \infty} \kappa_{\ell}\left(X_{n}, \ldots, X_{n}\right)=\kappa_{\ell}(X, \ldots, X)
$$

then, in distribution,

$$
X_{n} \longrightarrow X
$$

* We assume that X has moments of all orders and that its law is determined by its moments.

Asymptotic analysis of cumulants

$$
\begin{aligned}
& \text { Recall } X_{n}=\sum_{1 \leq i \leq n} F_{i} \text {. By multilinearity, } \\
& \qquad \kappa_{\ell}\left(X_{n}, \ldots, X_{n}\right)=\sum_{1 \leq i_{1}, \ldots, i_{\ell} \leq n} \kappa_{\ell}\left(F_{i_{1}}, \ldots, F_{i_{\ell}}\right)
\end{aligned}
$$

Asymptotic analysis of cumulants

Recall $X_{n}=\sum_{1 \leq i \leq n} F_{i}$. By multilinearity,

$$
\kappa_{\ell}\left(X_{n}, \ldots, X_{n}\right)=\sum_{1 \leq i_{1}, \ldots, i_{\ell} \leq n} \kappa_{\ell}\left(F_{i_{1}}, \ldots, F_{i_{\ell}}\right)
$$

Fix some positive integer $t \leq \ell$.

- There are $S(\ell, t) n(n-1) \ldots(n-t+1)$ lists $\left(i_{1}, \ldots, i_{\ell}\right)$ with exactly t distinct values.

Notation: $S(\ell, t)$ is the number of set partitions of $[\ell]$ with t parts.

Asymptotic analysis of cumulants

Recall $X_{n}=\sum_{1 \leq i \leq n} F_{i}$. By multilinearity,

$$
\kappa_{\ell}\left(X_{n}, \ldots, X_{n}\right)=\sum_{1 \leq i_{1}, \ldots, i_{\ell} \leq n} \kappa_{\ell}\left(F_{i_{1}}, \ldots, F_{i_{\ell}}\right)
$$

Fix some positive integer $t \leq \ell$.

- There are $S(\ell, t) n(n-1) \ldots(n-t+1)$ lists $\left(i_{1}, \ldots, i_{\ell}\right)$ with exactly t distinct values.
- For each one of these sequences, $\kappa_{\ell}\left(F_{i_{1}}, \ldots, F_{i_{\ell}}\right)=O\left(n^{-2 t+1}\right)$.

See previous slide: moreover, the O is uniform (depends only on ℓ).

Asymptotic analysis of cumulants

Recall $X_{n}=\sum_{1 \leq i \leq n} F_{i}$. By multilinearity,

$$
\kappa_{\ell}\left(X_{n}, \ldots, X_{n}\right)=\sum_{1 \leq i_{1}, \ldots, i_{\ell} \leq n} \kappa_{\ell}\left(F_{i_{1}}, \ldots, F_{i_{\ell}}\right)
$$

Fix some positive integer $t \leq \ell$.

- There are $S(\ell, t) n(n-1) \ldots(n-t+1)$ lists $\left(i_{1}, \ldots, i_{\ell}\right)$ with exactly t distinct values.
- For each one of these sequences, $\kappa_{\ell}\left(F_{i_{1}}, \ldots, F_{i_{\ell}}\right)=O\left(n^{-2 t+1}\right)$.
- Hence, the total contribution of these lists is $O\left(n^{-t+1}\right)$.

See previous slide: moreover, the O is uniform (depends only on ℓ).

Asymptotic analysis of cumulants

Recall $X_{n}=\sum_{1 \leq i \leq n} F_{i}$. By multilinearity,

$$
\kappa_{\ell}\left(X_{n}, \ldots, X_{n}\right)=\sum_{1 \leq i_{1}, \ldots, i_{\ell} \leq n} \kappa_{\ell}\left(F_{i_{1}}, \ldots, F_{i_{\ell}}\right)
$$

Fix some positive integer $t \leq \ell$.

- There are $S(\ell, t) n(n-1) \ldots(n-t+1)$ lists $\left(i_{1}, \ldots, i_{\ell}\right)$ with exactly t distinct values.
- For each one of these sequences, $\kappa_{\ell}\left(F_{i_{1}}, \ldots, F_{i_{\ell}}\right)=O\left(n^{-2 t+1}\right)$.
- Hence, the total contribution of these lists is $O\left(n^{-t+1}\right)$.

Finally, we get:

$$
\kappa_{\ell}\left(X_{n}, \ldots, X_{n}\right)=\sum_{1 \leq i \leq n} \kappa_{\ell}\left(F_{i}, \ldots, F_{i}\right)+O\left(N^{-1}\right)
$$

End of the proof

We proved

$$
\kappa_{\ell}\left(X_{n}, \ldots, X_{n}\right)=\sum_{1 \leq i \leq n} \kappa_{\ell}\left(F_{i}, \ldots, F_{i}\right)+O\left(N^{-1}\right)
$$

End of the proof

We proved

$$
\kappa_{\ell}\left(X_{n}, \ldots, X_{n}\right)=\sum_{1 \leq i \leq n} \kappa_{\ell}\left(F_{i}, \ldots, F_{i}\right)+O\left(N^{-1}\right)
$$

that is: X_{n} has asymptotically the same cumulant than a sum of n independent Bernouilli variables of parameter $1 / n$.

End of the proof

We proved

$$
\kappa_{\ell}\left(X_{n}, \ldots, X_{n}\right)=\sum_{1 \leq i \leq n} \kappa_{\ell}\left(F_{i}, \ldots, F_{i}\right)+O\left(N^{-1}\right)
$$

that is: X_{n} has asymptotically the same cumulant than a sum of n independent Bernouilli variables of parameter $1 / n$.
\Longrightarrow it converges in distribution towards a Poisson law of parameter 1 (law of small numbers).

Main steps of the proof for dashed patterns

Notation: $B_{i, s}(\sigma)= \begin{cases}1 & \text { if } \sigma(i)=s ; \\ 0 & \text { else. }\end{cases}$
Note: the number of occurrences of any dashed pattern writes as a sum of products of such variables.

Main steps of the proof for dashed patterns

Notation: $B_{i, s}(\sigma)= \begin{cases}1 & \text { if } \sigma(i)=s ; \\ 0 & \text { else. }\end{cases}$
Note: the number of occurrences of any dashed pattern writes as a sum of products of such variables.
Hence, its cumulants are huge sums of cumulants of product of $B_{i, s}$.

Main steps of the proof for dashed patterns

Notation: $B_{i, s}(\sigma)= \begin{cases}1 & \text { if } \sigma(i)=s ; \\ 0 & \text { else. }\end{cases}$
Note: the number of occurrences of any dashed pattern writes as a sum of products of such variables.
Hence, its cumulants are huge sums of cumulants of product of $B_{i, s}$.
We need a bound for joint cumulants of products of $B_{i, s}$ (next slide).

Main steps of the proof for dashed patterns

Notation: $B_{i, s}(\sigma)= \begin{cases}1 & \text { if } \sigma(i)=s ; \\ 0 & \text { else. }\end{cases}$
Note: the number of occurrences of any dashed pattern writes as a sum of products of such variables.
Hence, its cumulants are huge sums of cumulants of product of $B_{i, s}$.
We need a bound for joint cumulants of products of $B_{i, s}$ (next slide).
Then, one has to determine which summands have the biggest contribution to cumulants (not easy!)...

The general bound for cumulants

Consider $\kappa\left(B_{1,3} B_{2,7}, B_{2,5}, B_{1,3} B_{4,9}, B_{6,8}\right)$.

The general bound for cumulants

Consider $\kappa\left(B_{1,3} B_{2,7}, B_{2,5}, B_{1,3} B_{4,9}, B_{6,8}\right)$.
Denote:

- t the number of different couples (i, s), here 5 .

The general bound for cumulants

Consider $\kappa\left(B_{1,3} B_{2,7}, B_{2,5}, B_{1,3} B_{4,9}, B_{6,8}\right)$.
Denote:

- t the number of different couples (i, s), here 5 .
- m the number of connected components of the following graph

$$
\begin{aligned}
B_{2,5} & \bullet
\end{aligned} \begin{array}{cc}
B_{6,8} \\
B_{1,3} B_{2,7} & \bullet \\
B_{1,3} B_{4,9}
\end{array}
$$

The general bound for cumulants

Consider $\kappa\left(B_{1,3} B_{2,7}, B_{2,5}, B_{1,3} B_{4,9}, B_{6,8}\right)$.
Denote:

- t the number of different couples (i, s), here 5 .
- m the number of connected components of the following graph (here, $m=2$)

The general bound for cumulants

Consider $\kappa\left(B_{1,3} B_{2,7}, B_{2,5}, B_{1,3} B_{4,9}, B_{6,8}\right)$.
Denote:

- t the number of different couples (i, s), here 5 .
- m the number of connected components of the following graph (here, $m=2$)

Then $\kappa\left(B_{1,3} B_{2,7}, B_{2,5}, B_{1,3} B_{4,9}, B_{6,8}\right)=O\left(n^{-t-m+1}\right)=O\left(n^{-5}\right)$.

Future work

- More statistics: Generalized patterns (with some adjacencies in places and values) or even more general setting (where we can add equalities/inequalities between some places and values).
- More objects: random graphs, ...
- More precise results: speed of convergence, local limit laws, large deviation...

